xref: /freebsd/sys/arm/include/pmap.h (revision 6ae1554a5d9b318f8ad53ccc39fa5a961403da73)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 #ifdef ARM_NEW_PMAP
50 #include <machine/pmap-v6.h>
51 #else /* ARM_NEW_PMAP */
52 
53 #ifndef _MACHINE_PMAP_H_
54 #define _MACHINE_PMAP_H_
55 
56 #include <machine/pte.h>
57 #include <machine/cpuconf.h>
58 /*
59  * Pte related macros
60  */
61 #if ARM_ARCH_6 || ARM_ARCH_7A
62 #ifdef SMP
63 #define PTE_NOCACHE	2
64 #else
65 #define PTE_NOCACHE	1
66 #endif
67 #define PTE_CACHE	6
68 #define PTE_DEVICE	2
69 #define PTE_PAGETABLE	6
70 #else
71 #define PTE_NOCACHE	1
72 #define PTE_CACHE	2
73 #define PTE_DEVICE	PTE_NOCACHE
74 #define PTE_PAGETABLE	3
75 #endif
76 
77 enum mem_type {
78 	STRONG_ORD = 0,
79 	DEVICE_NOSHARE,
80 	DEVICE_SHARE,
81 	NRML_NOCACHE,
82 	NRML_IWT_OWT,
83 	NRML_IWB_OWB,
84 	NRML_IWBA_OWBA
85 };
86 
87 #ifndef LOCORE
88 
89 #include <sys/queue.h>
90 #include <sys/_cpuset.h>
91 #include <sys/_lock.h>
92 #include <sys/_mutex.h>
93 
94 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
95 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
96 
97 #ifdef _KERNEL
98 
99 #define vtophys(va)	pmap_kextract((vm_offset_t)(va))
100 
101 #endif
102 
103 #define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
104 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
105 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
106 boolean_t pmap_page_is_mapped(vm_page_t);
107 #else
108 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
109 #endif
110 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
111 
112 /*
113  * Pmap stuff
114  */
115 
116 /*
117  * This structure is used to hold a virtual<->physical address
118  * association and is used mostly by bootstrap code
119  */
120 struct pv_addr {
121 	SLIST_ENTRY(pv_addr) pv_list;
122 	vm_offset_t	pv_va;
123 	vm_paddr_t	pv_pa;
124 };
125 
126 struct	pv_entry;
127 struct	pv_chunk;
128 
129 struct	md_page {
130 	int pvh_attrs;
131 	vm_memattr_t	 pv_memattr;
132 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
133 	vm_offset_t pv_kva;		/* first kernel VA mapping */
134 #endif
135 	TAILQ_HEAD(,pv_entry)	pv_list;
136 };
137 
138 struct l1_ttable;
139 struct l2_dtable;
140 
141 
142 /*
143  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
144  * A bucket size of 16 provides for 16MB of contiguous virtual address
145  * space per l2_dtable. Most processes will, therefore, require only two or
146  * three of these to map their whole working set.
147  */
148 #define	L2_BUCKET_LOG2	4
149 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
150 /*
151  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
152  * of l2_dtable structures required to track all possible page descriptors
153  * mappable by an L1 translation table is given by the following constants:
154  */
155 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
156 #define	L2_SIZE		(1 << L2_LOG2)
157 
158 struct	pmap {
159 	struct mtx		pm_mtx;
160 	u_int8_t		pm_domain;
161 	struct l1_ttable	*pm_l1;
162 	struct l2_dtable	*pm_l2[L2_SIZE];
163 	cpuset_t		pm_active;	/* active on cpus */
164 	struct pmap_statistics	pm_stats;	/* pmap statictics */
165 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
166 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
167 #else
168 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
169 #endif
170 };
171 
172 typedef struct pmap *pmap_t;
173 
174 #ifdef _KERNEL
175 extern struct pmap	kernel_pmap_store;
176 #define kernel_pmap	(&kernel_pmap_store)
177 #define pmap_kernel() kernel_pmap
178 
179 #define	PMAP_ASSERT_LOCKED(pmap) \
180 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
181 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
182 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
183 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
184 				    NULL, MTX_DEF | MTX_DUPOK)
185 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
186 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
187 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
188 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
189 #endif
190 
191 
192 /*
193  * For each vm_page_t, there is a list of all currently valid virtual
194  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
195  */
196 typedef struct pv_entry {
197 	vm_offset_t     pv_va;          /* virtual address for mapping */
198 	TAILQ_ENTRY(pv_entry)   pv_list;
199 	int		pv_flags;	/* flags (wired, etc...) */
200 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
201 	pmap_t          pv_pmap;        /* pmap where mapping lies */
202 	TAILQ_ENTRY(pv_entry)	pv_plist;
203 #endif
204 } *pv_entry_t;
205 
206 /*
207  * pv_entries are allocated in chunks per-process.  This avoids the
208  * need to track per-pmap assignments.
