xref: /freebsd/sys/arm/include/pmap.h (revision 6fc729af6302dafea6d55379b7175fb40c81ac4d)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 
55 /*
56  * Pte related macros
57  */
58 #define PTE_NOCACHE	0
59 #define PTE_CACHE	1
60 
61 #define VADDR(pdi, pti) ((vm_offset_t)(((pdi)<<PDR_SHIFT)+((pti)<<PAGE_SHIFT)))
62 #define PTDIPDE(ptd)	((ptd)/1024)
63 #define PTDIPTE(ptd)	((ptd)%256)
64 
65 #ifndef	NKPT
66 #define NKPT		120	/* actual number of kernel page tables */
67 #endif
68 
69 #ifndef NKPDE
70 #define NKPDE		1019	/* Maximum number of kernel PDE */
71 #endif
72 
73 #define NPDEPTD		16	/* Number of PDE in each PTD */
74 
75 /*
76  * The *PTDI values control the layout of virtual memory
77  */
78 
79 #define KPTDI		(NPDEPG-NKPDE)	/* ptd entry for kernel space begin */
80 #define PTDPTDI		(KPTDI-1)	/* ptd entry that points to ptd! */
81 #define KPTPTDI		(PTDPTDI-1)	/* ptd entry for kernel PTEs */
82 #define UPTPTDI		(KPTPTDI-3)	/* ptd entry for uspace PTEs */
83 #define UMAXPTDI	(UPTPTDI-1)	/* ptd entry for user space end */
84 #define UMAXPTEOFF	(NPTEPG)	/* pte entry for user space end */
85 
86 #ifndef LOCORE
87 
88 #include <sys/queue.h>
89 
90 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
91 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
92 
93 #ifdef _KERNEL
94 #define ARM_PTE_TO_PFN(pte)	((pt_entry_t)(pte) >> PAGE_SHIFT)
95 #define ARM_PDE_TO_PFN(pde)	((pd_entry_t)(pde) >> 10)
96 #define ARM_PHYS_TO_KSPACE(x)	((vm_offset_t) (x) | (UPTPTDI << PDR_SHIFT))
97 #define ARM_KSPACE_TO_PHYS(x)	((vm_offset_t) (x) & ~(UPTPTDI << PDR_SHIFT))
98 
99 extern pt_entry_t PTmap[], APTmap;
100 extern pd_entry_t PTD[], APTD, PTDpde, APTDpde;
101 
102 extern pd_entry_t IdlePTD;	/* physical address of "Idle" state directory */
103 
104 
105 
106 #if 0
107 static __inline vm_offset_t
108 pmap_akextract(vm_offset_t va)
109 {
110 	vm_offset_t pa;
111 	pa = *(vm_offset_t *)avtopte(va);
112 	pa = (pa & PG_FRAME) | (va & PAGE_MASK);
113 	return pa;
114 }
115 #endif
116 #define vtophys(va)	pmap_kextract(((vm_offset_t) (va)))
117 
118 #define avtophys(va)	pmap_akextract(((vm_offset_t) (va)))
119 
120 #endif
121 
122 /*
123  * Pmap sutff
124  */
125 
126 /*
127  * This structure is used to hold a virtual<->physical address
128  * association and is used mostly by bootstrap code
129  */
130 struct pv_addr {
131 	SLIST_ENTRY(pv_addr) pv_list;
132 	vm_offset_t	pv_va;
133 	vm_paddr_t	pv_pa;
134 };
135 
136 struct	pv_entry;
137 
138 struct	md_page {
139 	int pvh_attrs;
140 	u_int uro_mappings;
141 	u_int urw_mappings;
142 	union {
143 		u_short s_mappings[2]; /* Assume kernel count <= 65535 */
144 		u_int i_mappings;
145 	} k_u;
146 #define	kro_mappings	k_u.s_mappings[0]
147 #define	krw_mappings	k_u.s_mappings[1]
148 #define	k_mappings	k_u.i_mappings
149 	int			pv_list_count;
150 	TAILQ_HEAD(,pv_entry)	pv_list;
151 };
152 
153 #define	VM_MDPAGE_INIT(pg)						\
154 do {									\
155 	TAILQ_INIT(&pg->pv_list);					\
156 	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
157 	(pg)->mdpage.pvh_attrs = 0;					\
158 	(pg)->mdpage.uro_mappings = 0;					\
159 	(pg)->mdpage.urw_mappings = 0;					\
160 	(pg)->mdpage.k_mappings = 0;					\
161 } while (/*CONSTCOND*/0)
162 
163 struct l1_ttable;
164 struct l2_dtable;
165 
166 /*
167  * Track cache/tlb occupancy using the following structure
168  */
169 union pmap_cache_state {
170 	struct {
171 		union {
172 			u_int8_t csu_cache_b[2];
