xref: /freebsd/sys/arm/include/pmap.h (revision d241a0e67ff3a44947931bf8c841d9786c59efd7)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 #include <machine/cpuconf.h>
55 /*
56  * Pte related macros
57  */
58 #if ARM_ARCH_6 || ARM_ARCH_7A
59 #ifdef SMP
60 #define PTE_NOCACHE	2
61 #else
62 #define PTE_NOCACHE	1
63 #endif
64 #define PTE_CACHE	6
65 #define PTE_DEVICE	2
66 #define PTE_PAGETABLE	4
67 #else
68 #define PTE_NOCACHE	1
69 #define PTE_CACHE	2
70 #define PTE_PAGETABLE	3
71 #endif
72 
73 enum mem_type {
74 	STRONG_ORD = 0,
75 	DEVICE_NOSHARE,
76 	DEVICE_SHARE,
77 	NRML_NOCACHE,
78 	NRML_IWT_OWT,
79 	NRML_IWB_OWB,
80 	NRML_IWBA_OWBA
81 };
82 
83 #ifndef LOCORE
84 
85 #include <sys/queue.h>
86 #include <sys/_cpuset.h>
87 #include <sys/_lock.h>
88 #include <sys/_mutex.h>
89 
90 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
91 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
92 
93 #ifdef _KERNEL
94 
95 #define vtophys(va)	pmap_kextract((vm_offset_t)(va))
96 
97 #endif
98 
99 #define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
100 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
101 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
102 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
103 
104 /*
105  * Pmap stuff
106  */
107 
108 /*
109  * This structure is used to hold a virtual<->physical address
110  * association and is used mostly by bootstrap code
111  */
112 struct pv_addr {
113 	SLIST_ENTRY(pv_addr) pv_list;
114 	vm_offset_t	pv_va;
115 	vm_paddr_t	pv_pa;
116 };
117 
118 struct	pv_entry;
119 
120 struct	md_page {
121 	int pvh_attrs;
122 	vm_memattr_t	 pv_memattr;
123 	vm_offset_t pv_kva;		/* first kernel VA mapping */
124 	TAILQ_HEAD(,pv_entry)	pv_list;
125 };
126 
127 struct l1_ttable;
128 struct l2_dtable;
129 
130 
131 /*
132  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
133  * A bucket size of 16 provides for 16MB of contiguous virtual address
134  * space per l2_dtable. Most processes will, therefore, require only two or
135  * three of these to map their whole working set.
136  */
137 #define	L2_BUCKET_LOG2	4
138 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
139 /*
140  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
141  * of l2_dtable structures required to track all possible page descriptors
142  * mappable by an L1 translation table is given by the following constants:
143  */
144 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
145 #define	L2_SIZE		(1 << L2_LOG2)
146 
147 struct	pmap {
148 	struct mtx		pm_mtx;
149 	u_int8_t		pm_domain;
150 	struct l1_ttable	*pm_l1;
151 	struct l2_dtable	*pm_l2[L2_SIZE];
152 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
153 	cpuset_t		pm_active;	/* active on cpus */
154 	struct pmap_statistics	pm_stats;	/* pmap statictics */
155 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
156 };
157 
158 typedef struct pmap *pmap_t;
159 
160 #ifdef _KERNEL
161 extern struct pmap	kernel_pmap_store;
162 #define kernel_pmap	(&kernel_pmap_store)
163 #define pmap_kernel() kernel_pmap
164 
165 #define	PMAP_ASSERT_LOCKED(pmap) \
166 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
167 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
168 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
169 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
170 				    NULL, MTX_DEF | MTX_DUPOK)
171 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
172 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
173 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
174 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
175 #endif
176 
177 
178 /*
179  * For each vm_page_t, there is a list of all currently valid virtual
180  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
181  */
182 typedef struct pv_entry {
183 	pmap_t          pv_pmap;        /* pmap where mapping lies */
184 	vm_offset_t     pv_va;          /* virtual address for mapping */
185 	TAILQ_ENTRY(pv_entry)   pv_list;
186 	TAILQ_ENTRY(pv_entry)	pv_plist;
187 	int		pv_flags;	/* flags (wired, etc...) */
188 } *pv_entry_t;
189 
190 #ifdef _KERNEL
191 
192 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
193 
194 /*
195  * virtual address to page table entry and
196  * to physical address. Likewise for alternate address space.
197  * Note: these work recursively, thus vtopte of a pte will give
198  * the corresponding pde that in turn maps it.
199  */
200 
201 /*
202  * The current top of kernel VM.
