1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * the Systems Programming Group of the University of Utah Computer 7 * Science Department and William Jolitz of UUNET Technologies Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * Derived from hp300 version by Mike Hibler, this version by William 38 * Jolitz uses a recursive map [a pde points to the page directory] to 39 * map the page tables using the pagetables themselves. This is done to 40 * reduce the impact on kernel virtual memory for lots of sparse address 41 * space, and to reduce the cost of memory to each process. 42 * 43 * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 44 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 45 * from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30 46 * 47 * $FreeBSD$ 48 */ 49 50 #ifndef _MACHINE_PMAP_H_ 51 #define _MACHINE_PMAP_H_ 52 53 #include <machine/pte.h> 54 #include <machine/cpuconf.h> 55 /* 56 * Pte related macros 57 */ 58 #if ARM_ARCH_6 || ARM_ARCH_7A 59 #ifdef SMP 60 #define PTE_NOCACHE 2 61 #else 62 #define PTE_NOCACHE 1 63 #endif 64 #define PTE_CACHE 6 65 #define PTE_DEVICE 2 66 #define PTE_PAGETABLE 6 67 #else 68 #define PTE_NOCACHE 1 69 #define PTE_CACHE 2 70 #define PTE_DEVICE PTE_NOCACHE 71 #define PTE_PAGETABLE 3 72 #endif 73 74 enum mem_type { 75 STRONG_ORD = 0, 76 DEVICE_NOSHARE, 77 DEVICE_SHARE, 78 NRML_NOCACHE, 79 NRML_IWT_OWT, 80 NRML_IWB_OWB, 81 NRML_IWBA_OWBA 82 }; 83 84 #ifndef LOCORE 85 86 #include <sys/queue.h> 87 #include <sys/_cpuset.h> 88 #include <sys/_lock.h> 89 #include <sys/_mutex.h> 90 91 #define PDESIZE sizeof(pd_entry_t) /* for assembly files */ 92 #define PTESIZE sizeof(pt_entry_t) /* for assembly files */ 93 94 #ifdef _KERNEL 95 96 #define vtophys(va) pmap_kextract((vm_offset_t)(va)) 97 98 #endif 99 100 #define pmap_page_get_memattr(m) ((m)->md.pv_memattr) 101 #define pmap_page_is_write_mapped(m) (((m)->aflags & PGA_WRITEABLE) != 0) 102 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 103 boolean_t pmap_page_is_mapped(vm_page_t); 104 #else 105 #define pmap_page_is_mapped(m) (!TAILQ_EMPTY(&(m)->md.pv_list)) 106 #endif 107 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma); 108 109 /* 110 * Pmap stuff 111 */ 112 113 /* 114 * This structure is used to hold a virtual<->physical address 115 * association and is used mostly by bootstrap code 116 */ 117 struct pv_addr { 118 SLIST_ENTRY(pv_addr) pv_list; 119 vm_offset_t pv_va; 120 vm_paddr_t pv_pa; 121 }; 122 123 struct pv_entry; 124 struct pv_chunk; 125 126 struct md_page { 127 int pvh_attrs; 128 vm_memattr_t pv_memattr; 129 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0 130 vm_offset_t pv_kva; /* first kernel VA mapping */ 131 #endif 132 TAILQ_HEAD(,pv_entry) pv_list; 133 }; 134 135 struct l1_ttable; 136 struct l2_dtable; 137 138 139 /* 140 * The number of L2 descriptor tables which can be tracked by an l2_dtable. 141 * A bucket size of 16 provides for 16MB of contiguous virtual address 142 * space per l2_dtable. Most processes will, therefore, require only two or 143 * three of these to map their whole working set. 144 */ 145 #define L2_BUCKET_LOG2 4 146 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) 147 /* 148 * Given the above "L2-descriptors-per-l2_dtable" constant, the number 149 * of l2_dtable structures required to track all possible page descriptors 150 * mappable by an L1 translation table is given by the