xref: /freebsd/sys/arm/include/pmap.h (revision 995dc984471c92c03daad19a1d35af46c086ef3e)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 #include <machine/cpuconf.h>
55 /*
56  * Pte related macros
57  */
58 #define PTE_NOCACHE	0
59 #define PTE_CACHE	1
60 #define PTE_PAGETABLE	2
61 
62 #ifndef LOCORE
63 
64 #include <sys/queue.h>
65 #include <sys/_lock.h>
66 #include <sys/_mutex.h>
67 
68 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
69 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
70 
71 #ifdef _KERNEL
72 
73 #define vtophys(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
74 #define pmap_kextract(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
75 
76 #endif
77 
78 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
79 /*
80  * Pmap stuff
81  */
82 
83 /*
84  * This structure is used to hold a virtual<->physical address
85  * association and is used mostly by bootstrap code
86  */
87 struct pv_addr {
88 	SLIST_ENTRY(pv_addr) pv_list;
89 	vm_offset_t	pv_va;
90 	vm_paddr_t	pv_pa;
91 };
92 
93 struct	pv_entry;
94 
95 struct	md_page {
96 	int pvh_attrs;
97 	int			pv_list_count;
98 	TAILQ_HEAD(,pv_entry)	pv_list;
99 };
100 
101 #define	VM_MDPAGE_INIT(pg)						\
102 do {									\
103 	TAILQ_INIT(&pg->pv_list);					\
104 	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
105 	(pg)->mdpage.pvh_attrs = 0;					\
106 } while (/*CONSTCOND*/0)
107 
108 struct l1_ttable;
109 struct l2_dtable;
110 
111 
112 /*
113  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
114  * A bucket size of 16 provides for 16MB of contiguous virtual address
115  * space per l2_dtable. Most processes will, therefore, require only two or
116  * three of these to map their whole working set.
117  */
118 #define	L2_BUCKET_LOG2	4
119 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
120 /*
121  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
122  * of l2_dtable structures required to track all possible page descriptors
123  * mappable by an L1 translation table is given by the following constants:
124  */
125 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
126 #define	L2_SIZE		(1 << L2_LOG2)
127 
128 struct	pmap {
129 	struct mtx		pm_mtx;
130 	u_int8_t		pm_domain;
131 	struct l1_ttable	*pm_l1;
132 	struct l2_dtable	*pm_l2[L2_SIZE];
133 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
134 	int			pm_count;	/* reference count */
135 	int			pm_active;	/* active on cpus */
136 	struct pmap_statistics	pm_stats;	/* pmap statictics */
137 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
138 };
139 
140 typedef struct pmap *pmap_t;
141 
142 #ifdef _KERNEL
143 extern pmap_t	kernel_pmap;
144 #define pmap_kernel() kernel_pmap
145 
146 #define	PMAP_ASSERT_LOCKED(pmap) \
147 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
148 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
149 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
150 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
151 				    NULL, MTX_DEF | MTX_DUPOK)
152 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
153 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
154 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
155 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
156 #endif
157 
158 
159 /*
160  * For each vm_page_t, there is a list of all currently valid virtual
161  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
162  */
163 typedef struct pv_entry {
164 	pmap_t          pv_pmap;        /* pmap where mapping lies */
165 	vm_offset_t     pv_va;          /* virtual address for mapping */
166 	TAILQ_ENTRY(pv_entry)   pv_list;
167 	TAILQ_ENTRY(pv_entry)	pv_plist;
168 	int		pv_flags;	/* flags (wired, etc...) */
169 } *pv_entry_t;
170 
171 #define PV_ENTRY_NULL   ((pv_entry_t) 0)
172 
173 #ifdef _KERNEL
174 
175 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
176 
177 /*
178  * virtual address to page table entry and
179  * to physical address. Likewise for alternate address space.
180  * Note: these work recursively, thus vtopte of a pte will give
181  * the corresponding pde that in turn maps it.
182  */
183 
184 /*
185  * The current top of kernel VM.
186  */
187 extern vm_offset_t pmap_curmaxkvaddr;
188 
189 struct pcb;
190 
191 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
192 /* Virtual address to page table entry */
193 static __inline pt_entry_t *
194 vtopte(vm_offset_t va)
195 {
196 	pd_entry_t *pdep;
197 	pt_entry_t *ptep;
198 
199 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
200 		return (NULL);
201 	return (ptep);
202 }
203 
204 extern vm_offset_t phys_avail[];
205 extern vm_offset_t virtual_avail;
206 extern vm_offset_t virtual_end;
207 
208 void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
209 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
210 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
211 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
212 void	pmap_kremove(vm_offset_t);
213 void	*pmap_mapdev(vm_offset_t, vm_size_t);
214 void	pmap_unmapdev(vm_offset_t, vm_size_t);
215 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
216 void	pmap_debug(int);
217 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
218 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
219 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
220 void
221 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
222     int cache);
223 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
224 
225 /*
226  * Definitions for MMU domains
227  */
228 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
229 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
230 
231 /*
232  * The new pmap ensures that page-tables are always mapping Write-Thru.