209  */
210 #define	_NPCM	8
211 #define	_NPCPV	252
212 
213 struct pv_chunk {
214 	pmap_t			pc_pmap;
215 	TAILQ_ENTRY(pv_chunk)	pc_list;
216 	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
217 	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
218 	TAILQ_ENTRY(pv_chunk)	pc_lru;
219 	struct pv_entry		pc_pventry[_NPCPV];
220 };
221 
222 #ifdef _KERNEL
223 
224 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
225 
226 /*
227  * virtual address to page table entry and
228  * to physical address. Likewise for alternate address space.
229  * Note: these work recursively, thus vtopte of a pte will give
230  * the corresponding pde that in turn maps it.
231  */
232 
233 /*
234  * The current top of kernel VM.
235  */
236 extern vm_offset_t pmap_curmaxkvaddr;
237 
238 struct pcb;
239 
240 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
241 /* Virtual address to page table entry */
242 static __inline pt_entry_t *
243 vtopte(vm_offset_t va)
244 {
245 	pd_entry_t *pdep;
246 	pt_entry_t *ptep;
247 
248 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
249 		return (NULL);
250 	return (ptep);
251 }
252 
253 extern vm_paddr_t phys_avail[];
254 extern vm_offset_t virtual_avail;
255 extern vm_offset_t virtual_end;
256 
257 void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
258 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
259 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
260 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
261 void	pmap_kenter_device(vm_offset_t, vm_size_t, vm_paddr_t);
262 void	pmap_kremove_device(vm_offset_t, vm_size_t);
263 void	*pmap_kenter_temporary(vm_paddr_t pa, int i);
264 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
265 vm_paddr_t pmap_kextract(vm_offset_t va);
266 void	pmap_kremove(vm_offset_t);
267 void	*pmap_mapdev(vm_offset_t, vm_size_t);
268 void	pmap_unmapdev(vm_offset_t, vm_size_t);
269 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
270 void	pmap_debug(int);
271 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
272 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
273 #endif
274 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
275 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
276 void
277 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
278     int cache);
279 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
280 int pmap_dmap_iscurrent(pmap_t pmap);
281 
282 /*
283  * Definitions for MMU domains
284  */
285 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
286 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
287 
288 /*
289  * The new pmap ensures that page-tables are always mapping Write-Thru.
290  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
291  * on every change.
292  *
293  * Unfortunately, not all CPUs have a write-through cache mode.  So we
294  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
295  * and if there is the chance for PTE syncs to be needed, we define
296  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
297  * the code.
298  */
299 extern int pmap_needs_pte_sync;
300 
301 /*
302  * These macros define the various bit masks in the PTE.
303  *
304  * We use these macros since we use different bits on different processor
305  * models.
306  */
307 
308 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
309 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
310     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
311 
312 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
313 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
314     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
315 
316 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
317 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
318 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
319 
320 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
321 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
322 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
323 
324 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
325 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
326     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
327 
328 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
329 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
330 
331 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
332 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
333 
334 #define	L2_L_PROTO		(L2_TYPE_L)
335 
336 #define	L2_S_PROTO_generic	(L2_TYPE_S)
337 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
338 
339 /*
340  * User-visible names for the ones that vary with MMU class.
341  */
342 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
343 #define	L2_AP(x)	(L2_AP0(x))
344 #else
345 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
346 #endif
347 
348 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
349 /*
350  * AP[2:1] access permissions model:
351  *
352  * AP[2](APX)	- Write Disable
353  * AP[1]	- User Enable
354  * AP[0]	- Reference Flag
355  *
356  * AP[2]     AP[1]     Kernel     User
357  *  0          0        R/W        N
358  *  0          1        R/W       R/W
359  *  1          0         R         N
360  *  1          1         R         R
361  *
362  */
363 #define	L2_S_PROT_R		(0)		/* kernel read */
364 #define	L2_S_PROT_U		(L2_AP0(2))	/* user read */
365 #define L2_S_REF		(L2_AP0(1))	/* reference flag */
366 
367 #define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R|L2_APX)
368 #define	L2_S_EXECUTABLE(pte)	(!(pte & L2_XN))
369 #define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
370 #define	L2_S_REFERENCED(pte)	(!!(pte & L2_S_REF))
371 
372 #ifndef SMP
373 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
374 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
375 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
376 #else
377 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
378 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
379 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
380 #endif  /* SMP */
381 
382 #define	L1_S_PROTO		(L1_TYPE_S)
383 #define	L1_C_PROTO		(L1_TYPE_C)
384 #define	L2_S_PROTO		(L2_TYPE_S)
385 
386 /*
387  * Promotion to a 1MB (SECTION) mapping requires that the corresponding
388  * 4KB (SMALL) page mappings have identical settings for the following fields:
389  */
390 #define	L2_S_PROMOTE		(L2_S_REF | L2_SHARED | L2_S_PROT_MASK | \
391 				 L2_XN | L2_S_PROTO)
392 
393 /*
394  * In order to compare 1MB (SECTION) entry settings with the 4KB (SMALL)
395  * page mapping it is necessary to read and shift appropriate bits from
396  * L1 entry to positions of the corresponding bits in the L2 entry.