following constants: 151 */ 152 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2) 153 #define L2_SIZE (1 << L2_LOG2) 154 155 struct pmap { 156 struct mtx pm_mtx; 157 u_int8_t pm_domain; 158 struct l1_ttable *pm_l1; 159 struct l2_dtable *pm_l2[L2_SIZE]; 160 cpuset_t pm_active; /* active on cpus */ 161 struct pmap_statistics pm_stats; /* pmap statictics */ 162 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0 163 TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */ 164 #else 165 TAILQ_HEAD(,pv_entry) pm_pvlist; /* list of mappings in pmap */ 166 #endif 167 }; 168 169 typedef struct pmap *pmap_t; 170 171 #ifdef _KERNEL 172 extern struct pmap kernel_pmap_store; 173 #define kernel_pmap (&kernel_pmap_store) 174 #define pmap_kernel() kernel_pmap 175 176 #define PMAP_ASSERT_LOCKED(pmap) \ 177 mtx_assert(&(pmap)->pm_mtx, MA_OWNED) 178 #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) 179 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) 180 #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ 181 NULL, MTX_DEF | MTX_DUPOK) 182 #define PMAP_OWNED(pmap) mtx_owned(&(pmap)->pm_mtx) 183 #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) 184 #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) 185 #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) 186 #endif 187 188 189 /* 190 * For each vm_page_t, there is a list of all currently valid virtual 191 * mappings of that page. An entry is a pv_entry_t, the list is pv_list. 192 */ 193 typedef struct pv_entry { 194 vm_offset_t pv_va; /* virtual address for mapping */ 195 TAILQ_ENTRY(pv_entry) pv_list; 196 int pv_flags; /* flags (wired, etc...) */ 197 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0 198 pmap_t pv_pmap; /* pmap where mapping lies */ 199 TAILQ_ENTRY(pv_entry) pv_plist; 200 #endif 201 } *pv_entry_t; 202 203 /* 204 * pv_entries are allocated in chunks per-process. This avoids the 205 * need to track per-pmap assignments. 206 */ 207 #define _NPCM 8 208 #define _NPCPV 252 209 210 struct pv_chunk { 211 pmap_t pc_pmap; 212 TAILQ_ENTRY(pv_chunk) pc_list; 213 uint32_t pc_map[_NPCM]; /* bitmap; 1 = free */ 214 uint32_t pc_dummy[3]; /* aligns pv_chunk to 4KB */ 215 TAILQ_ENTRY(pv_chunk) pc_lru; 216 struct pv_entry pc_pventry[_NPCPV]; 217 }; 218 219 #ifdef _KERNEL 220 221 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **); 222 223 /* 224 * virtual address to page table entry and 225 * to physical address. Likewise for alternate address space. 226 * Note: these work recursively, thus vtopte of a pte will give 227 * the corresponding pde that in turn maps it. 228 */ 229 230 /* 231 * The current top of kernel VM. 232 */ 233 extern vm_offset_t pmap_curmaxkvaddr; 234 235 struct pcb; 236 237 void pmap_set_pcb_pagedir(pmap_t, struct pcb *); 238 /* Virtual address to page table entry */ 239 static __inline pt_entry_t * 240 vtopte(vm_offset_t va) 241 { 242 pd_entry_t *pdep; 243 pt_entry_t *ptep; 244 245 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE) 246 return (NULL); 247 return (ptep); 248 } 249 250 extern vm_paddr_t phys_avail[]; 251 extern vm_offset_t virtual_avail; 252 extern vm_offset_t virtual_end; 253 254 void pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt); 255 int pmap_change_attr(vm_offset_t, vm_size_t, int); 256 void pmap_kenter(vm_offset_t va, vm_paddr_t pa); 257 void pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa); 258 void