233  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
234  * on every change.
235  *
236  * Unfortunately, not all CPUs have a write-through cache mode.  So we
237  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
238  * and if there is the chance for PTE syncs to be needed, we define
239  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
240  * the code.
241  */
242 extern int pmap_needs_pte_sync;
243 
244 /*
245  * These macros define the various bit masks in the PTE.
246  *
247  * We use these macros since we use different bits on different processor
248  * models.
249  */
250 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
251 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
252 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
253 
254 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
255 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
256     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
257 
258 #define	L2_L_PROT_U		(L2_AP(AP_U))
259 #define	L2_L_PROT_W		(L2_AP(AP_W))
260 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
261 
262 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
263 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
264     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
265 
266 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
267 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
268 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
269 
270 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
271 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
272 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
273 
274 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
275 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
276     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
277 
278 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
279 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
280 
281 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
282 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
283 
284 #define	L2_L_PROTO		(L2_TYPE_L)
285 
286 #define	L2_S_PROTO_generic	(L2_TYPE_S)
287 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
288 
289 /*
290  * User-visible names for the ones that vary with MMU class.
291  */
292 
293 #if ARM_NMMUS > 1
294 /* More than one MMU class configured; use variables. */
295 #define	L2_S_PROT_U		pte_l2_s_prot_u
296 #define	L2_S_PROT_W		pte_l2_s_prot_w
297 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
298 
299 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
300 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
301 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
302 
303 #define	L1_S_PROTO		pte_l1_s_proto
304 #define	L1_C_PROTO		pte_l1_c_proto
305 #define	L2_S_PROTO		pte_l2_s_proto
306 
307 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
308 #define	L2_S_PROT_U		L2_S_PROT_U_generic
309 #define	L2_S_PROT_W		L2_S_PROT_W_generic
310 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
311 
312 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
313 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
314 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
315 
316 #define	L1_S_PROTO		L1_S_PROTO_generic
317 #define	L1_C_PROTO		L1_C_PROTO_generic
318 #define	L2_S_PROTO		L2_S_PROTO_generic
319 
320 #elif ARM_MMU_XSCALE == 1
321 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
322 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
323 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
324 
325 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
326 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
327 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
328 
329 #define	L1_S_PROTO		L1_S_PROTO_xscale
330 #define	L1_C_PROTO		L1_C_PROTO_xscale
331 #define	L2_S_PROTO		L2_S_PROTO_xscale
332 
333 #endif /* ARM_NMMUS > 1 */
334 
335 #ifdef SKYEYE_WORKAROUNDS
336 #define PMAP_NEEDS_PTE_SYNC     1
337 #define PMAP_INCLUDE_PTE_SYNC
338 #else
339 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
340 #define	PMAP_NEEDS_PTE_SYNC	1
341 #define	PMAP_INCLUDE_PTE_SYNC
342 #elif defined(CPU_XSCALE_81342)
343 #define PMAP_NEEDS_PTE_SYNC	1
344 #define PMAP_INCLUDE_PTE_SYNC
345 #elif (ARM_MMU_SA1 == 0)
346 #define	PMAP_NEEDS_PTE_SYNC	0
347 #endif
348 #endif
349 
350 /*
351  * These macros return various bits based on kernel/user and protection.
352  * Note that the compiler will usually fold these at compile time.
353  */
354 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
355 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
356 
357 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
358 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
359 
360 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
361 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
362 
363 /*
364  * Macros to test if a mapping is mappable with an L1 Section mapping
365  * or an L2 Large Page mapping.
366  */
367 #define	L1_S_MAPPABLE_P(va, pa, size)					\
368 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
369 
370 #define	L2_L_MAPPABLE_P(va, pa, size)					\
371 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
372 
373 /*
374  * Provide a fallback in case we were not able to determine it at
375  * compile-time.
