xref: /freebsd/sys/arm/include/pmap.h (revision 6f9c8e5b074419423648ffb89b83fd2f257e90b7)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 #include <machine/cpuconf.h>
55 /*
56  * Pte related macros
57  */
58 #define PTE_NOCACHE	0
59 #define PTE_CACHE	1
60 #define PTE_PAGETABLE	2
61 
62 #ifndef LOCORE
63 
64 #include <sys/queue.h>
65 #include <sys/_cpuset.h>
66 #include <sys/_lock.h>
67 #include <sys/_mutex.h>
68 
69 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
70 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
71 
72 #ifdef _KERNEL
73 
74 #define vtophys(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
75 #define pmap_kextract(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
76 
77 #endif
78 
79 #define	pmap_page_get_memattr(m)	VM_MEMATTR_DEFAULT
80 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
81 #define	pmap_page_set_memattr(m, ma)	(void)0
82 
83 /*
84  * Pmap stuff
85  */
86 
87 /*
88  * This structure is used to hold a virtual<->physical address
89  * association and is used mostly by bootstrap code
90  */
91 struct pv_addr {
92 	SLIST_ENTRY(pv_addr) pv_list;
93 	vm_offset_t	pv_va;
94 	vm_paddr_t	pv_pa;
95 };
96 
97 struct	pv_entry;
98 
99 struct	md_page {
100 	int pvh_attrs;
101 	vm_offset_t pv_kva;		/* first kernel VA mapping */
102 	TAILQ_HEAD(,pv_entry)	pv_list;
103 };
104 
105 #define	VM_MDPAGE_INIT(pg)						\
106 do {									\
107 	TAILQ_INIT(&pg->pv_list);					\
108 	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
109 	(pg)->mdpage.pvh_attrs = 0;					\
110 } while (/*CONSTCOND*/0)
111 
112 struct l1_ttable;
113 struct l2_dtable;
114 
115 
116 /*
117  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
118  * A bucket size of 16 provides for 16MB of contiguous virtual address
119  * space per l2_dtable. Most processes will, therefore, require only two or
120  * three of these to map their whole working set.
121  */
122 #define	L2_BUCKET_LOG2	4
123 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
124 /*
125  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
126  * of l2_dtable structures required to track all possible page descriptors
127  * mappable by an L1 translation table is given by the following constants:
128  */
129 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
130 #define	L2_SIZE		(1 << L2_LOG2)
131 
132 struct	pmap {
133 	struct mtx		pm_mtx;
134 	u_int8_t		pm_domain;
135 	struct l1_ttable	*pm_l1;
136 	struct l2_dtable	*pm_l2[L2_SIZE];
137 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
138 	cpuset_t		pm_active;	/* active on cpus */
139 	struct pmap_statistics	pm_stats;	/* pmap statictics */
140 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
141 };
142 
143 typedef struct pmap *pmap_t;
144 
145 #ifdef _KERNEL
146 extern struct pmap	kernel_pmap_store;
147 #define kernel_pmap	(&kernel_pmap_store)
148 #define pmap_kernel() kernel_pmap
149 
150 #define	PMAP_ASSERT_LOCKED(pmap) \
151 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
152 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
153 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
154 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
155 				    NULL, MTX_DEF | MTX_DUPOK)
156 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
157 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
158 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
159 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
160 #endif
161 
162 
163 /*
164  * For each vm_page_t, there is a list of all currently valid virtual
165  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
166  */
167 typedef struct pv_entry {
168 	pmap_t          pv_pmap;        /* pmap where mapping lies */
169 	vm_offset_t     pv_va;          /* virtual address for mapping */
170 	TAILQ_ENTRY(pv_entry)   pv_list;
171 	TAILQ_ENTRY(pv_entry)	pv_plist;
172 	int		pv_flags;	/* flags (wired, etc...) */
173 } *pv_entry_t;
174 
175 #ifdef _KERNEL
176 
177 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
178 
179 /*
180  * virtual address to page table entry and
181  * to physical address. Likewise for alternate address space.
182  * Note: these work recursively, thus vtopte of a pte will give
183  * the corresponding pde that in turn maps it.
184  */
185 
186 /*
187  * The current top of kernel VM.
188  */
189 extern vm_offset_t pmap_curmaxkvaddr;
190 
191 struct pcb;
192 
193 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
194 /* Virtual address to page table entry */
195 static __inline pt_entry_t *
196 vtopte(vm_offset_t va)
197 {
198 	pd_entry_t *pdep;
199 	pt_entry_t *ptep;
200 
201 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
202 		return (NULL);
203 	return (ptep);
204 }
205 
206 extern vm_paddr_t phys_avail[];
207 extern vm_offset_t virtual_avail;
208 extern vm_offset_t virtual_end;
209 
210 void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
211 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
212 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
213 void	*pmap_kenter_temp(vm_paddr_t pa, int i);
214 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
215 void	pmap_kremove(vm_offset_t);
216 void	*pmap_mapdev(vm_offset_t, vm_size_t);
217 void	pmap_unmapdev(vm_offset_t, vm_size_t);
218 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
219 void	pmap_debug(int);
220 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
221 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
222 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
223 void
224 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
225     int cache);
226 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
227 
228 /*
229  * Definitions for MMU domains
230  */
231 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
232 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
233 
234 /*
235  * The new pmap ensures that page-tables are always mapping Write-Thru.