pmap_kenter_device(vm_offset_t va, vm_paddr_t pa); 259 void *pmap_kenter_temp(vm_paddr_t pa, int i); 260 void pmap_kenter_user(vm_offset_t va, vm_paddr_t pa); 261 vm_paddr_t pmap_kextract(vm_offset_t va); 262 void pmap_kremove(vm_offset_t); 263 void *pmap_mapdev(vm_offset_t, vm_size_t); 264 void pmap_unmapdev(vm_offset_t, vm_size_t); 265 vm_page_t pmap_use_pt(pmap_t, vm_offset_t); 266 void pmap_debug(int); 267 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0 268 void pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int); 269 #endif 270 void pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *); 271 vm_size_t pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int); 272 void 273 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot, 274 int cache); 275 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int); 276 int pmap_dmap_iscurrent(pmap_t pmap); 277 278 /* 279 * Definitions for MMU domains 280 */ 281 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */ 282 #define PMAP_DOMAIN_KERNEL 0 /* The kernel uses domain #0 */ 283 284 /* 285 * The new pmap ensures that page-tables are always mapping Write-Thru. 286 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs 287 * on every change. 288 * 289 * Unfortunately, not all CPUs have a write-through cache mode. So we 290 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, 291 * and if there is the chance for PTE syncs to be needed, we define 292 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) 293 * the code. 294 */ 295 extern int pmap_needs_pte_sync; 296 297 /* 298 * These macros define the various bit masks in the PTE. 299 * 300 * We use these macros since we use different bits on different processor 301 * models. 302 */ 303 304 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) 305 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\ 306 L1_S_XSCALE_TEX(TEX_XSCALE_T)) 307 308 #define L2_L_CACHE_MASK_generic (L2_B|L2_C) 309 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \ 310 L2_XSCALE_L_TEX(TEX_XSCALE_T)) 311 312 #define L2_S_PROT_U_generic (L2_AP(AP_U)) 313 #define L2_S_PROT_W_generic (L2_AP(AP_W)) 314 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W) 315 316 #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) 317 #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) 318 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W) 319 320 #define L2_S_CACHE_MASK_generic (L2_B|L2_C) 321 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \ 322 L2_XSCALE_T_TEX(TEX_XSCALE_X)) 323 324 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) 325 #define L1_S_PROTO_xscale (L1_TYPE_S) 326 327 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) 328 #define L1_C_PROTO_xscale (L1_TYPE_C) 329 330 #define L2_L_PROTO (L2_TYPE_L) 331 332 #define L2_S_PROTO_generic (L2_TYPE_S) 333 #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS) 334 335 /* 336 * User-visible names for the ones that vary with MMU class. 