xref: /freebsd/sys/arm/include/pmap.h (revision d056fa046c6a91b90cd98165face0e42a33a5173)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 #include <machine/cpuconf.h>
55 /*
56  * Pte related macros
57  */
58 #define PTE_NOCACHE	0
59 #define PTE_CACHE	1
60 #define PTE_PAGETABLE	2
61 
62 #ifndef LOCORE
63 
64 #include <sys/queue.h>
65 #include <sys/_lock.h>
66 #include <sys/_mutex.h>
67 
68 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
69 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
70 
71 #ifdef _KERNEL
72 
73 #define vtophys(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
74 #define pmap_kextract(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
75 
76 #endif
77 
78 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
79 /*
80  * Pmap stuff
81  */
82 
83 /*
84  * This structure is used to hold a virtual<->physical address
85  * association and is used mostly by bootstrap code
86  */
87 struct pv_addr {
88 	SLIST_ENTRY(pv_addr) pv_list;
89 	vm_offset_t	pv_va;
90 	vm_paddr_t	pv_pa;
91 };
92 
93 struct	pv_entry;
94 
95 struct	md_page {
96 	int pvh_attrs;
97 	u_int uro_mappings;
98 	u_int urw_mappings;
99 	union {
100 		u_short s_mappings[2]; /* Assume kernel count <= 65535 */
101 		u_int i_mappings;
102 	} k_u;
103 #define	kro_mappings	k_u.s_mappings[0]
104 #define	krw_mappings	k_u.s_mappings[1]
105 #define	k_mappings	k_u.i_mappings
106 	int			pv_list_count;
107 	TAILQ_HEAD(,pv_entry)	pv_list;
108 };
109 
110 #define	VM_MDPAGE_INIT(pg)						\
111 do {									\
112 	TAILQ_INIT(&pg->pv_list);					\
113 	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
114 	(pg)->mdpage.pvh_attrs = 0;					\
115 	(pg)->mdpage.uro_mappings = 0;					\
116 	(pg)->mdpage.urw_mappings = 0;					\
117 	(pg)->mdpage.k_mappings = 0;					\
118 } while (/*CONSTCOND*/0)
119 
120 struct l1_ttable;
121 struct l2_dtable;
122 
123 
124 /*
125  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
126  * A bucket size of 16 provides for 16MB of contiguous virtual address
127  * space per l2_dtable. Most processes will, therefore, require only two or
128  * three of these to map their whole working set.
129  */
130 #define	L2_BUCKET_LOG2	4
131 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
132 /*
133  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
134  * of l2_dtable structures required to track all possible page descriptors
135  * mappable by an L1 translation table is given by the following constants:
136  */
137 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
138 #define	L2_SIZE		(1 << L2_LOG2)
139 
140 struct	pmap {
141 	struct mtx		pm_mtx;
142 	u_int8_t		pm_domain;
143 	struct l1_ttable	*pm_l1;
144 	struct l2_dtable	*pm_l2[L2_SIZE];
145 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
146 	int			pm_count;	/* reference count */
147 	int			pm_active;	/* active on cpus */
148 	struct pmap_statistics	pm_stats;	/* pmap statictics */
149 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
150 };
151 
152 typedef struct pmap *pmap_t;
153 
154 #ifdef _KERNEL
155 extern pmap_t	kernel_pmap;
156 #define pmap_kernel() kernel_pmap
157 
158 #define	PMAP_ASSERT_LOCKED(pmap) \
159 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
160 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
161 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
162 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
163 				    NULL, MTX_DEF | MTX_DUPOK)
164 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
165 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
166 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
167 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
168 #endif
169 
170 
171 /*
172  * For each vm_page_t, there is a list of all currently valid virtual
173  * mappings of that page.  An entry is a pv_entry_t, the list is pv_table.
174  */
175 typedef struct pv_entry {
176 	pmap_t          pv_pmap;        /* pmap where mapping lies */
177 	vm_offset_t     pv_va;          /* virtual address for mapping */
178 	TAILQ_ENTRY(pv_entry)   pv_list;
179 	TAILQ_ENTRY(pv_entry)	pv_plist;
180 	int		pv_flags;	/* flags (wired, etc...) */
181 } *pv_entry_t;
182 
183 #define PV_ENTRY_NULL   ((pv_entry_t) 0)
184 
185 #ifdef _KERNEL
186 
187 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
188 
189 /*
190  * virtual address to page table entry and
191  * to physical address. Likewise for alternate address space.
192  * Note: these work recursively, thus vtopte of a pte will give
193  * the corresponding pde that in turn maps it.
194  */
195 
196 /*
197  * The current top of kernel VM.