203  */
204 extern vm_offset_t pmap_curmaxkvaddr;
205 
206 struct pcb;
207 
208 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
209 /* Virtual address to page table entry */
210 static __inline pt_entry_t *
211 vtopte(vm_offset_t va)
212 {
213 	pd_entry_t *pdep;
214 	pt_entry_t *ptep;
215 
216 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
217 		return (NULL);
218 	return (ptep);
219 }
220 
221 extern vm_paddr_t phys_avail[];
222 extern vm_offset_t virtual_avail;
223 extern vm_offset_t virtual_end;
224 
225 void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
226 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
227 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
228 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
229 void	*pmap_kenter_temp(vm_paddr_t pa, int i);
230 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
231 vm_paddr_t pmap_kextract(vm_offset_t va);
232 void	pmap_kremove(vm_offset_t);
233 void	*pmap_mapdev(vm_offset_t, vm_size_t);
234 void	pmap_unmapdev(vm_offset_t, vm_size_t);
235 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
236 void	pmap_debug(int);
237 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
238 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
239 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
240 void
241 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
242     int cache);
243 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
244 int pmap_dmap_iscurrent(pmap_t pmap);
245 
246 /*
247  * Definitions for MMU domains
248  */
249 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
250 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
251 
252 /*
253  * The new pmap ensures that page-tables are always mapping Write-Thru.
254  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
255  * on every change.
256  *
257  * Unfortunately, not all CPUs have a write-through cache mode.  So we
258  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
259  * and if there is the chance for PTE syncs to be needed, we define
260  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
261  * the code.
262  */
263 extern int pmap_needs_pte_sync;
264 
265 /*
266  * These macros define the various bit masks in the PTE.
267  *
268  * We use these macros since we use different bits on different processor
269  * models.
270  */
271 
272 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
273 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
274     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
275 
276 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
277 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
278     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
279 
280 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
281 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
282 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
283 
284 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
285 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
286 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
287 
288 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
289 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
290     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
291 
292 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
293 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
294 
295 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
296 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
297 
298 #define	L2_L_PROTO		(L2_TYPE_L)
299 
300 #define	L2_S_PROTO_generic	(L2_TYPE_S)
301 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
302 
303 /*
304  * User-visible names for the ones that vary with MMU class.
305  */
306 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
307 #define	L2_AP(x)	(L2_AP0(x))
308 #else
309 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
310 #endif
311 
312 #if ARM_NMMUS > 1
313 /* More than one MMU class configured; use variables. */
314 #define	L2_S_PROT_U		pte_l2_s_prot_u
315 #define	L2_S_PROT_W		pte_l2_s_prot_w
316 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
317 
318 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
319 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
320 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
321 
322 #define	L1_S_PROTO		pte_l1_s_proto
323 #define	L1_C_PROTO		pte_l1_c_proto
324 #define	L2_S_PROTO		pte_l2_s_proto
325 
326 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
327 #define	L2_S_PROT_U		L2_S_PROT_U_generic
328 #define	L2_S_PROT_W		L2_S_PROT_W_generic
329 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
330 
331 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
332 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
333 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
334 
335 #define	L1_S_PROTO		L1_S_PROTO_generic
336 #define	L1_C_PROTO		L1_C_PROTO_generic
337 #define	L2_S_PROTO		L2_S_PROTO_generic
338 
339 #elif ARM_MMU_XSCALE == 1
340 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
341 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
342 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
343 
344 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
345 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
346 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
347 
348 #define	L1_S_PROTO		L1_S_PROTO_xscale
349 #define	L1_C_PROTO		L1_C_PROTO_xscale
350 #define	L2_S_PROTO		L2_S_PROTO_xscale
351 
352 #elif (ARM_MMU_V6 + ARM_MMU_V7) != 0
353 
354 #define	L2_S_PROT_U		(L2_AP0(2))		/* user access */
355 #define	L2_S_PROT_R		(L2_APX|L2_AP0(1))	/* read access */
356 
357 #define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R)
358 #define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
359 
360 #ifndef SMP