397  */
398 #define L1_S_DEMOTE(l1pd)	((((l1pd) & L1_S_PROTO) >> 0) | \
399 				(((l1pd) & L1_SHARED) >> 6) | \
400 				(((l1pd) & L1_S_REF) >> 6) | \
401 				(((l1pd) & L1_S_PROT_MASK) >> 6) | \
402 				(((l1pd) & L1_S_XN) >> 4))
403 
404 #ifndef SMP
405 #define ARM_L1S_STRONG_ORD	(0)
406 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
407 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
408 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
409 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
410 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
411 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
412 
413 #define ARM_L2L_STRONG_ORD	(0)
414 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
415 #define ARM_L2L_DEVICE_SHARE	(L2_B)
416 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
417 #define ARM_L2L_NRML_IWT_OWT	(L2_C)
418 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
419 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
420 
421 #define ARM_L2S_STRONG_ORD	(0)
422 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
423 #define ARM_L2S_DEVICE_SHARE	(L2_B)
424 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
425 #define ARM_L2S_NRML_IWT_OWT	(L2_C)
426 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
427 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
428 #else
429 #define ARM_L1S_STRONG_ORD	(0)
430 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
431 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
432 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
433 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
434 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
435 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
436 
437 #define ARM_L2L_STRONG_ORD	(0)
438 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
439 #define ARM_L2L_DEVICE_SHARE	(L2_B)
440 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
441 #define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
442 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
443 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
444 
445 #define ARM_L2S_STRONG_ORD	(0)
446 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
447 #define ARM_L2S_DEVICE_SHARE	(L2_B)
448 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
449 #define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
450 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
451 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
452 #endif /* SMP */
453 
454 #elif ARM_NMMUS > 1
455 /* More than one MMU class configured; use variables. */
456 #define	L2_S_PROT_U		pte_l2_s_prot_u
457 #define	L2_S_PROT_W		pte_l2_s_prot_w
458 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
459 
460 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
461 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
462 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
463 
464 #define	L1_S_PROTO		pte_l1_s_proto
465 #define	L1_C_PROTO		pte_l1_c_proto
466 #define	L2_S_PROTO		pte_l2_s_proto
467 
468 #elif ARM_MMU_GENERIC != 0
469 #define	L2_S_PROT_U		L2_S_PROT_U_generic
470 #define	L2_S_PROT_W		L2_S_PROT_W_generic
471 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
472 
473 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
474 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
475 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
476 
477 #define	L1_S_PROTO		L1_S_PROTO_generic
478 #define	L1_C_PROTO		L1_C_PROTO_generic
479 #define	L2_S_PROTO		L2_S_PROTO_generic
480 
481 #elif ARM_MMU_XSCALE == 1
482 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
483 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
484 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
485 
486 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
487 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
488 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
489 
490 #define	L1_S_PROTO		L1_S_PROTO_xscale
491 #define	L1_C_PROTO		L1_C_PROTO_xscale
492 #define	L2_S_PROTO		L2_S_PROTO_xscale
493 
494 #endif /* ARM_NMMUS > 1 */
495 
496 #if defined(CPU_XSCALE_81342) || ARM_ARCH_6 || ARM_ARCH_7A
497 #define PMAP_NEEDS_PTE_SYNC	1
498 #define PMAP_INCLUDE_PTE_SYNC
499 #else
500 #define	PMAP_NEEDS_PTE_SYNC	0
501 #endif
502 
503 /*
504  * These macros return various bits based on kernel/user and protection.
505  * Note that the compiler will usually fold these at compile time.