337 */ 338 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0 339 #define L2_AP(x) (L2_AP0(x)) 340 #else 341 #define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x)) 342 #endif 343 344 #if ARM_NMMUS > 1 345 /* More than one MMU class configured; use variables. */ 346 #define L2_S_PROT_U pte_l2_s_prot_u 347 #define L2_S_PROT_W pte_l2_s_prot_w 348 #define L2_S_PROT_MASK pte_l2_s_prot_mask 349 350 #define L1_S_CACHE_MASK pte_l1_s_cache_mask 351 #define L2_L_CACHE_MASK pte_l2_l_cache_mask 352 #define L2_S_CACHE_MASK pte_l2_s_cache_mask 353 354 #define L1_S_PROTO pte_l1_s_proto 355 #define L1_C_PROTO pte_l1_c_proto 356 #define L2_S_PROTO pte_l2_s_proto 357 358 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 359 #define L2_S_PROT_U L2_S_PROT_U_generic 360 #define L2_S_PROT_W L2_S_PROT_W_generic 361 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 362 363 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 364 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 365 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 366 367 #define L1_S_PROTO L1_S_PROTO_generic 368 #define L1_C_PROTO L1_C_PROTO_generic 369 #define L2_S_PROTO L2_S_PROTO_generic 370 371 #elif ARM_MMU_XSCALE == 1 372 #define L2_S_PROT_U L2_S_PROT_U_xscale 373 #define L2_S_PROT_W L2_S_PROT_W_xscale 374 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale 375 376 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale 377 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale 378 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale 379 380 #define L1_S_PROTO L1_S_PROTO_xscale 381 #define L1_C_PROTO L1_C_PROTO_xscale 382 #define L2_S_PROTO L2_S_PROTO_xscale 383 384 #elif (ARM_MMU_V6 + ARM_MMU_V7) != 0 385 /* 386 * AP[2:1] access permissions model: 387 * 388 * AP[2](APX) - Write Disable 389 * AP[1] - User Enable 390 * AP[0] - Reference Flag 391 * 392 * AP[2] AP[1] Kernel User 393 * 0 0 R/W N 394 * 0 1 R/W R/W 395 * 1 0 R N 396 * 1 1 R R 397 * 398 */ 399 #define L2_S_PROT_R (0) /* kernel read */ 400 #define L2_S_PROT_U (L2_AP0(2)) /* user read */ 401 #define L2_S_REF (L2_AP0(1)) /* reference flag */ 402 403 #define L2_S_PROT_MASK (L2_S_PROT_U|L2_S_PROT_R|L2_APX) 404 #define L2_S_EXECUTABLE(pte) (!(pte & L2_XN)) 405 #define L2_S_WRITABLE(pte) (!(pte & L2_APX)) 406 #define L2_S_REFERENCED(pte) (!!(pte & L2_S_REF)) 407 408 #ifndef SMP 409 #define L1_S_CACHE_MASK (L1_S_TEX_MASK|L1_S_B|L1_S_C) 410 #define L2_L_CACHE_MASK (L2_L_TEX_MASK|L2_B|L2_C) 411 #define L2_S_CACHE_MASK (L2_S_TEX_MASK|L2_B|L2_C) 412 #else 413 #define L1_S_CACHE_MASK (L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED) 414 #define L2_L_CACHE_MASK (L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED) 415 #define L2_S_CACHE_MASK (L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED) 416 #endif /* SMP */ 417 418 #define L1_S_PROTO (L1_TYPE_S) 419 #define L1_C_PROTO (L1_TYPE_C) 420 #define L2_S_PROTO (L2_TYPE_S) 421 422 /* 423 * Promotion to a 1MB (SECTION) mapping requires that the corresponding 424 * 4KB (SMALL) page mappings have identical settings for the following fields: 425 */ 426 #define L2_S_PROMOTE (L2_S_REF | L2_SHARED | L2_S_PROT_MASK | \ 427 L2_XN | L2_S_PROTO) 428 429 /* 430 * In order to compare 1MB (SECTION) entry settings with the 4KB (SMALL) 431 * page mapping it is necessary to read and shift appropriate bits from 432 * L1 entry to positions of the corresponding bits in the L2 entry. 