173 			u_int16_t csu_cache;
174 		} cs_cache_u;
175 
176 		union {
177 			u_int8_t csu_tlb_b[2];
178 			u_int16_t csu_tlb;
179 		} cs_tlb_u;
180 	} cs_s;
181 	u_int32_t cs_all;
182 };
183 #define	cs_cache_id	cs_s.cs_cache_u.csu_cache_b[0]
184 #define	cs_cache_d	cs_s.cs_cache_u.csu_cache_b[1]
185 #define	cs_cache	cs_s.cs_cache_u.csu_cache
186 #define	cs_tlb_id	cs_s.cs_tlb_u.csu_tlb_b[0]
187 #define	cs_tlb_d	cs_s.cs_tlb_u.csu_tlb_b[1]
188 #define	cs_tlb		cs_s.cs_tlb_u.csu_tlb
189 
190 /*
191  * Assigned to cs_all to force cacheops to work for a particular pmap
192  */
193 #define	PMAP_CACHE_STATE_ALL	0xffffffffu
194 
195 /*
196  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
197  * A bucket size of 16 provides for 16MB of contiguous virtual address
198  * space per l2_dtable. Most processes will, therefore, require only two or
199  * three of these to map their whole working set.
200  */
201 #define	L2_BUCKET_LOG2	4
202 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
203 /*
204  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
205  * of l2_dtable structures required to track all possible page descriptors
206  * mappable by an L1 translation table is given by the following constants:
207  */
208 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
209 #define	L2_SIZE		(1 << L2_LOG2)
210 
211 struct	pmap {
212 	u_int8_t		pm_domain;
213 	struct l1_ttable	*pm_l1;
214 	struct l2_dtable	*pm_l2[L2_SIZE];
215 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
216 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
217 	struct pv_addr		pm_ptpt;	/* pagetable of pagetables */
218 	int			pm_count;	/* reference count */
219 	int			pm_active;	/* active on cpus */
220 	struct pmap_statistics	pm_stats;	/* pmap statictics */
221 	struct vm_page		*pm_ptphint;	/* pmap ptp hint */
222 	union pmap_cache_state	pm_cstate;
223 	LIST_ENTRY(pmap)	pm_list;	/* List of all pmaps */
224 };
225 
226 typedef struct pmap *pmap_t;
227 
228 #ifdef _KERNEL
229 extern pmap_t	kernel_pmap;
230 #define pmap_kernel() kernel_pmap
231 #endif
232 
233 /*
234  * For each vm_page_t, there is a list of all currently valid virtual
235  * mappings of that page.  An entry is a pv_entry_t, the list is pv_table.
236  */
237 typedef struct pv_entry {
238         pmap_t          pv_pmap;        /* pmap where mapping lies */
239         vm_offset_t     pv_va;          /* virtual address for mapping */
240         TAILQ_ENTRY(pv_entry)   pv_list;
241         TAILQ_ENTRY(pv_entry)   pv_plist;
242         vm_page_t       pv_ptem;        /* VM page for pte */
243 	int		pv_flags;	/* flags (wired, etc...) */
244 } *pv_entry_t;
245 
246 #define PV_ENTRY_NULL   ((pv_entry_t) 0)
247 
248 #define PV_CI           0x01    /* all entries must be cache inhibited */
249 #define PV_PTPAGE       0x02    /* entry maps a page table page */
250 
251 /*
252  * Page hooks.
253  * For speed we store the both the virtual address and the page table
254  * entry address for each page hook.
255  */
256 typedef struct {
257         vm_offset_t va;
258         pt_entry_t *pte;
259 } pagehook_t;
260 
261 
262 #ifdef _KERNEL
263 
264 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
265 
266 /*
267  * virtual address to page table entry and
268  * to physical address. Likewise for alternate address space.
269  * Note: these work recursively, thus vtopte of a pte will give
270  * the corresponding pde that in turn maps it.