361 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
362 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
363 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
364 #else
365 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
366 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
367 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
368 #endif  /* SMP */
369 
370 #define	L1_S_PROTO		(L1_TYPE_S)
371 #define	L1_C_PROTO		(L1_TYPE_C)
372 #define	L2_S_PROTO		(L2_TYPE_S)
373 
374 #ifndef SMP
375 #define ARM_L1S_STRONG_ORD	(0)
376 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
377 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
378 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
379 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
380 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
381 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
382 
383 #define ARM_L2L_STRONG_ORD	(0)
384 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
385 #define ARM_L2L_DEVICE_SHARE	(L2_B)
386 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
387 #define ARM_L2L_NRML_IWT_OWT	(L2_C)
388 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
389 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
390 
391 #define ARM_L2S_STRONG_ORD	(0)
392 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
393 #define ARM_L2S_DEVICE_SHARE	(L2_B)
394 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
395 #define ARM_L2S_NRML_IWT_OWT	(L2_C)
396 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
397 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
398 #else
399 #define ARM_L1S_STRONG_ORD	(0)
400 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
401 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
402 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
403 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
404 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
405 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
406 
407 #define ARM_L2L_STRONG_ORD	(0)
408 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
409 #define ARM_L2L_DEVICE_SHARE	(L2_B)
410 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
411 #define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
412 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
413 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
414 
415 #define ARM_L2S_STRONG_ORD	(0)
416 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
417 #define ARM_L2S_DEVICE_SHARE	(L2_B)
418 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
419 #define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
420 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
421 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
422 #endif /* SMP */
423 #endif /* ARM_NMMUS > 1 */
424 
425 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
426 #define	PMAP_NEEDS_PTE_SYNC	1
427 #define	PMAP_INCLUDE_PTE_SYNC
428 #elif defined(CPU_XSCALE_81342)
429 #define PMAP_NEEDS_PTE_SYNC	1
430 #define PMAP_INCLUDE_PTE_SYNC
431 #elif (ARM_MMU_SA1 == 0)
432 #define	PMAP_NEEDS_PTE_SYNC	0
433 #endif
434 
435 /*
436  * These macros return various bits based on kernel/user and protection.
437  * Note that the compiler will usually fold these at compile time.
438  */
439 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
440 
441 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
442 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
443 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
444 #define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
445 
446 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
447 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
448 
449 #define	L2_L_PROT_U		(L2_AP(AP_U))
450 #define	L2_L_PROT_W		(L2_AP(AP_W))
451 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
452 
453 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
454 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
455 
456 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
457 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
458 #else
459 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
460 #define	L1_S_PROT_MASK		(L1_S_APX|L1_S_AP(0x3))
461 #define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_APX))
462 
463 #define	L1_S_PROT(ku, pr)	(L1_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L1_S_PROT_U : 0) | \
464 				 (((pr) & VM_PROT_WRITE) ? L1_S_APX : 0)))
465 
466 #define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
467 #define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
468 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
469 
470 #define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
471 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
472 
473 #endif
474 
475 /*
476  * Macros to test if a mapping is mappable with an L1 Section mapping
477  * or an L2 Large Page mapping.
478  */
479 #define	L1_S_MAPPABLE_P(va, pa, size)					\
480 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
481 
482 #define	L2_L_MAPPABLE_P(va, pa, size)					\
483 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
484 
485 /*
486  * Provide a fallback in case we were not able to determine it at
487  * compile-time.
488  */
489 #ifndef PMAP_NEEDS_PTE_SYNC
490 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
491 #define	PMAP_INCLUDE_PTE_SYNC
492 #endif
493 
494 #define	PTE_SYNC(pte)							\
495 do {									\
496 	if (PMAP_NEEDS_PTE_SYNC) {					\
497 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
498 		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
499 	} else								\
500 		cpu_drain_writebuf();					\
501 } while (/*CONSTCOND*/0)
502 
503 #define	PTE_SYNC_RANGE(pte, cnt)					\
504 do {									\
505 	if (PMAP_NEEDS_PTE_SYNC) {					\