433 */ 434 #define L1_S_DEMOTE(l1pd) ((((l1pd) & L1_S_PROTO) >> 0) | \ 435 (((l1pd) & L1_SHARED) >> 6) | \ 436 (((l1pd) & L1_S_REF) >> 6) | \ 437 (((l1pd) & L1_S_PROT_MASK) >> 6) | \ 438 (((l1pd) & L1_S_XN) >> 4)) 439 440 #ifndef SMP 441 #define ARM_L1S_STRONG_ORD (0) 442 #define ARM_L1S_DEVICE_NOSHARE (L1_S_TEX(2)) 443 #define ARM_L1S_DEVICE_SHARE (L1_S_B) 444 #define ARM_L1S_NRML_NOCACHE (L1_S_TEX(1)) 445 #define ARM_L1S_NRML_IWT_OWT (L1_S_C) 446 #define ARM_L1S_NRML_IWB_OWB (L1_S_C|L1_S_B) 447 #define ARM_L1S_NRML_IWBA_OWBA (L1_S_TEX(1)|L1_S_C|L1_S_B) 448 449 #define ARM_L2L_STRONG_ORD (0) 450 #define ARM_L2L_DEVICE_NOSHARE (L2_L_TEX(2)) 451 #define ARM_L2L_DEVICE_SHARE (L2_B) 452 #define ARM_L2L_NRML_NOCACHE (L2_L_TEX(1)) 453 #define ARM_L2L_NRML_IWT_OWT (L2_C) 454 #define ARM_L2L_NRML_IWB_OWB (L2_C|L2_B) 455 #define ARM_L2L_NRML_IWBA_OWBA (L2_L_TEX(1)|L2_C|L2_B) 456 457 #define ARM_L2S_STRONG_ORD (0) 458 #define ARM_L2S_DEVICE_NOSHARE (L2_S_TEX(2)) 459 #define ARM_L2S_DEVICE_SHARE (L2_B) 460 #define ARM_L2S_NRML_NOCACHE (L2_S_TEX(1)) 461 #define ARM_L2S_NRML_IWT_OWT (L2_C) 462 #define ARM_L2S_NRML_IWB_OWB (L2_C|L2_B) 463 #define ARM_L2S_NRML_IWBA_OWBA (L2_S_TEX(1)|L2_C|L2_B) 464 #else 465 #define ARM_L1S_STRONG_ORD (0) 466 #define ARM_L1S_DEVICE_NOSHARE (L1_S_TEX(2)) 467 #define ARM_L1S_DEVICE_SHARE (L1_S_B) 468 #define ARM_L1S_NRML_NOCACHE (L1_S_TEX(1)|L1_SHARED) 469 #define ARM_L1S_NRML_IWT_OWT (L1_S_C|L1_SHARED) 470 #define ARM_L1S_NRML_IWB_OWB (L1_S_C|L1_S_B|L1_SHARED) 471 #define ARM_L1S_NRML_IWBA_OWBA (L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED) 472 473 #define ARM_L2L_STRONG_ORD (0) 474 #define ARM_L2L_DEVICE_NOSHARE (L2_L_TEX(2)) 475 #define ARM_L2L_DEVICE_SHARE (L2_B) 476 #define ARM_L2L_NRML_NOCACHE (L2_L_TEX(1)|L2_SHARED) 477 #define ARM_L2L_NRML_IWT_OWT (L2_C|L2_SHARED) 478 #define ARM_L2L_NRML_IWB_OWB (L2_C|L2_B|L2_SHARED) 479 #define ARM_L2L_NRML_IWBA_OWBA (L2_L_TEX(1)|L2_C|L2_B|L2_SHARED) 480 481 #define ARM_L2S_STRONG_ORD (0) 482 #define ARM_L2S_DEVICE_NOSHARE (L2_S_TEX(2)) 483 #define ARM_L2S_DEVICE_SHARE (L2_B) 484 #define ARM_L2S_NRML_NOCACHE (L2_S_TEX(1)|L2_SHARED) 485 #define ARM_L2S_NRML_IWT_OWT (L2_C|L2_SHARED) 486 #define ARM_L2S_NRML_IWB_OWB (L2_C|L2_B|L2_SHARED) 487 #define ARM_L2S_NRML_IWBA_OWBA (L2_S_TEX(1)|L2_C|L2_B|L2_SHARED) 488 #endif /* SMP */ 489 #endif /* ARM_NMMUS > 1 */ 490 491 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1) 492 #define PMAP_NEEDS_PTE_SYNC 1 493 #define PMAP_INCLUDE_PTE_SYNC 494 #elif defined(CPU_XSCALE_81342) || ARM_ARCH_6 || ARM_ARCH_7A 495 #define PMAP_NEEDS_PTE_SYNC 1 496 #define PMAP_INCLUDE_PTE_SYNC 497 #elif (ARM_MMU_SA1 == 0) 498 #define PMAP_NEEDS_PTE_SYNC 0 499 #endif 500 501 /* 502 * These macros return various bits based on kernel/user and protection. 503 * Note that the compiler will usually fold these at compile time. 504 */ 505 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0 506 507 #define L1_S_PROT_U (L1_S_AP(AP_U)) 508 #define L1_S_PROT_W (L1_S_AP(AP_W)) 509 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W) 510 #define L1_S_WRITABLE(pd) ((pd) & L1_S_PROT_W) 511 512 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \ 513 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0)) 514 515 #define L2_L_PROT_U (L2_AP(AP_U)) 516 #define L2_L_PROT_W (L2_AP(AP_W)) 517 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W) 518 519 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \ 520 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0)) 521 522 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \ 523 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0)) 524 #else 525 #define L1_S_PROT_U (L1_S_AP(AP_U)) 526 #define L1_S_PROT_W (L1_S_APX) /* Write disable */ 527 #define L1_S_PROT_MASK (L1_S_PROT_W|L1_S_PROT_U) 528 #define L1_S_REF (L1_S_AP(AP_REF)) /* Reference flag */ 529 #define L1_S_WRITABLE(pd) (!