xref: /freebsd/sys/arm/include/pmap.h (revision d356ca0c3ffa363d5bfbc237b44f53b3f88fd415)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49  #include <machine/acle-compat.h>
50 
51 #if __ARM_ARCH >= 6
52 #include <machine/pmap-v6.h>
53 #else /* __ARM_ARCH >= 6 */
54 
55 #ifndef _MACHINE_PMAP_H_
56 #define _MACHINE_PMAP_H_
57 
58 #include <machine/pte.h>
59 #include <machine/cpuconf.h>
60 /*
61  * Pte related macros
62  */
63 #if ARM_ARCH_6 || ARM_ARCH_7A
64 #ifdef SMP
65 #define PTE_NOCACHE	2
66 #else
67 #define PTE_NOCACHE	1
68 #endif
69 #define PTE_CACHE	6
70 #define PTE_DEVICE	2
71 #define PTE_PAGETABLE	6
72 #else
73 #define PTE_NOCACHE	1
74 #define PTE_CACHE	2
75 #define PTE_DEVICE	PTE_NOCACHE
76 #define PTE_PAGETABLE	3
77 #endif
78 
79 enum mem_type {
80 	STRONG_ORD = 0,
81 	DEVICE_NOSHARE,
82 	DEVICE_SHARE,
83 	NRML_NOCACHE,
84 	NRML_IWT_OWT,
85 	NRML_IWB_OWB,
86 	NRML_IWBA_OWBA
87 };
88 
89 #ifndef LOCORE
90 
91 #include <sys/queue.h>
92 #include <sys/_cpuset.h>
93 #include <sys/_lock.h>
94 #include <sys/_mutex.h>
95 
96 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
97 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
98 
99 #ifdef _KERNEL
100 
101 #define vtophys(va)	pmap_kextract((vm_offset_t)(va))
102 
103 #endif
104 
105 #define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
106 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
107 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
108 boolean_t pmap_page_is_mapped(vm_page_t);
109 #else
110 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
111 #endif
112 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
113 
114 /*
115  * Pmap stuff
116  */
117 
118 /*
119  * This structure is used to hold a virtual<->physical address
120  * association and is used mostly by bootstrap code
121  */
122 struct pv_addr {
123 	SLIST_ENTRY(pv_addr) pv_list;
124 	vm_offset_t	pv_va;
125 	vm_paddr_t	pv_pa;
126 };
127 
128 struct	pv_entry;
129 struct	pv_chunk;
130 
131 struct	md_page {
132 	int pvh_attrs;
133 	vm_memattr_t	 pv_memattr;
134 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
135 	vm_offset_t pv_kva;		/* first kernel VA mapping */
136 #endif
137 	TAILQ_HEAD(,pv_entry)	pv_list;
138 };
139 
140 struct l1_ttable;
141 struct l2_dtable;
142 
143 
144 /*
145  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
146  * A bucket size of 16 provides for 16MB of contiguous virtual address
147  * space per l2_dtable. Most processes will, therefore, require only two or
148  * three of these to map their whole working set.
149  */
150 #define	L2_BUCKET_LOG2	4
151 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
152 /*
153  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
154  * of l2_dtable structures required to track all possible page descriptors
155  * mappable by an L1 translation table is given by the following constants:
156  */
157 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
158 #define	L2_SIZE		(1 << L2_LOG2)
159 
160 struct	pmap {
161 	struct mtx		pm_mtx;
162 	u_int8_t		pm_domain;
163 	struct l1_ttable	*pm_l1;
164 	struct l2_dtable	*pm_l2[L2_SIZE];
165 	cpuset_t		pm_active;	/* active on cpus */
166 	struct pmap_statistics	pm_stats;	/* pmap statictics */
167 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
168 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
169 #else
170 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
171 #endif
172 };
173 
174 typedef struct pmap *pmap_t;
175 
176 #ifdef _KERNEL
177 extern struct pmap	kernel_pmap_store;
178 #define kernel_pmap	(&kernel_pmap_store)
179 
180 #define	PMAP_ASSERT_LOCKED(pmap) \
181 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
182 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
183 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
184 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
185 				    NULL, MTX_DEF | MTX_DUPOK)
186 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
187 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
188 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
189 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
190 #endif
191 
192 
193 /*
194  * For each vm_page_t, there is a list of all currently valid virtual
195  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
196  */
197 typedef struct pv_entry {
198 	vm_offset_t     pv_va;          /* virtual address for mapping */
199 	TAILQ_ENTRY(pv_entry)   pv_list;
200 	int		pv_flags;	/* flags (wired, etc...) */
201 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
202 	pmap_t          pv_pmap;        /* pmap where mapping lies */
203 	TAILQ_ENTRY(pv_entry)	pv_plist;
204 #endif
205 } *pv_entry_t;
206 
207 /*
208  * pv_entries are allocated in chunks per-process.  This avoids the
209  * need to track per-pmap assignments.