198  */
199 extern vm_offset_t pmap_curmaxkvaddr;
200 
201 struct pcb;
202 
203 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
204 /* Virtual address to page table entry */
205 static __inline pt_entry_t *
206 vtopte(vm_offset_t va)
207 {
208 	pd_entry_t *pdep;
209 	pt_entry_t *ptep;
210 
211 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
212 		return (NULL);
213 	return (ptep);
214 }
215 
216 extern vm_offset_t avail_end;
217 extern vm_offset_t clean_eva;
218 extern vm_offset_t clean_sva;
219 extern vm_offset_t phys_avail[];
220 extern vm_offset_t virtual_avail;
221 extern vm_offset_t virtual_end;
222 
223 void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
224 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
225 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
226 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
227 void	pmap_kremove(vm_offset_t);
228 void	*pmap_mapdev(vm_offset_t, vm_size_t);
229 void	pmap_unmapdev(vm_offset_t, vm_size_t);
230 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
231 void	pmap_debug(int);
232 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
233 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
234 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
235 void
236 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
237     int cache);
238 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
239 
240 /*
241  * Definitions for MMU domains
242  */
243 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
244 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
245 
246 /*
247  * The new pmap ensures that page-tables are always mapping Write-Thru.
248  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
249  * on every change.
250  *
251  * Unfortunately, not all CPUs have a write-through cache mode.  So we
252  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
253  * and if there is the chance for PTE syncs to be needed, we define
254  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
255  * the code.
256  */
257 extern int pmap_needs_pte_sync;
258 
259 /*
260  * These macros define the various bit masks in the PTE.
261  *
262  * We use these macros since we use different bits on different processor
263  * models.
264  */
265 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
266 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
267 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
268 
269 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
270 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
271 
272 #define	L2_L_PROT_U		(L2_AP(AP_U))
273 #define	L2_L_PROT_W		(L2_AP(AP_W))
274 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
275 
276 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
277 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
278 
279 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
280 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
281 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
282 
283 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
284 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
285 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
286 
287 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
288 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
289 
290 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
291 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
292 
293 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
294 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
295 
296 #define	L2_L_PROTO		(L2_TYPE_L)
297 
298 #define	L2_S_PROTO_generic	(L2_TYPE_S)
299 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
300 
301 /*
302  * User-visible names for the ones that vary with MMU class.
303  */
304 
305 #if ARM_NMMUS > 1
306 /* More than one MMU class configured; use variables. */
307 #define	L2_S_PROT_U		pte_l2_s_prot_u
308 #define	L2_S_PROT_W		pte_l2_s_prot_w
309 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
310 
311 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
312 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
313 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
314 
315 #define	L1_S_PROTO		pte_l1_s_proto
316 #define	L1_C_PROTO		pte_l1_c_proto
317 #define	L2_S_PROTO		pte_l2_s_proto
318 
319 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
320 #define	L2_S_PROT_U		L2_S_PROT_U_generic
321 #define	L2_S_PROT_W		L2_S_PROT_W_generic
322 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
323 
324 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
325 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
326 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
327 
328 #define	L1_S_PROTO		L1_S_PROTO_generic
329 #define	L1_C_PROTO		L1_C_PROTO_generic
330 #define	L2_S_PROTO		L2_S_PROTO_generic
331 
332 #elif ARM_MMU_XSCALE == 1
333 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
334 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
335 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
336 
337 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
338 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
339 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
340 
341 #define	L1_S_PROTO		L1_S_PROTO_xscale
342 #define	L1_C_PROTO		L1_C_PROTO_xscale
343 #define	L2_S_PROTO		L2_S_PROTO_xscale
344 
345 #endif /* ARM_NMMUS > 1 */
346 
347 #ifdef SKYEYE_WORKAROUNDS
348 #define PMAP_NEEDS_PTE_SYNC     1
349 #define PMAP_INCLUDE_PTE_SYNC
350 #else
351 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
352 #define	PMAP_NEEDS_PTE_SYNC	1
353 #define	PMAP_INCLUDE_PTE_SYNC
354 #elif (ARM_MMU_SA1 == 0)
355 #define	PMAP_NEEDS_PTE_SYNC	0
356 #endif
357 #endif
358 
359 /*
360  * These macros return various bits based on kernel/user and protection.
361  * Note that the compiler will usually fold these at compile time.
362  */
363 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
364 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
365 
366 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
367 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
368 
369 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
370 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
371 
372 /*
373  * Macros to test if a mapping is mappable with an L1 Section mapping
374  * or an L2 Large Page mapping.
375  */
376 #define	L1_S_MAPPABLE_P(va, pa, size)					\
377 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
378 
379 #define	L2_L_MAPPABLE_P(va, pa, size)					\
380 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
381 
382 /*
383  * Provide a fallback in case we were not able to determine it at
384  * compile-time.