((pd) & L1_S_PROT_W)) 530 #define L1_S_REFERENCED(pd) ((pd) & L1_S_REF) 531 532 #define L1_S_PROT(ku, pr) (((((ku) == PTE_KERNEL) ? 0 : L1_S_PROT_U) | \ 533 (((pr) & VM_PROT_WRITE) ? 0 : L1_S_PROT_W) | \ 534 (((pr) & VM_PROT_EXECUTE) ? 0 : L1_S_XN))) 535 536 #define L2_L_PROT_MASK (L2_APX|L2_AP0(0x3)) 537 #define L2_L_PROT(ku, pr) (L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \ 538 (((pr) & VM_PROT_WRITE) ? L2_APX : 0))) 539 540 #define L2_S_PROT(ku, pr) (L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \ 541 (((pr) & VM_PROT_WRITE) ? L2_APX : 0))) 542 543 #endif 544 545 /* 546 * Macros to test if a mapping is mappable with an L1 Section mapping 547 * or an L2 Large Page mapping. 548 */ 549 #define L1_S_MAPPABLE_P(va, pa, size) \ 550 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) 551 552 #define L2_L_MAPPABLE_P(va, pa, size) \ 553 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) 554 555 /* 556 * Provide a fallback in case we were not able to determine it at 557 * compile-time. 558 */ 559 #ifndef PMAP_NEEDS_PTE_SYNC 560 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync 561 #define PMAP_INCLUDE_PTE_SYNC 562 #endif 563 564 #ifdef ARM_L2_PIPT 565 #define _sync_l2(pte, size) cpu_l2cache_wb_range(vtophys(pte), size) 566 #else 567 #define _sync_l2(pte, size) cpu_l2cache_wb_range(pte, size) 568 #endif 569 570 #define PTE_SYNC(pte) \ 571 do { \ 572 if (PMAP_NEEDS_PTE_SYNC) { \ 573 cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\ 574 cpu_drain_writebuf(); \ 575 _sync_l2((vm_offset_t)(pte), sizeof(pt_entry_t));\ 576 } else \ 577 cpu_drain_writebuf(); \ 578 } while (/*CONSTCOND*/0) 579 580 #define PTE_SYNC_RANGE(pte, cnt) \ 581 do { \ 582 if (PMAP_NEEDS_PTE_SYNC) { \ 583 cpu_dcache_wb_range((vm_offset_t)(pte), \ 584 (cnt) << 2); /* * sizeof(pt_entry_t) */ \ 585 cpu_drain_writebuf(); \ 586 _sync_l2((vm_offset_t)(pte), \ 587 (cnt) << 2); /* * sizeof(pt_entry_t) */ \ 588 } else \ 589 cpu_drain_writebuf(); \ 590 } while (/*CONSTCOND*/0) 591 592 extern pt_entry_t pte_l1_s_cache_mode; 593 extern pt_entry_t pte_l1_s_cache_mask; 594 595 extern pt_entry_t pte_l2_l_cache_mode; 596 extern pt_entry_t pte_l2_l_cache_mask; 597 598 extern pt_entry_t pte_l2_s_cache_mode; 599 extern pt_entry_t pte_l2_s_cache_mask; 600 601 extern pt_entry_t pte_l1_s_cache_mode_pt; 602 extern pt_entry_t pte_l2_l_cache_mode_pt; 603 extern pt_entry_t pte_l2_s_cache_mode_pt; 604 605 extern pt_entry_t pte_l2_s_prot_u; 606 extern pt_entry_t pte_l2_s_prot_w; 607 extern pt_entry_t pte_l2_s_prot_mask; 608 609 extern pt_entry_t pte_l1_s_proto; 610 extern pt_entry_t pte_l1_c_proto; 611 extern pt_entry_t pte_l2_s_proto; 612 613 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t); 614 extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys, 615 vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt); 616 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int); 617 618 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342) 619 void pmap_copy_page_generic(vm_paddr_t, vm_paddr_t); 620 void pmap_zero_page_generic(vm_paddr_t, int, int); 621 622 void pmap_pte_init_generic(void); 623 #if defined(CPU_ARM8) 624 void pmap_pte_init_arm8(void); 625 #endif 626 #if defined(CPU_ARM9) 627 void pmap_pte_init_arm9(void); 628 #endif /* CPU_ARM9 */ 629 #if defined(CPU_ARM10) 630 void pmap_pte_init_arm10(void); 