210  */
211 #define	_NPCM	8
212 #define	_NPCPV	252
213 
214 struct pv_chunk {
215 	pmap_t			pc_pmap;
216 	TAILQ_ENTRY(pv_chunk)	pc_list;
217 	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
218 	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
219 	TAILQ_ENTRY(pv_chunk)	pc_lru;
220 	struct pv_entry		pc_pventry[_NPCPV];
221 };
222 
223 #ifdef _KERNEL
224 
225 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
226 
227 /*
228  * virtual address to page table entry and
229  * to physical address. Likewise for alternate address space.
230  * Note: these work recursively, thus vtopte of a pte will give
231  * the corresponding pde that in turn maps it.
232  */
233 
234 /*
235  * The current top of kernel VM.
236  */
237 extern vm_offset_t pmap_curmaxkvaddr;
238 
239 struct pcb;
240 
241 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
242 /* Virtual address to page table entry */
243 static __inline pt_entry_t *
244 vtopte(vm_offset_t va)
245 {
246 	pd_entry_t *pdep;
247 	pt_entry_t *ptep;
248 
249 	if (pmap_get_pde_pte(kernel_pmap, va, &pdep, &ptep) == FALSE)
250 		return (NULL);
251 	return (ptep);
252 }
253 
254 extern vm_paddr_t phys_avail[];
255 extern vm_offset_t virtual_avail;
256 extern vm_offset_t virtual_end;
257 
258 void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
259 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
260 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
261 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
262 void	pmap_kenter_device(vm_offset_t, vm_size_t, vm_paddr_t);
263 void	pmap_kremove_device(vm_offset_t, vm_size_t);
264 void	*pmap_kenter_temporary(vm_paddr_t pa, int i);
265 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
266 vm_paddr_t pmap_kextract(vm_offset_t va);
267 vm_paddr_t pmap_dump_kextract(vm_offset_t, pt2_entry_t *);
268 void	pmap_kremove(vm_offset_t);
269 void	*pmap_mapdev(vm_offset_t, vm_size_t);
270 void	pmap_unmapdev(vm_offset_t, vm_size_t);
271 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
272 void	pmap_debug(int);
273 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
274 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
275 #endif
276 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
277 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
278 void
279 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
280     int cache);
281 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
282 
283 /*
284  * Definitions for MMU domains
285  */
286 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
287 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
288 
289 /*
290  * The new pmap ensures that page-tables are always mapping Write-Thru.
291  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
292  * on every change.
293  *
294  * Unfortunately, not all CPUs have a write-through cache mode.  So we
295  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
296  * and if there is the chance for PTE syncs to be needed, we define
297  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
298  * the code.
299  */
300 extern int pmap_needs_pte_sync;
301 
302 /*
303  * These macros define the various bit masks in the PTE.
304  *
305  * We use these macros since we use different bits on different processor
306  * models.
307  */
308 
309 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
310 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
311     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
312 
313 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
314 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
315     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
316 
317 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
318 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
319 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
320 
321 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
322 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
323 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
324 
325 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
326 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
327     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
328 
329 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
330 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
331 
332 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
333 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
334 
335 #define	L2_L_PROTO		(L2_TYPE_L)
336 
337 #define	L2_S_PROTO_generic	(L2_TYPE_S)
338 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
339 
340 /*
341  * User-visible names for the ones that vary with MMU class.