385  */
386 #ifndef PMAP_NEEDS_PTE_SYNC
387 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
388 #define	PMAP_INCLUDE_PTE_SYNC
389 #endif
390 
391 #define	PTE_SYNC(pte)							\
392 do {									\
393 	if (PMAP_NEEDS_PTE_SYNC)					\
394 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
395 } while (/*CONSTCOND*/0)
396 
397 #define	PTE_SYNC_RANGE(pte, cnt)					\
398 do {									\
399 	if (PMAP_NEEDS_PTE_SYNC) {					\
400 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
401 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
402 	}								\
403 } while (/*CONSTCOND*/0)
404 
405 extern pt_entry_t		pte_l1_s_cache_mode;
406 extern pt_entry_t		pte_l1_s_cache_mask;
407 
408 extern pt_entry_t		pte_l2_l_cache_mode;
409 extern pt_entry_t		pte_l2_l_cache_mask;
410 
411 extern pt_entry_t		pte_l2_s_cache_mode;
412 extern pt_entry_t		pte_l2_s_cache_mask;
413 
414 extern pt_entry_t		pte_l1_s_cache_mode_pt;
415 extern pt_entry_t		pte_l2_l_cache_mode_pt;
416 extern pt_entry_t		pte_l2_s_cache_mode_pt;
417 
418 extern pt_entry_t		pte_l2_s_prot_u;
419 extern pt_entry_t		pte_l2_s_prot_w;
420 extern pt_entry_t		pte_l2_s_prot_mask;
421 
422 extern pt_entry_t		pte_l1_s_proto;
423 extern pt_entry_t		pte_l1_c_proto;
424 extern pt_entry_t		pte_l2_s_proto;
425 
426 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
427 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
428 
429 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
430 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
431 void	pmap_zero_page_generic(vm_paddr_t, int, int);
432 
433 void	pmap_pte_init_generic(void);
434 #if defined(CPU_ARM8)
435 void	pmap_pte_init_arm8(void);
436 #endif
437 #if defined(CPU_ARM9)
438 void	pmap_pte_init_arm9(void);
439 #endif /* CPU_ARM9 */
440 #if defined(CPU_ARM10)
441 void	pmap_pte_init_arm10(void);
442 #endif /* CPU_ARM10 */
443 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
444 
445 #if /* ARM_MMU_SA1 == */1
446 void	pmap_pte_init_sa1(void);
447 #endif /* ARM_MMU_SA1 == 1 */
448 
449 #if ARM_MMU_XSCALE == 1
450 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
451 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
452 
453 void	pmap_pte_init_xscale(void);
454 
455 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
456 
457 void	pmap_use_minicache(vm_offset_t, vm_size_t);
458 #endif /* ARM_MMU_XSCALE == 1 */
459 #define PTE_KERNEL	0
460 #define PTE_USER	1
461 #define	l1pte_valid(pde)	((pde) != 0)
462 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
463 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
464 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
465 
466 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
467 #define	l2pte_valid(pte)	((pte) != 0)
468 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
469 #define l2pte_minidata(pte)	(((pte) & \
470 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
471 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
472 
473 /* L1 and L2 page table macros */
474 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
475 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
476 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
477 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
478 
479 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
480 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
481 
482 /*
483  * Flags that indicate attributes of pages or mappings of pages.
484  *
485  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
486  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
487  * pv_entry's for each page.  They live in the same "namespace" so
488  * that we can clear multiple attributes at a time.
489  *
490  * Note the "non-cacheable" flag generally means the page has
491  * multiple mappings in a given address space.
492  */
493 #define	PVF_MOD		0x01		/* page is modified */
494 #define	PVF_REF		0x02		/* page is referenced */
495 #define	PVF_WIRED	0x04		/* mapping is wired */
496 #define	PVF_WRITE	0x08		/* mapping is writable */
497 #define	PVF_EXEC	0x10		/* mapping is executable */
498 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
499 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
500 #define	PVF_NC		(PVF_UNC|PVF_KNC)
501 
502 void vector_page_setprot(int);
503 
504 void pmap_update(pmap_t);
505 
506 /*
507  * This structure is used by machine-dependent code to describe
508  * static mappings of devices, created at bootstrap time.
509  */
510 struct pmap_devmap {
511 	vm_offset_t	pd_va;		/* virtual address */
512 	vm_paddr_t	pd_pa;		/* physical address */
513 	vm_size_t	pd_size;	/* size of region */
514 	vm_prot_t	pd_prot;	/* protection code */
515 	int		pd_cache;	/* cache attributes */
516 };
517 
518 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
519 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
520 
521 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
522 void	pmap_devmap_register(const struct pmap_devmap *);
523 
524 #define SECTION_CACHE	0x1
525 #define SECTION_PT	0x2
526 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
527 
528 extern char *_tmppt;
529 
530 void	pmap_postinit(void);
531 
532 #ifdef ARM_USE_SMALL_ALLOC
533 void	arm_add_smallalloc_pages(void *, void *, int, int);
534 void 	arm_busy_pages(void);
535 struct arm_small_page {
536 	void *addr;
537 	TAILQ_ENTRY(arm_small_page) pg_list;
538 };
539 
540 #endif
541 
542 #define ARM_NOCACHE_KVA_SIZE 0x600000
543 extern vm_offset_t arm_nocache_startaddr;
544 void *arm_remap_nocache(void *, vm_size_t);
545 void arm_unmap_nocache(void *, vm_size_t);
546 
547 extern vm_paddr_t dump_avail[];
548 #endif	/* _KERNEL */
549 
550 #endif	/* !LOCORE */
551 
552 #endif	/* !_MACHINE_PMAP_H_ */
553