xref: /freebsd/sys/arm/include/pmap.h (revision 9a41df2a0e6408e9b329bbd8b9e37c2b44461a1b)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 #include <machine/cpuconf.h>
55 /*
56  * Pte related macros
57  */
58 #if ARM_ARCH_6 || ARM_ARCH_7A
59 #ifdef SMP
60 #define PTE_NOCACHE	2
61 #else
62 #define PTE_NOCACHE	1
63 #endif
64 #define PTE_CACHE	4
65 #define PTE_DEVICE	2
66 #define PTE_PAGETABLE	4
67 #else
68 #define PTE_NOCACHE	1
69 #define PTE_CACHE	2
70 #define PTE_PAGETABLE	3
71 #endif
72 
73 enum mem_type {
74 	STRONG_ORD = 0,
75 	DEVICE_NOSHARE,
76 	DEVICE_SHARE,
77 	NRML_NOCACHE,
78 	NRML_IWT_OWT,
79 	NRML_IWB_OWB,
80 	NRML_IWBA_OWBA
81 };
82 
83 #ifndef LOCORE
84 
85 #include <sys/queue.h>
86 #include <sys/_cpuset.h>
87 #include <sys/_lock.h>
88 #include <sys/_mutex.h>
89 
90 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
91 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
92 
93 #ifdef _KERNEL
94 
95 #define vtophys(va)	pmap_kextract((vm_offset_t)(va))
96 
97 #endif
98 
99 #define	pmap_page_get_memattr(m)	VM_MEMATTR_DEFAULT
100 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
101 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
102 #define	pmap_page_set_memattr(m, ma)	(void)0
103 
104 /*
105  * Pmap stuff
106  */
107 
108 /*
109  * This structure is used to hold a virtual<->physical address
110  * association and is used mostly by bootstrap code
111  */
112 struct pv_addr {
113 	SLIST_ENTRY(pv_addr) pv_list;
114 	vm_offset_t	pv_va;
115 	vm_paddr_t	pv_pa;
116 };
117 
118 struct	pv_entry;
119 
120 struct	md_page {
121 	int pvh_attrs;
122 	vm_offset_t pv_kva;		/* first kernel VA mapping */
123 	TAILQ_HEAD(,pv_entry)	pv_list;
124 };
125 
126 struct l1_ttable;
127 struct l2_dtable;
128 
129 
130 /*
131  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
132  * A bucket size of 16 provides for 16MB of contiguous virtual address
133  * space per l2_dtable. Most processes will, therefore, require only two or
134  * three of these to map their whole working set.
135  */
136 #define	L2_BUCKET_LOG2	4
137 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
138 /*
139  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
140  * of l2_dtable structures required to track all possible page descriptors
141  * mappable by an L1 translation table is given by the following constants:
142  */
143 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
144 #define	L2_SIZE		(1 << L2_LOG2)
145 
146 struct	pmap {
147 	struct mtx		pm_mtx;
148 	u_int8_t		pm_domain;
149 	struct l1_ttable	*pm_l1;
150 	struct l2_dtable	*pm_l2[L2_SIZE];
151 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
152 	cpuset_t		pm_active;	/* active on cpus */
153 	struct pmap_statistics	pm_stats;	/* pmap statictics */
154 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
155 };
156 
157 typedef struct pmap *pmap_t;
158 
159 #ifdef _KERNEL
160 extern struct pmap	kernel_pmap_store;
161 #define kernel_pmap	(&kernel_pmap_store)
162 #define pmap_kernel() kernel_pmap
163 
164 #define	PMAP_ASSERT_LOCKED(pmap) \
165 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
166 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
167 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
168 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
169 				    NULL, MTX_DEF | MTX_DUPOK)
170 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
171 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
172 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
173 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
174 #endif
175 
176 
177 /*
178  * For each vm_page_t, there is a list of all currently valid virtual
179  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
180  */
181 typedef struct pv_entry {
182 	pmap_t          pv_pmap;        /* pmap where mapping lies */
183 	vm_offset_t     pv_va;          /* virtual address for mapping */
184 	TAILQ_ENTRY(pv_entry)   pv_list;
185 	TAILQ_ENTRY(pv_entry)	pv_plist;
186 	int		pv_flags;	/* flags (wired, etc...) */
187 } *pv_entry_t;
188 
189 #ifdef _KERNEL
190 
191 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
192 
193 /*
194  * virtual address to page table entry and
195  * to physical address. Likewise for alternate address space.
196  * Note: these work recursively, thus vtopte of a pte will give
197  * the corresponding pde that in turn maps it.