271  */
272 
273 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
274 /* Virtual address to page table entry */
275 static __inline pt_entry_t *
276 vtopte(vm_offset_t va)
277 {
278 	pd_entry_t *pdep;
279 	pt_entry_t *ptep;
280 
281 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
282 		return (NULL);
283 	return (ptep);
284 }
285 
286 extern vm_offset_t avail_end;
287 extern vm_offset_t clean_eva;
288 extern vm_offset_t clean_sva;
289 extern vm_offset_t phys_avail[];
290 extern vm_offset_t virtual_avail;
291 extern vm_offset_t virtual_end;
292 
293 void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
294 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
295 void	pmap_kremove(vm_offset_t);
296 void	*pmap_mapdev(vm_offset_t, vm_size_t);
297 void	pmap_unmapdev(vm_offset_t, vm_size_t);
298 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
299 void	pmap_debug(int);
300 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
301 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
302 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
303 void
304 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
305     int cache);
306 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
307 
308 /*
309  * Definitions for MMU domains
310  */
311 #define	PMAP_DOMAINS		15	/* 15 'user' domains (0-14) */
312 #define	PMAP_DOMAIN_KERNEL	15	/* The kernel uses domain #15 */
313 
314 /*
315  * The new pmap ensures that page-tables are always mapping Write-Thru.
316  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
317  * on every change.
318  *
319  * Unfortunately, not all CPUs have a write-through cache mode.  So we
320  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
321  * and if there is the chance for PTE syncs to be needed, we define
322  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
323  * the code.
324  */
325 extern int pmap_needs_pte_sync;
326 
327 /*
328  * These macros define the various bit masks in the PTE.
329  *
330  * We use these macros since we use different bits on different processor
331  * models.
332  */
333 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
334 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
335 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
336 
337 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
338 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
339 
340 #define	L2_L_PROT_U		(L2_AP(AP_U))
341 #define	L2_L_PROT_W		(L2_AP(AP_W))
342 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
343 
344 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
345 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
346 
347 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
348 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
349 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
350 
351 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
352 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
353 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
354 
355 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
356 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
357 
358 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
359 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
360 
361 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
362 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
363 
364 #define	L2_L_PROTO		(L2_TYPE_L)
365 
366 #define	L2_S_PROTO_generic	(L2_TYPE_S)
367 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
368 
369 /*
370  * User-visible names for the ones that vary with MMU class.
371  */
372 
373 #if ARM_NMMUS > 1
374 /* More than one MMU class configured; use variables. */
375 #define	L2_S_PROT_U		pte_l2_s_prot_u
376 #define	L2_S_PROT_W		pte_l2_s_prot_w
377 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
378 
379 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
380 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
381 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
382 
383 #define	L1_S_PROTO		pte_l1_s_proto
384 #define	L1_C_PROTO		pte_l1_c_proto
385 #define	L2_S_PROTO		pte_l2_s_proto
386 
387 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
388 #define	L2_S_PROT_U		L2_S_PROT_U_generic
389 #define	L2_S_PROT_W		L2_S_PROT_W_generic
390 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
391 
392 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
393 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
394 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
395 
396 #define	L1_S_PROTO		L1_S_PROTO_generic
397 #define	L1_C_PROTO		L1_C_PROTO_generic
398 #define	L2_S_PROTO		L2_S_PROTO_generic
399 
400 #elif ARM_MMU_XSCALE == 1
401 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
402 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
403 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
404 
405 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
406 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
407 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
408 
409 #define	L1_S_PROTO		L1_S_PROTO_xscale
410 #define	L1_C_PROTO		L1_C_PROTO_xscale
411 #define	L2_S_PROTO		L2_S_PROTO_xscale
412 
413 #endif /* ARM_NMMUS > 1 */
414 
415 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
416 #define	PMAP_NEEDS_PTE_SYNC	1
417 #define	PMAP_INCLUDE_PTE_SYNC
418 #elif (ARM_MMU_SA1 == 0)
419 #define	PMAP_NEEDS_PTE_SYNC	0
420 #endif
421 
422 /*
423  * These macros return various bits based on kernel/user and protection.
424  * Note that the compiler will usually fold these at compile time.
425  */
426 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
427 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
428 
429 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
430 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
431 
432 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
433 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
434 
435 /*
436  * Macros to test if a mapping is mappable with an L1 Section mapping
437  * or an L2 Large Page mapping.
438  */
439 #define	L1_S_MAPPABLE_P(va, pa, size)					\
440 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
441 
442 #define	L2_L_MAPPABLE_P(va, pa, size)					\
443 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
444 
445 /*
446  * Provide a fallback in case we were not able to determine it at
447  * compile-time.