342  */
343 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
344 #define	L2_AP(x)	(L2_AP0(x))
345 #else
346 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
347 #endif
348 
349 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
350 /*
351  * AP[2:1] access permissions model:
352  *
353  * AP[2](APX)	- Write Disable
354  * AP[1]	- User Enable
355  * AP[0]	- Reference Flag
356  *
357  * AP[2]     AP[1]     Kernel     User
358  *  0          0        R/W        N
359  *  0          1        R/W       R/W
360  *  1          0         R         N
361  *  1          1         R         R
362  *
363  */
364 #define	L2_S_PROT_R		(0)		/* kernel read */
365 #define	L2_S_PROT_U		(L2_AP0(2))	/* user read */
366 #define L2_S_REF		(L2_AP0(1))	/* reference flag */
367 
368 #define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R|L2_APX)
369 #define	L2_S_EXECUTABLE(pte)	(!(pte & L2_XN))
370 #define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
371 #define	L2_S_REFERENCED(pte)	(!!(pte & L2_S_REF))
372 
373 #ifndef SMP
374 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
375 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
376 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
377 #else
378 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
379 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
380 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
381 #endif  /* SMP */
382 
383 #define	L1_S_PROTO		(L1_TYPE_S)
384 #define	L1_C_PROTO		(L1_TYPE_C)
385 #define	L2_S_PROTO		(L2_TYPE_S)
386 
387 /*
388  * Promotion to a 1MB (SECTION) mapping requires that the corresponding
389  * 4KB (SMALL) page mappings have identical settings for the following fields:
390  */
391 #define	L2_S_PROMOTE		(L2_S_REF | L2_SHARED | L2_S_PROT_MASK | \
392 				 L2_XN | L2_S_PROTO)
393 
394 /*
395  * In order to compare 1MB (SECTION) entry settings with the 4KB (SMALL)
396  * page mapping it is necessary to read and shift appropriate bits from
397  * L1 entry to positions of the corresponding bits in the L2 entry.
398  */
399 #define L1_S_DEMOTE(l1pd)	((((l1pd) & L1_S_PROTO) >> 0) | \
400 				(((l1pd) & L1_SHARED) >> 6) | \
401 				(((l1pd) & L1_S_REF) >> 6) | \
402 				(((l1pd) & L1_S_PROT_MASK) >> 6) | \
403 				(((l1pd) & L1_S_XN) >> 4))
404 
405 #ifndef SMP
406 #define ARM_L1S_STRONG_ORD	(0)
407 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
408 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
409 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
410 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
411 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
412 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
413 
414 #define ARM_L2L_STRONG_ORD	(0)
415 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
416 #define ARM_L2L_DEVICE_SHARE	(L2_B)
417 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
418 #define ARM_L2L_NRML_IWT_OWT	(L2_C)
419 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
420 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
421 
422 #define ARM_L2S_STRONG_ORD	(0)
423 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
424 #define ARM_L2S_DEVICE_SHARE	(L2_B)
425 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
426 #define ARM_L2S_NRML_IWT_OWT	(L2_C)
427 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
428 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
429 #else
430 #define ARM_L1S_STRONG_ORD	(0)
431 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
432 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
433 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
434 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
435 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
436 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
437 
438 #define ARM_L2L_STRONG_ORD	(0)
439 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
440 #define ARM_L2L_DEVICE_SHARE	(L2_B)
441 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
442 #define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
443 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
444 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
445 
446 #define ARM_L2S_STRONG_ORD	(0)
447 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
448 #define ARM_L2S_DEVICE_SHARE	(L2_B)
449 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