198  */
199 
200 /*
201  * The current top of kernel VM.
202  */
203 extern vm_offset_t pmap_curmaxkvaddr;
204 
205 struct pcb;
206 
207 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
208 /* Virtual address to page table entry */
209 static __inline pt_entry_t *
210 vtopte(vm_offset_t va)
211 {
212 	pd_entry_t *pdep;
213 	pt_entry_t *ptep;
214 
215 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
216 		return (NULL);
217 	return (ptep);
218 }
219 
220 extern vm_paddr_t phys_avail[];
221 extern vm_offset_t virtual_avail;
222 extern vm_offset_t virtual_end;
223 
224 void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
225 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
226 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
227 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
228 void	*pmap_kenter_temp(vm_paddr_t pa, int i);
229 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
230 vm_paddr_t pmap_kextract(vm_offset_t va);
231 void	pmap_kremove(vm_offset_t);
232 void	*pmap_mapdev(vm_offset_t, vm_size_t);
233 void	pmap_unmapdev(vm_offset_t, vm_size_t);
234 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
235 void	pmap_debug(int);
236 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
237 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
238 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
239 void
240 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
241     int cache);
242 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
243 int pmap_dmap_iscurrent(pmap_t pmap);
244 
245 /*
246  * Definitions for MMU domains
247  */
248 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
249 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
250 
251 /*
252  * The new pmap ensures that page-tables are always mapping Write-Thru.
253  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
254  * on every change.
255  *
256  * Unfortunately, not all CPUs have a write-through cache mode.  So we
257  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
258  * and if there is the chance for PTE syncs to be needed, we define
259  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
260  * the code.
261  */
262 extern int pmap_needs_pte_sync;
263 
264 /*
265  * These macros define the various bit masks in the PTE.
266  *
267  * We use these macros since we use different bits on different processor
268  * models.
269  */
270 
271 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
272 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
273     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
274 
275 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
276 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
277     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
278 
279 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
280 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
281 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
282 
283 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
284 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
285 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
286 
287 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
288 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
289     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
290 
291 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
292 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
293 
294 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
295 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
296 
297 #define	L2_L_PROTO		(L2_TYPE_L)
298 
299 #define	L2_S_PROTO_generic	(L2_TYPE_S)
300 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
301 
302 /*
303  * User-visible names for the ones that vary with MMU class.
304  */
305 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
306 #define	L2_AP(x)	(L2_AP0(x))
307 #else
308 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
309 #endif
310 
311 #if ARM_NMMUS > 1
312 /* More than one MMU class configured; use variables. */
313 #define	L2_S_PROT_U		pte_l2_s_prot_u
314 #define	L2_S_PROT_W		pte_l2_s_prot_w
315 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
316 
317 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
318 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
319 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
320 
321 #define	L1_S_PROTO		pte_l1_s_proto
322 #define	L1_C_PROTO		pte_l1_c_proto
323 #define	L2_S_PROTO		pte_l2_s_proto
324 
325 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
326 #define	L2_S_PROT_U		L2_S_PROT_U_generic
327 #define	L2_S_PROT_W		L2_S_PROT_W_generic
328 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
329 
330 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
331 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
332 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
333 
334 #define	L1_S_PROTO		L1_S_PROTO_generic
335 #define	L1_C_PROTO		L1_C_PROTO_generic
336 #define	L2_S_PROTO		L2_S_PROTO_generic
337 
338 #elif ARM_MMU_XSCALE == 1
339 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
340 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
341 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
342 
343 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
344 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
345 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
346 
347 #define	L1_S_PROTO		L1_S_PROTO_xscale
348 #define	L1_C_PROTO		L1_C_PROTO_xscale
349 #define	L2_S_PROTO		L2_S_PROTO_xscale
350 
351 #elif (ARM_MMU_V6 + ARM_MMU_V7) != 0
352 
353 #define	L2_S_PROT_U		(L2_AP0(2))		/* user access */
354 #define	L2_S_PROT_R		(L2_APX|L2_AP0(1))	/* read access */
355 
356 #define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R)
357 #define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