376  */
377 #ifndef PMAP_NEEDS_PTE_SYNC
378 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
379 #define	PMAP_INCLUDE_PTE_SYNC
380 #endif
381 
382 #define	PTE_SYNC(pte)							\
383 do {									\
384 	if (PMAP_NEEDS_PTE_SYNC) {					\
385 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
386 		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
387 	}\
388 } while (/*CONSTCOND*/0)
389 
390 #define	PTE_SYNC_RANGE(pte, cnt)					\
391 do {									\
392 	if (PMAP_NEEDS_PTE_SYNC) {					\
393 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
394 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
395 		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
396 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
397 	}								\
398 } while (/*CONSTCOND*/0)
399 
400 extern pt_entry_t		pte_l1_s_cache_mode;
401 extern pt_entry_t		pte_l1_s_cache_mask;
402 
403 extern pt_entry_t		pte_l2_l_cache_mode;
404 extern pt_entry_t		pte_l2_l_cache_mask;
405 
406 extern pt_entry_t		pte_l2_s_cache_mode;
407 extern pt_entry_t		pte_l2_s_cache_mask;
408 
409 extern pt_entry_t		pte_l1_s_cache_mode_pt;
410 extern pt_entry_t		pte_l2_l_cache_mode_pt;
411 extern pt_entry_t		pte_l2_s_cache_mode_pt;
412 
413 extern pt_entry_t		pte_l2_s_prot_u;
414 extern pt_entry_t		pte_l2_s_prot_w;
415 extern pt_entry_t		pte_l2_s_prot_mask;
416 
417 extern pt_entry_t		pte_l1_s_proto;
418 extern pt_entry_t		pte_l1_c_proto;
419 extern pt_entry_t		pte_l2_s_proto;
420 
421 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
422 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
423 
424 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
425 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
426 void	pmap_zero_page_generic(vm_paddr_t, int, int);
427 
428 void	pmap_pte_init_generic(void);
429 #if defined(CPU_ARM8)
430 void	pmap_pte_init_arm8(void);
431 #endif
432 #if defined(CPU_ARM9)
433 void	pmap_pte_init_arm9(void);
434 #endif /* CPU_ARM9 */
435 #if defined(CPU_ARM10)
436 void	pmap_pte_init_arm10(void);
437 #endif /* CPU_ARM10 */
438 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
439 
440 #if /* ARM_MMU_SA1 == */1
441 void	pmap_pte_init_sa1(void);
442 #endif /* ARM_MMU_SA1 == 1 */
443 
444 #if ARM_MMU_XSCALE == 1
445 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
446 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
447 
448 void	pmap_pte_init_xscale(void);
449 
450 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
451 
452 void	pmap_use_minicache(vm_offset_t, vm_size_t);
453 #endif /* ARM_MMU_XSCALE == 1 */
454 #if defined(CPU_XSCALE_81342)
455 #define ARM_HAVE_SUPERSECTIONS
456 #endif
457 
458 #define PTE_KERNEL	0
459 #define PTE_USER	1
460 #define	l1pte_valid(pde)	((pde) != 0)
461 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
462 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
463 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
464 
465 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
466 #define	l2pte_valid(pte)	((pte) != 0)
467 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
468 #define l2pte_minidata(pte)	(((pte) & \
469 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
470 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
471 
472 /* L1 and L2 page table macros */
473 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
474 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
475 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
476 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
477 
478 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
479 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
480 
481 /*
482  * Flags that indicate attributes of pages or mappings of pages.
483  *
484  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
485  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
486  * pv_entry's for each page.  They live in the same "namespace" so
487  * that we can clear multiple attributes at a time.
488  *
489  * Note the "non-cacheable" flag generally means the page has
490  * multiple mappings in a given address space.
491  */
492 #define	PVF_MOD		0x01		/* page is modified */
493 #define	PVF_REF		0x02		/* page is referenced */
494 #define	PVF_WIRED	0x04		/* mapping is wired */
495 #define	PVF_WRITE	0x08		/* mapping is writable */
496 #define	PVF_EXEC	0x10		/* mapping is executable */
497 #define	PVF_NC		0x20		/* mapping is non-cacheable */
498 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
499 
500 void vector_page_setprot(int);
501 
502 void pmap_update(pmap_t);
503 
504 /*
505  * This structure is used by machine-dependent code to describe
506  * static mappings of devices, created at bootstrap time.
507  */
508 struct pmap_devmap {
509 	vm_offset_t	pd_va;		/* virtual address */
510 	vm_paddr_t	pd_pa;		/* physical address */
511 	vm_size_t	pd_size;	/* size of region */
512 	vm_prot_t	pd_prot;	/* protection code */
513 	int		pd_cache;	/* cache attributes */
514 };
515 
516 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
517 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
518 
519 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
520 void	pmap_devmap_register(const struct pmap_devmap *);
521 
522 #define SECTION_CACHE	0x1
523 #define SECTION_PT	0x2
524 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
525 #ifdef ARM_HAVE_SUPERSECTIONS
526 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
527 #endif
528 
529 extern char *_tmppt;
530 
531 void	pmap_postinit(void);
532 
533 #ifdef ARM_USE_SMALL_ALLOC
534 void	arm_add_smallalloc_pages(void *, void *, int, int);
535 vm_offset_t arm_ptovirt(vm_paddr_t);
536 void arm_init_smallalloc(void);
537 struct arm_small_page {
538 	void *addr;
539 	TAILQ_ENTRY(arm_small_page) pg_list;
540 };
541 
542 #endif
543 
544 #define ARM_NOCACHE_KVA_SIZE 0x1000000
545 extern vm_offset_t arm_nocache_startaddr;
546 void *arm_remap_nocache(void *, vm_size_t);
547 void arm_unmap_nocache(void *, vm_size_t);
548 
549 extern vm_paddr_t dump_avail[];
550 #endif	/* _KERNEL */
551 
552 #endif	/* !LOCORE */
553 
554 #endif	/* !_MACHINE_PMAP_H_ */
555