450 #define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
451 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
452 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
453 #endif /* SMP */
454 
455 #elif ARM_NMMUS > 1
456 /* More than one MMU class configured; use variables. */
457 #define	L2_S_PROT_U		pte_l2_s_prot_u
458 #define	L2_S_PROT_W		pte_l2_s_prot_w
459 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
460 
461 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
462 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
463 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
464 
465 #define	L1_S_PROTO		pte_l1_s_proto
466 #define	L1_C_PROTO		pte_l1_c_proto
467 #define	L2_S_PROTO		pte_l2_s_proto
468 
469 #elif ARM_MMU_GENERIC != 0
470 #define	L2_S_PROT_U		L2_S_PROT_U_generic
471 #define	L2_S_PROT_W		L2_S_PROT_W_generic
472 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
473 
474 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
475 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
476 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
477 
478 #define	L1_S_PROTO		L1_S_PROTO_generic
479 #define	L1_C_PROTO		L1_C_PROTO_generic
480 #define	L2_S_PROTO		L2_S_PROTO_generic
481 
482 #elif ARM_MMU_XSCALE == 1
483 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
484 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
485 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
486 
487 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
488 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
489 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
490 
491 #define	L1_S_PROTO		L1_S_PROTO_xscale
492 #define	L1_C_PROTO		L1_C_PROTO_xscale
493 #define	L2_S_PROTO		L2_S_PROTO_xscale
494 
495 #endif /* ARM_NMMUS > 1 */
496 
497 #if defined(CPU_XSCALE_81342) || ARM_ARCH_6 || ARM_ARCH_7A
498 #define PMAP_NEEDS_PTE_SYNC	1
499 #define PMAP_INCLUDE_PTE_SYNC
500 #else
501 #define	PMAP_NEEDS_PTE_SYNC	0
502 #endif
503 
504 /*
505  * These macros return various bits based on kernel/user and protection.
506  * Note that the compiler will usually fold these at compile time.
507  */
508 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
509 
510 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
511 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
512 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
513 #define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
514 
515 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
516 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
517 
518 #define	L2_L_PROT_U		(L2_AP(AP_U))
519 #define	L2_L_PROT_W		(L2_AP(AP_W))
520 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
521 
522 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
523 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
524 
525 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
526 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
527 #else
528 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
529 #define	L1_S_PROT_W		(L1_S_APX)		/* Write disable */
530 #define	L1_S_PROT_MASK		(L1_S_PROT_W|L1_S_PROT_U)
531 #define	L1_S_REF		(L1_S_AP(AP_REF))	/* Reference flag */
532 #define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_PROT_W))
533 #define	L1_S_EXECUTABLE(pd)	(!((pd) & L1_S_XN))
534 #define	L1_S_REFERENCED(pd)	((pd) & L1_S_REF)
535 
536 #define	L1_S_PROT(ku, pr)	(((((ku) == PTE_KERNEL) ? 0 : L1_S_PROT_U) | \
537 				 (((pr) & VM_PROT_WRITE) ? 0 : L1_S_PROT_W) | \
538 				 (((pr) & VM_PROT_EXECUTE) ? 0 : L1_S_XN)))
539 
540 #define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
541 #define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
542 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
543 
544 #define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
545 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
546 
547 #endif
548 
549 /*
550  * Macros to test if a mapping is mappable with an L1 Section mapping
551  * or an L2 Large Page mapping.
552  */
553 #define	L1_S_MAPPABLE_P(va, pa, size)					\
554 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
555 
556 #define	L2_L_MAPPABLE_P(va, pa, size)					\
557 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
558 
559 /*
560  * Provide a fallback in case we were not able to determine it at
561  * compile-time.