358 
359 #ifndef SMP
360 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
361 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
362 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
363 #else
364 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
365 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
366 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
367 #endif  /* SMP */
368 
369 #define	L1_S_PROTO		(L1_TYPE_S)
370 #define	L1_C_PROTO		(L1_TYPE_C)
371 #define	L2_S_PROTO		(L2_TYPE_S)
372 
373 #ifndef SMP
374 #define ARM_L1S_STRONG_ORD	(0)
375 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
376 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
377 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
378 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
379 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
380 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
381 
382 #define ARM_L2L_STRONG_ORD	(0)
383 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
384 #define ARM_L2L_DEVICE_SHARE	(L2_B)
385 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
386 #define ARM_L2L_NRML_IWT_OWT	(L2_C)
387 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
388 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
389 
390 #define ARM_L2S_STRONG_ORD	(0)
391 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
392 #define ARM_L2S_DEVICE_SHARE	(L2_B)
393 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
394 #define ARM_L2S_NRML_IWT_OWT	(L2_C)
395 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
396 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
397 #else
398 #define ARM_L1S_STRONG_ORD	(0)
399 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
400 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
401 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
402 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
403 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
404 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
405 
406 #define ARM_L2L_STRONG_ORD	(0)
407 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
408 #define ARM_L2L_DEVICE_SHARE	(L2_B)
409 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
410 #define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
411 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
412 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
413 
414 #define ARM_L2S_STRONG_ORD	(0)
415 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
416 #define ARM_L2S_DEVICE_SHARE	(L2_B)
417 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
418 #define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
419 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
420 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
421 #endif /* SMP */
422 #endif /* ARM_NMMUS > 1 */
423 
424 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
425 #define	PMAP_NEEDS_PTE_SYNC	1
426 #define	PMAP_INCLUDE_PTE_SYNC
427 #elif defined(CPU_XSCALE_81342)
428 #define PMAP_NEEDS_PTE_SYNC	1
429 #define PMAP_INCLUDE_PTE_SYNC
430 #elif (ARM_MMU_SA1 == 0)
431 #define	PMAP_NEEDS_PTE_SYNC	0
432 #endif
433 
434 /*
435  * These macros return various bits based on kernel/user and protection.
436  * Note that the compiler will usually fold these at compile time.
437  */
438 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
439 
440 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
441 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
442 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
443 #define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
444 
445 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
446 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
447 
448 #define	L2_L_PROT_U		(L2_AP(AP_U))
449 #define	L2_L_PROT_W		(L2_AP(AP_W))
450 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
451 
452 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
453 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
454 
455 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
456 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
457 #else
458 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
459 #define	L1_S_PROT_MASK		(L1_S_APX|L1_S_AP(0x3))
460 #define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_APX))
461 
462 #define	L1_S_PROT(ku, pr)	(L1_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L1_S_PROT_U : 0) | \
463 				 (((pr) & VM_PROT_WRITE) ? L1_S_APX : 0)))
464 
465 #define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
466 #define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
467 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
468 
469 #define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
470 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
471 
472 #endif
473 
474 /*
475  * Macros to test if a mapping is mappable with an L1 Section mapping
476  * or an L2 Large Page mapping.
477  */
478 #define	L1_S_MAPPABLE_P(va, pa, size)					\
479 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
480 
481 #define	L2_L_MAPPABLE_P(va, pa, size)					\
482 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
483 
484 /*
485  * Provide a fallback in case we were not able to determine it at
486  * compile-time.
487  */
488 #ifndef PMAP_NEEDS_PTE_SYNC
489 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
490 #define	PMAP_INCLUDE_PTE_SYNC
491 #endif
492 
493 #define	PTE_SYNC(pte)							\
494 do {									\
495 	if (PMAP_NEEDS_PTE_SYNC) {					\
496 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
497 		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
498 	} else								\
499 		cpu_drain_writebuf();					\
500 } while (/*CONSTCOND*/0)
501 
502 #define	PTE_SYNC_RANGE(pte, cnt)					\
503 do {									\