631 #endif /* CPU_ARM10 */ 632 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0 633 void pmap_pte_init_mmu_v6(void); 634 #endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */ 635 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ 636 637 #if /* ARM_MMU_SA1 == */1 638 void pmap_pte_init_sa1(void); 639 #endif /* ARM_MMU_SA1 == 1 */ 640 641 #if ARM_MMU_XSCALE == 1 642 void pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t); 643 void pmap_zero_page_xscale(vm_paddr_t, int, int); 644 645 void pmap_pte_init_xscale(void); 646 647 void xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t); 648 649 void pmap_use_minicache(vm_offset_t, vm_size_t); 650 #endif /* ARM_MMU_XSCALE == 1 */ 651 #if defined(CPU_XSCALE_81342) 652 #define ARM_HAVE_SUPERSECTIONS 653 #endif 654 655 #define PTE_KERNEL 0 656 #define PTE_USER 1 657 #define l1pte_valid(pde) ((pde) != 0) 658 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) 659 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) 660 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) 661 662 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT) 663 #define l2pte_valid(pte) ((pte) != 0) 664 #define l2pte_pa(pte) ((pte) & L2_S_FRAME) 665 #define l2pte_minidata(pte) (((pte) & \ 666 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\ 667 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X))) 668 669 /* L1 and L2 page table macros */ 670 #define pmap_pde_v(pde) l1pte_valid(*(pde)) 671 #define pmap_pde_section(pde) l1pte_section_p(*(pde)) 672 #define pmap_pde_page(pde) l1pte_page_p(*(pde)) 673 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) 674 675 #define pmap_pte_v(pte) l2pte_valid(*(pte)) 676 #define pmap_pte_pa(pte) l2pte_pa(*(pte)) 677 678 /* 679 * Flags that indicate attributes of pages or mappings of pages. 680 * 681 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each 682 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual 683 * pv_entry's for each page. They live in the same "namespace" so 684 * that we can clear multiple attributes at a time. 685 * 686 * Note the "non-cacheable" flag generally means the page has 687 * multiple mappings in a given address space. 688 */ 689 #define PVF_MOD 0x01 /* page is modified */ 690 #define PVF_REF 0x02 /* page is referenced */ 691 #define PVF_WIRED 0x04 /* mapping is wired */ 692 #define PVF_WRITE 0x08 /* mapping is writable */ 693 #define PVF_EXEC 0x10 /* mapping is executable */ 694 #define PVF_NC 0x20 /* mapping is non-cacheable */ 695 #define PVF_MWC 0x40 /* mapping is used multiple times in userland */ 696 #define PVF_UNMAN 0x80 /* mapping is unmanaged */ 697 698 void vector_page_setprot(int); 699 700 #define SECTION_CACHE 0x1 701 #define SECTION_PT 0x2 702 void pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags); 703 #ifdef ARM_HAVE_SUPERSECTIONS 704 void pmap_kenter_supersection(vm_offset_t, uint64_t, int flags); 705 #endif 706 707 extern char *_tmppt; 708 709 void pmap_postinit(void); 710 711 #ifdef ARM_USE_SMALL_ALLOC 712 void arm_add_smallalloc_pages(void *, void *, int, int); 713 vm_offset_t arm_ptovirt(vm_paddr_t); 714 void arm_init_smallalloc(void); 715 struct arm_small_page { 716 void *addr; 717 TAILQ_ENTRY(arm_small_page) pg_list; 718 }; 719 720 #endif 721 722 extern vm_paddr_t dump_avail[]; 723 #endif /* _KERNEL */ 724 725 #endif /* !LOCORE */ 726 727 #endif /* !_MACHINE_PMAP_H_ */ 728