236  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
237  * on every change.
238  *
239  * Unfortunately, not all CPUs have a write-through cache mode.  So we
240  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
241  * and if there is the chance for PTE syncs to be needed, we define
242  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
243  * the code.
244  */
245 extern int pmap_needs_pte_sync;
246 
247 /*
248  * These macros define the various bit masks in the PTE.
249  *
250  * We use these macros since we use different bits on different processor
251  * models.
252  */
253 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
254 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
255 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
256 
257 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
258 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
259     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
260 
261 #define	L2_L_PROT_U		(L2_AP(AP_U))
262 #define	L2_L_PROT_W		(L2_AP(AP_W))
263 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
264 
265 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
266 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
267     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
268 
269 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
270 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
271 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
272 
273 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
274 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
275 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
276 
277 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
278 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
279     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
280 
281 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
282 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
283 
284 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
285 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
286 
287 #define	L2_L_PROTO		(L2_TYPE_L)
288 
289 #define	L2_S_PROTO_generic	(L2_TYPE_S)
290 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
291 
292 /*
293  * User-visible names for the ones that vary with MMU class.
294  */
295 
296 #if ARM_NMMUS > 1
297 /* More than one MMU class configured; use variables. */
298 #define	L2_S_PROT_U		pte_l2_s_prot_u
299 #define	L2_S_PROT_W		pte_l2_s_prot_w
300 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
301 
302 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
303 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
304 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
305 
306 #define	L1_S_PROTO		pte_l1_s_proto
307 #define	L1_C_PROTO		pte_l1_c_proto
308 #define	L2_S_PROTO		pte_l2_s_proto
309 
310 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
311 #define	L2_S_PROT_U		L2_S_PROT_U_generic
312 #define	L2_S_PROT_W		L2_S_PROT_W_generic
313 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
314 
315 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
316 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
317 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
318 
319 #define	L1_S_PROTO		L1_S_PROTO_generic
320 #define	L1_C_PROTO		L1_C_PROTO_generic
321 #define	L2_S_PROTO		L2_S_PROTO_generic
322 
323 #elif ARM_MMU_XSCALE == 1
324 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
325 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
326 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
327 
328 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
329 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
330 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
331 
332 #define	L1_S_PROTO		L1_S_PROTO_xscale
333 #define	L1_C_PROTO		L1_C_PROTO_xscale
334 #define	L2_S_PROTO		L2_S_PROTO_xscale
335 
336 #endif /* ARM_NMMUS > 1 */
337 
338 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
339 #define	PMAP_NEEDS_PTE_SYNC	1
340 #define	PMAP_INCLUDE_PTE_SYNC
341 #elif defined(CPU_XSCALE_81342)
342 #define PMAP_NEEDS_PTE_SYNC	1
343 #define PMAP_INCLUDE_PTE_SYNC
344 #elif (ARM_MMU_SA1 == 0)
345 #define	PMAP_NEEDS_PTE_SYNC	0
346 #endif
347 
348 /*
349  * These macros return various bits based on kernel/user and protection.
350  * Note that the compiler will usually fold these at compile time.
351  */
352 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
353 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
354 
355 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
356 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
357 
358 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
359 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
360 
361 /*
362  * Macros to test if a mapping is mappable with an L1 Section mapping
363  * or an L2 Large Page mapping.
364  */
365 #define	L1_S_MAPPABLE_P(va, pa, size)					\
366 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
367 
368 #define	L2_L_MAPPABLE_P(va, pa, size)					\
369 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
370 
371 /*
372  * Provide a fallback in case we were not able to determine it at
373  * compile-time.