562  */
563 #ifndef PMAP_NEEDS_PTE_SYNC
564 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
565 #define	PMAP_INCLUDE_PTE_SYNC
566 #endif
567 
568 #ifdef ARM_L2_PIPT
569 #define _sync_l2(pte, size) 	cpu_l2cache_wb_range(vtophys(pte), size)
570 #else
571 #define _sync_l2(pte, size) 	cpu_l2cache_wb_range(pte, size)
572 #endif
573 
574 #define	PTE_SYNC(pte)							\
575 do {									\
576 	if (PMAP_NEEDS_PTE_SYNC) {					\
577 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
578 		cpu_drain_writebuf();					\
579 		_sync_l2((vm_offset_t)(pte), sizeof(pt_entry_t));\
580 	} else								\
581 		cpu_drain_writebuf();					\
582 } while (/*CONSTCOND*/0)
583 
584 #define	PTE_SYNC_RANGE(pte, cnt)					\
585 do {									\
586 	if (PMAP_NEEDS_PTE_SYNC) {					\
587 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
588 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
589 		cpu_drain_writebuf();					\
590 		_sync_l2((vm_offset_t)(pte),		 		\
591 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
592 	} else								\
593 		cpu_drain_writebuf();					\
594 } while (/*CONSTCOND*/0)
595 
596 extern pt_entry_t		pte_l1_s_cache_mode;
597 extern pt_entry_t		pte_l1_s_cache_mask;
598 
599 extern pt_entry_t		pte_l2_l_cache_mode;
600 extern pt_entry_t		pte_l2_l_cache_mask;
601 
602 extern pt_entry_t		pte_l2_s_cache_mode;
603 extern pt_entry_t		pte_l2_s_cache_mask;
604 
605 extern pt_entry_t		pte_l1_s_cache_mode_pt;
606 extern pt_entry_t		pte_l2_l_cache_mode_pt;
607 extern pt_entry_t		pte_l2_s_cache_mode_pt;
608 
609 extern pt_entry_t		pte_l2_s_prot_u;
610 extern pt_entry_t		pte_l2_s_prot_w;
611 extern pt_entry_t		pte_l2_s_prot_mask;
612 
613 extern pt_entry_t		pte_l1_s_proto;
614 extern pt_entry_t		pte_l1_c_proto;
615 extern pt_entry_t		pte_l2_s_proto;
616 
617 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
618 extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
619     vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
620 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
621 
622 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7) != 0 || defined(CPU_XSCALE_81342)
623 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
624 void	pmap_zero_page_generic(vm_paddr_t, int, int);
625 
626 void	pmap_pte_init_generic(void);
627 #endif /* (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7) != 0 */
628 
629 #if ARM_MMU_XSCALE == 1
630 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
631 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
632 
633 void	pmap_pte_init_xscale(void);
634 
635 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
636 
637 void	pmap_use_minicache(vm_offset_t, vm_size_t);
638 #endif /* ARM_MMU_XSCALE == 1 */
639 #if defined(CPU_XSCALE_81342)
640 #define ARM_HAVE_SUPERSECTIONS
641 #endif
642 
643 #define PTE_KERNEL	0
644 #define PTE_USER	1
645 #define	l1pte_valid(pde)	((pde) != 0)
646 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
647 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
648 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
649 
650 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
651 #define	l2pte_valid(pte)	((pte) != 0)
652 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
653 #define l2pte_minidata(pte)	(((pte) & \
654 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
655 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
656 
657 /* L1 and L2 page table macros */
658 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
659 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
660 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
661 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
662 
663 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
664 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
665 
666 /*
667  * Flags that indicate attributes of pages or mappings of pages.
668  *
669  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
670  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
671  * pv_entry's for each page.  They live in the same "namespace" so
672  * that we can clear multiple attributes at a time.
673  *
674  * Note the "non-cacheable" flag generally means the page has
675  * multiple mappings in a given address space.
676  */
677 #define	PVF_MOD		0x01		/* page is modified */
678 #define	PVF_REF		0x02		/* page is referenced */
679 #define	PVF_WIRED	0x04		/* mapping is wired */
680 #define	PVF_WRITE	0x08		/* mapping is writable */
681 #define	PVF_EXEC	0x10		/* mapping is executable */
682 #define	PVF_NC		0x20		/* mapping is non-cacheable */
683 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
684 #define	PVF_UNMAN	0x80		/* mapping is unmanaged */
685 
686 void vector_page_setprot(int);
687 
688 #define SECTION_CACHE	0x1
689 #define SECTION_PT	0x2
690 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
691 #ifdef ARM_HAVE_SUPERSECTIONS
692 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
693 #endif
694 
695 extern char *_tmppt;
696 
697 void	pmap_postinit(void);
698 
699 extern vm_paddr_t dump_avail[];
700 #endif	/* _KERNEL */
701 
702 #endif	/* !LOCORE */
703 
704 #endif	/* !_MACHINE_PMAP_H_ */
705 #endif	/* __ARM_ARCH >= 6 */
706