506 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
507 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
508 		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
509 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
510 	} else								\
511 		cpu_drain_writebuf();					\
512 } while (/*CONSTCOND*/0)
513 
514 extern pt_entry_t		pte_l1_s_cache_mode;
515 extern pt_entry_t		pte_l1_s_cache_mask;
516 
517 extern pt_entry_t		pte_l2_l_cache_mode;
518 extern pt_entry_t		pte_l2_l_cache_mask;
519 
520 extern pt_entry_t		pte_l2_s_cache_mode;
521 extern pt_entry_t		pte_l2_s_cache_mask;
522 
523 extern pt_entry_t		pte_l1_s_cache_mode_pt;
524 extern pt_entry_t		pte_l2_l_cache_mode_pt;
525 extern pt_entry_t		pte_l2_s_cache_mode_pt;
526 
527 extern pt_entry_t		pte_l2_s_prot_u;
528 extern pt_entry_t		pte_l2_s_prot_w;
529 extern pt_entry_t		pte_l2_s_prot_mask;
530 
531 extern pt_entry_t		pte_l1_s_proto;
532 extern pt_entry_t		pte_l1_c_proto;
533 extern pt_entry_t		pte_l2_s_proto;
534 
535 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
536 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
537 
538 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
539 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
540 void	pmap_zero_page_generic(vm_paddr_t, int, int);
541 
542 void	pmap_pte_init_generic(void);
543 #if defined(CPU_ARM8)
544 void	pmap_pte_init_arm8(void);
545 #endif
546 #if defined(CPU_ARM9)
547 void	pmap_pte_init_arm9(void);
548 #endif /* CPU_ARM9 */
549 #if defined(CPU_ARM10)
550 void	pmap_pte_init_arm10(void);
551 #endif /* CPU_ARM10 */
552 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
553 void	pmap_pte_init_mmu_v6(void);
554 #endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
555 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
556 
557 #if /* ARM_MMU_SA1 == */1
558 void	pmap_pte_init_sa1(void);
559 #endif /* ARM_MMU_SA1 == 1 */
560 
561 #if ARM_MMU_XSCALE == 1
562 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
563 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
564 
565 void	pmap_pte_init_xscale(void);
566 
567 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
568 
569 void	pmap_use_minicache(vm_offset_t, vm_size_t);
570 #endif /* ARM_MMU_XSCALE == 1 */
571 #if defined(CPU_XSCALE_81342)
572 #define ARM_HAVE_SUPERSECTIONS
573 #endif
574 
575 #define PTE_KERNEL	0
576 #define PTE_USER	1
577 #define	l1pte_valid(pde)	((pde) != 0)
578 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
579 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
580 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
581 
582 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
583 #define	l2pte_valid(pte)	((pte) != 0)
584 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
585 #define l2pte_minidata(pte)	(((pte) & \
586 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
587 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
588 
589 /* L1 and L2 page table macros */
590 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
591 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
592 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
593 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
594 
595 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
596 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
597 
598 /*
599  * Flags that indicate attributes of pages or mappings of pages.
600  *
601  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
602  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
603  * pv_entry's for each page.  They live in the same "namespace" so
604  * that we can clear multiple attributes at a time.
605  *
606  * Note the "non-cacheable" flag generally means the page has
607  * multiple mappings in a given address space.
608  */
609 #define	PVF_MOD		0x01		/* page is modified */
610 #define	PVF_REF		0x02		/* page is referenced */
611 #define	PVF_WIRED	0x04		/* mapping is wired */
612 #define	PVF_WRITE	0x08		/* mapping is writable */
613 #define	PVF_EXEC	0x10		/* mapping is executable */
614 #define	PVF_NC		0x20		/* mapping is non-cacheable */
615 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
616 #define	PVF_UNMAN	0x80		/* mapping is unmanaged */
617 
618 void vector_page_setprot(int);
619 
620 /*
621  * This structure is used by machine-dependent code to describe
622  * static mappings of devices, created at bootstrap time.
623  */
624 struct pmap_devmap {
625 	vm_offset_t	pd_va;		/* virtual address */
626 	vm_paddr_t	pd_pa;		/* physical address */
627 	vm_size_t	pd_size;	/* size of region */
628 	vm_prot_t	pd_prot;	/* protection code */
629 	int		pd_cache;	/* cache attributes */
630 };
631 
632 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
633 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
634 
635 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
636 void	pmap_devmap_register(const struct pmap_devmap *);
637 
638 #define SECTION_CACHE	0x1
639 #define SECTION_PT	0x2
640 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
641 #ifdef ARM_HAVE_SUPERSECTIONS
642 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
643 #endif
644 
645 extern char *_tmppt;
646 
647 void	pmap_postinit(void);
648 
649 #ifdef ARM_USE_SMALL_ALLOC
650 void	arm_add_smallalloc_pages(void *, void *, int, int);
651 vm_offset_t arm_ptovirt(vm_paddr_t);
652 void arm_init_smallalloc(void);
653 struct arm_small_page {
654 	void *addr;
655 	TAILQ_ENTRY(arm_small_page) pg_list;
656 };
657 
658 #endif
659 
660 #define ARM_NOCACHE_KVA_SIZE 0x1000000
661 extern vm_offset_t arm_nocache_startaddr;
662 void *arm_remap_nocache(void *, vm_size_t);
663 void arm_unmap_nocache(void *, vm_size_t);
664 
665 extern vm_paddr_t dump_avail[];
666 #endif	/* _KERNEL */
667 
668 #endif	/* !LOCORE */
669 
670 #endif	/* !_MACHINE_PMAP_H_ */
671