374  */
375 #ifndef PMAP_NEEDS_PTE_SYNC
376 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
377 #define	PMAP_INCLUDE_PTE_SYNC
378 #endif
379 
380 #define	PTE_SYNC(pte)							\
381 do {									\
382 	if (PMAP_NEEDS_PTE_SYNC) {					\
383 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
384 		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
385 	}\
386 } while (/*CONSTCOND*/0)
387 
388 #define	PTE_SYNC_RANGE(pte, cnt)					\
389 do {									\
390 	if (PMAP_NEEDS_PTE_SYNC) {					\
391 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
392 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
393 		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
394 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
395 	}								\
396 } while (/*CONSTCOND*/0)
397 
398 extern pt_entry_t		pte_l1_s_cache_mode;
399 extern pt_entry_t		pte_l1_s_cache_mask;
400 
401 extern pt_entry_t		pte_l2_l_cache_mode;
402 extern pt_entry_t		pte_l2_l_cache_mask;
403 
404 extern pt_entry_t		pte_l2_s_cache_mode;
405 extern pt_entry_t		pte_l2_s_cache_mask;
406 
407 extern pt_entry_t		pte_l1_s_cache_mode_pt;
408 extern pt_entry_t		pte_l2_l_cache_mode_pt;
409 extern pt_entry_t		pte_l2_s_cache_mode_pt;
410 
411 extern pt_entry_t		pte_l2_s_prot_u;
412 extern pt_entry_t		pte_l2_s_prot_w;
413 extern pt_entry_t		pte_l2_s_prot_mask;
414 
415 extern pt_entry_t		pte_l1_s_proto;
416 extern pt_entry_t		pte_l1_c_proto;
417 extern pt_entry_t		pte_l2_s_proto;
418 
419 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
420 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
421 
422 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
423 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
424 void	pmap_zero_page_generic(vm_paddr_t, int, int);
425 
426 void	pmap_pte_init_generic(void);
427 #if defined(CPU_ARM8)
428 void	pmap_pte_init_arm8(void);
429 #endif
430 #if defined(CPU_ARM9)
431 void	pmap_pte_init_arm9(void);
432 #endif /* CPU_ARM9 */
433 #if defined(CPU_ARM10)
434 void	pmap_pte_init_arm10(void);
435 #endif /* CPU_ARM10 */
436 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
437 
438 #if /* ARM_MMU_SA1 == */1
439 void	pmap_pte_init_sa1(void);
440 #endif /* ARM_MMU_SA1 == 1 */
441 
442 #if ARM_MMU_XSCALE == 1
443 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
444 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
445 
446 void	pmap_pte_init_xscale(void);
447 
448 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
449 
450 void	pmap_use_minicache(vm_offset_t, vm_size_t);
451 #endif /* ARM_MMU_XSCALE == 1 */
452 #if defined(CPU_XSCALE_81342)
453 #define ARM_HAVE_SUPERSECTIONS
454 #endif
455 
456 #define PTE_KERNEL	0
457 #define PTE_USER	1
458 #define	l1pte_valid(pde)	((pde) != 0)
459 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
460 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
461 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
462 
463 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
464 #define	l2pte_valid(pte)	((pte) != 0)
465 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
466 #define l2pte_minidata(pte)	(((pte) & \
467 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
468 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
469 
470 /* L1 and L2 page table macros */
471 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
472 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
473 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
474 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
475 
476 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
477 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
478 
479 /*
480  * Flags that indicate attributes of pages or mappings of pages.
481  *
482  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
483  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
484  * pv_entry's for each page.  They live in the same "namespace" so
485  * that we can clear multiple attributes at a time.
486  *
487  * Note the "non-cacheable" flag generally means the page has
488  * multiple mappings in a given address space.
489  */
490 #define	PVF_MOD		0x01		/* page is modified */
491 #define	PVF_REF		0x02		/* page is referenced */
492 #define	PVF_WIRED	0x04		/* mapping is wired */
493 #define	PVF_WRITE	0x08		/* mapping is writable */
494 #define	PVF_EXEC	0x10		/* mapping is executable */
495 #define	PVF_NC		0x20		/* mapping is non-cacheable */
496 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
497 #define	PVF_UNMAN	0x80		/* mapping is unmanaged */
498 
499 void vector_page_setprot(int);
500 
501 void pmap_update(pmap_t);
502 
503 /*
504  * This structure is used by machine-dependent code to describe
505  * static mappings of devices, created at bootstrap time.
506  */
507 struct pmap_devmap {
508 	vm_offset_t	pd_va;		/* virtual address */
509 	vm_paddr_t	pd_pa;		/* physical address */
510 	vm_size_t	pd_size;	/* size of region */
511 	vm_prot_t	pd_prot;	/* protection code */
512 	int		pd_cache;	/* cache attributes */
513 };
514 
515 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
516 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
517 
518 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
519 void	pmap_devmap_register(const struct pmap_devmap *);
520 
521 #define SECTION_CACHE	0x1
522 #define SECTION_PT	0x2
523 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
524 #ifdef ARM_HAVE_SUPERSECTIONS
525 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
526 #endif
527 
528 extern char *_tmppt;
529 
530 void	pmap_postinit(void);
531 
532 #ifdef ARM_USE_SMALL_ALLOC
533 void	arm_add_smallalloc_pages(void *, void *, int, int);
534 vm_offset_t arm_ptovirt(vm_paddr_t);
535 void arm_init_smallalloc(void);
536 struct arm_small_page {
537 	void *addr;
538 	TAILQ_ENTRY(arm_small_page) pg_list;
539 };
540 
541 #endif
542 
543 #define ARM_NOCACHE_KVA_SIZE 0x1000000
544 extern vm_offset_t arm_nocache_startaddr;
545 void *arm_remap_nocache(void *, vm_size_t);
546 void arm_unmap_nocache(void *, vm_size_t);
547 
548 extern vm_paddr_t dump_avail[];
549 #endif	/* _KERNEL */
550 
551 #endif	/* !LOCORE */
552 
553 #endif	/* !_MACHINE_PMAP_H_ */
554