504 	if (PMAP_NEEDS_PTE_SYNC) {					\
505 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
506 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
507 		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
508 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
509 	} else								\
510 		cpu_drain_writebuf();					\
511 } while (/*CONSTCOND*/0)
512 
513 extern pt_entry_t		pte_l1_s_cache_mode;
514 extern pt_entry_t		pte_l1_s_cache_mask;
515 
516 extern pt_entry_t		pte_l2_l_cache_mode;
517 extern pt_entry_t		pte_l2_l_cache_mask;
518 
519 extern pt_entry_t		pte_l2_s_cache_mode;
520 extern pt_entry_t		pte_l2_s_cache_mask;
521 
522 extern pt_entry_t		pte_l1_s_cache_mode_pt;
523 extern pt_entry_t		pte_l2_l_cache_mode_pt;
524 extern pt_entry_t		pte_l2_s_cache_mode_pt;
525 
526 extern pt_entry_t		pte_l2_s_prot_u;
527 extern pt_entry_t		pte_l2_s_prot_w;
528 extern pt_entry_t		pte_l2_s_prot_mask;
529 
530 extern pt_entry_t		pte_l1_s_proto;
531 extern pt_entry_t		pte_l1_c_proto;
532 extern pt_entry_t		pte_l2_s_proto;
533 
534 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
535 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
536 
537 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
538 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
539 void	pmap_zero_page_generic(vm_paddr_t, int, int);
540 
541 void	pmap_pte_init_generic(void);
542 #if defined(CPU_ARM8)
543 void	pmap_pte_init_arm8(void);
544 #endif
545 #if defined(CPU_ARM9)
546 void	pmap_pte_init_arm9(void);
547 #endif /* CPU_ARM9 */
548 #if defined(CPU_ARM10)
549 void	pmap_pte_init_arm10(void);
550 #endif /* CPU_ARM10 */
551 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
552 void	pmap_pte_init_mmu_v6(void);
553 #endif /* CPU_ARM11 */
554 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
555 
556 #if /* ARM_MMU_SA1 == */1
557 void	pmap_pte_init_sa1(void);
558 #endif /* ARM_MMU_SA1 == 1 */
559 
560 #if ARM_MMU_XSCALE == 1
561 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
562 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
563 
564 void	pmap_pte_init_xscale(void);
565 
566 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
567 
568 void	pmap_use_minicache(vm_offset_t, vm_size_t);
569 #endif /* ARM_MMU_XSCALE == 1 */
570 #if defined(CPU_XSCALE_81342)
571 #define ARM_HAVE_SUPERSECTIONS
572 #endif
573 
574 #define PTE_KERNEL	0
575 #define PTE_USER	1
576 #define	l1pte_valid(pde)	((pde) != 0)
577 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
578 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
579 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
580 
581 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
582 #define	l2pte_valid(pte)	((pte) != 0)
583 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
584 #define l2pte_minidata(pte)	(((pte) & \
585 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
586 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
587 
588 /* L1 and L2 page table macros */
589 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
590 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
591 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
592 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
593 
594 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
595 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
596 
597 /*
598  * Flags that indicate attributes of pages or mappings of pages.
599  *
600  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
601  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
602  * pv_entry's for each page.  They live in the same "namespace" so
603  * that we can clear multiple attributes at a time.
604  *
605  * Note the "non-cacheable" flag generally means the page has
606  * multiple mappings in a given address space.
607  */
608 #define	PVF_MOD		0x01		/* page is modified */
609 #define	PVF_REF		0x02		/* page is referenced */
610 #define	PVF_WIRED	0x04		/* mapping is wired */
611 #define	PVF_WRITE	0x08		/* mapping is writable */
612 #define	PVF_EXEC	0x10		/* mapping is executable */
613 #define	PVF_NC		0x20		/* mapping is non-cacheable */
614 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
615 #define	PVF_UNMAN	0x80		/* mapping is unmanaged */
616 
617 void vector_page_setprot(int);
618 
619 /*
620  * This structure is used by machine-dependent code to describe
621  * static mappings of devices, created at bootstrap time.
622  */
623 struct pmap_devmap {
624 	vm_offset_t	pd_va;		/* virtual address */
625 	vm_paddr_t	pd_pa;		/* physical address */
626 	vm_size_t	pd_size;	/* size of region */
627 	vm_prot_t	pd_prot;	/* protection code */
628 	int		pd_cache;	/* cache attributes */
629 };
630 
631 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
632 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
633 
634 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
635 void	pmap_devmap_register(const struct pmap_devmap *);
636 
637 #define SECTION_CACHE	0x1
638 #define SECTION_PT	0x2
639 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
640 #ifdef ARM_HAVE_SUPERSECTIONS
641 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
642 #endif
643 
644 extern char *_tmppt;
645 
646 void	pmap_postinit(void);
647 
648 #ifdef ARM_USE_SMALL_ALLOC
649 void	arm_add_smallalloc_pages(void *, void *, int, int);
650 vm_offset_t arm_ptovirt(vm_paddr_t);
651 void arm_init_smallalloc(void);
652 struct arm_small_page {
653 	void *addr;
654 	TAILQ_ENTRY(arm_small_page) pg_list;
655 };
656 
657 #endif
658 
659 #define ARM_NOCACHE_KVA_SIZE 0x1000000
660 extern vm_offset_t arm_nocache_startaddr;
661 void *arm_remap_nocache(void *, vm_size_t);
662 void arm_unmap_nocache(void *, vm_size_t);
663 
664 extern vm_paddr_t dump_avail[];
665 #endif	/* _KERNEL */
666 
667 #endif	/* !LOCORE */
668 
669 #endif	/* !_MACHINE_PMAP_H_ */
670