448  */
449 #ifndef PMAP_NEEDS_PTE_SYNC
450 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
451 #define	PMAP_INCLUDE_PTE_SYNC
452 #endif
453 
454 #define	PTE_SYNC(pte)							\
455 do {									\
456 	if (PMAP_NEEDS_PTE_SYNC)					\
457 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
458 } while (/*CONSTCOND*/0)
459 
460 #define	PTE_SYNC_RANGE(pte, cnt)					\
461 do {									\
462 	if (PMAP_NEEDS_PTE_SYNC) {					\
463 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
464 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
465 	}								\
466 } while (/*CONSTCOND*/0)
467 
468 extern pt_entry_t		pte_l1_s_cache_mode;
469 extern pt_entry_t		pte_l1_s_cache_mask;
470 
471 extern pt_entry_t		pte_l2_l_cache_mode;
472 extern pt_entry_t		pte_l2_l_cache_mask;
473 
474 extern pt_entry_t		pte_l2_s_cache_mode;
475 extern pt_entry_t		pte_l2_s_cache_mask;
476 
477 extern pt_entry_t		pte_l1_s_cache_mode_pt;
478 extern pt_entry_t		pte_l2_l_cache_mode_pt;
479 extern pt_entry_t		pte_l2_s_cache_mode_pt;
480 
481 extern pt_entry_t		pte_l2_s_prot_u;
482 extern pt_entry_t		pte_l2_s_prot_w;
483 extern pt_entry_t		pte_l2_s_prot_mask;
484 
485 extern pt_entry_t		pte_l1_s_proto;
486 extern pt_entry_t		pte_l1_c_proto;
487 extern pt_entry_t		pte_l2_s_proto;
488 
489 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
490 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
491 
492 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
493 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
494 void	pmap_zero_page_generic(vm_paddr_t, int, int);
495 
496 void	pmap_pte_init_generic(void);
497 #if defined(CPU_ARM8)
498 void	pmap_pte_init_arm8(void);
499 #endif
500 #if defined(CPU_ARM9)
501 void	pmap_pte_init_arm9(void);
502 #endif /* CPU_ARM9 */
503 #if defined(CPU_ARM10)
504 void	pmap_pte_init_arm10(void);
505 #endif /* CPU_ARM10 */
506 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
507 
508 #if /* ARM_MMU_SA1 == */1
509 void	pmap_pte_init_sa1(void);
510 #endif /* ARM_MMU_SA1 == 1 */
511 
512 #if ARM_MMU_XSCALE == 1
513 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
514 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
515 
516 void	pmap_pte_init_xscale(void);
517 
518 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
519 
520 #define	PMAP_UAREA(va)		pmap_uarea(va)
521 void	pmap_uarea(vm_offset_t);
522 #endif /* ARM_MMU_XSCALE == 1 */
523 #define PTE_KERNEL	0
524 #define PTE_USER	1
525 #define	l1pte_valid(pde)	((pde) != 0)
526 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
527 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
528 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
529 
530 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
531 #define	l2pte_valid(pte)	((pte) != 0)
532 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
533 #define l2pte_minidata(pte)	(((pte) & \
534 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
535 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
536 
537 /* L1 and L2 page table macros */
538 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
539 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
540 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
541 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
542 
543 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
544 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
545 
546 /* Size of the kernel part of the L1 page table */
547 #define KERNEL_PD_SIZE	\
548 	(L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
549 #define PTE_PAGETABLE	2
550 
551 /*
552  * Flags that indicate attributes of pages or mappings of pages.
553  *
554  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
555  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
556  * pv_entry's for each page.  They live in the same "namespace" so
557  * that we can clear multiple attributes at a time.
558  *
559  * Note the "non-cacheable" flag generally means the page has
560  * multiple mappings in a given address space.
561  */
562 #define	PVF_MOD		0x01		/* page is modified */
563 #define	PVF_REF		0x02		/* page is referenced */
564 #define	PVF_WIRED	0x04		/* mapping is wired */
565 #define	PVF_WRITE	0x08		/* mapping is writable */
566 #define	PVF_EXEC	0x10		/* mapping is executable */
567 #define	PVF_UNC		0x20		/* mapping is 'user' non-cacheable */
568 #define	PVF_KNC		0x40		/* mapping is 'kernel' non-cacheable */
569 #define	PVF_NC		(PVF_UNC|PVF_KNC)
570 
571 void vector_page_setprot(int);
572 /*
573  *      Routine:        pmap_kextract
574  *      Function:
575  *              Extract the physical page address associated
576  *              kernel virtual address.
577  */
578 
579 vm_paddr_t pmap_kextract(vm_offset_t);
580 
581 void pmap_update(pmap_t);
582 #endif	/* _KERNEL */
583 
584 #endif	/* !LOCORE */
585 
586 #endif	/* !_MACHINE_PMAP_H_ */
587