506  */
507 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
508 
509 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
510 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
511 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
512 #define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
513 
514 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
515 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
516 
517 #define	L2_L_PROT_U		(L2_AP(AP_U))
518 #define	L2_L_PROT_W		(L2_AP(AP_W))
519 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
520 
521 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
522 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
523 
524 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
525 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
526 #else
527 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
528 #define	L1_S_PROT_W		(L1_S_APX)		/* Write disable */
529 #define	L1_S_PROT_MASK		(L1_S_PROT_W|L1_S_PROT_U)
530 #define	L1_S_REF		(L1_S_AP(AP_REF))	/* Reference flag */
531 #define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_PROT_W))
532 #define	L1_S_EXECUTABLE(pd)	(!((pd) & L1_S_XN))
533 #define	L1_S_REFERENCED(pd)	((pd) & L1_S_REF)
534 
535 #define	L1_S_PROT(ku, pr)	(((((ku) == PTE_KERNEL) ? 0 : L1_S_PROT_U) | \
536 				 (((pr) & VM_PROT_WRITE) ? 0 : L1_S_PROT_W) | \
537 				 (((pr) & VM_PROT_EXECUTE) ? 0 : L1_S_XN)))
538 
539 #define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
540 #define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
541 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
542 
543 #define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
544 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
545 
546 #endif
547 
548 /*
549  * Macros to test if a mapping is mappable with an L1 Section mapping
550  * or an L2 Large Page mapping.
551  */
552 #define	L1_S_MAPPABLE_P(va, pa, size)					\
553 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
554 
555 #define	L2_L_MAPPABLE_P(va, pa, size)					\
556 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
557 
558 /*
559  * Provide a fallback in case we were not able to determine it at
560  * compile-time.
561  */
562 #ifndef PMAP_NEEDS_PTE_SYNC
563 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
564 #define	PMAP_INCLUDE_PTE_SYNC
565 #endif
566 
567 #ifdef ARM_L2_PIPT
568 #define _sync_l2(pte, size) 	cpu_l2cache_wb_range(vtophys(pte), size)
569 #else
570 #define _sync_l2(pte, size) 	cpu_l2cache_wb_range(pte, size)
571 #endif
572 
573 #define	PTE_SYNC(pte)							\
574 do {									\
575 	if (PMAP_NEEDS_PTE_SYNC) {					\
576 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
577 		cpu_drain_writebuf();					\
578 		_sync_l2((vm_offset_t)(pte), sizeof(pt_entry_t));\
579 	} else								\
580 		cpu_drain_writebuf();					\
581 } while (/*CONSTCOND*/0)
582 
583 #define	PTE_SYNC_RANGE(pte, cnt)					\
584 do {									\
585 	if (PMAP_NEEDS_PTE_SYNC) {					\
586 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
587 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
588 		cpu_drain_writebuf();					\
589 		_sync_l2((vm_offset_t)(pte),		 		\
590 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
591 	} else								\
592 		cpu_drain_writebuf();					\
593 } while (/*CONSTCOND*/0)
594 
595 extern pt_entry_t		pte_l1_s_cache_mode;
596 extern pt_entry_t		pte_l1_s_cache_mask;
597 
598 extern pt_entry_t		pte_l2_l_cache_mode;
599 extern pt_entry_t		pte_l2_l_cache_mask;
600 
601 extern pt_entry_t		pte_l2_s_cache_mode;
602 extern pt_entry_t		pte_l2_s_cache_mask;
603 
604 extern pt_entry_t		pte_l1_s_cache_mode_pt;
605 extern pt_entry_t		pte_l2_l_cache_mode_pt;
606 extern pt_entry_t		pte_l2_s_cache_mode_pt;
607 
608 extern pt_entry_t		pte_l2_s_prot_u;
609 extern pt_entry_t		pte_l2_s_prot_w;
610 extern pt_entry_t		pte_l2_s_prot_mask;
611 
612 extern pt_entry_t		pte_l1_s_proto;
613 extern pt_entry_t		pte_l1_c_proto;
614 extern pt_entry_t		pte_l2_s_proto;
615 
616 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
617 extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
618     vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
619 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
620 
621 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7) != 0 || defined(CPU_XSCALE_81342)
622 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
623 void	pmap_zero_page_generic(vm_paddr_t, int, int);
624 
625 void	pmap_pte_init_generic(void);
626 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
627 void	pmap_pte_init_mmu_v6(void);
628 #endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
629 #endif /* (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7) != 0 */
630 
631 #if ARM_MMU_XSCALE == 1
632 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
633 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
634 
635 void	pmap_pte_init_xscale(void);
636 
637 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
638 
639 void	pmap_use_minicache(vm_offset_t, vm_size_t);
640 #endif /* ARM_MMU_XSCALE == 1 */
641 #if defined(CPU_XSCALE_81342)
642 #define ARM_HAVE_SUPERSECTIONS
643 #endif
644 
645 #define PTE_KERNEL	0
646 #define PTE_USER	1
647 #define	l1pte_valid(pde)	((pde) != 0)
648 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
649 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
650 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
651 
652 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
653 #define	l2pte_valid(pte)	((pte) != 0)
654 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
655 #define l2pte_minidata(pte)	(((pte) & \
656 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
657 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
658 
659 /* L1 and L2 page table macros */
660 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
661 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
662 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
663 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
664 
665 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
666 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
667 
668 /*
669  * Flags that indicate attributes of pages or mappings of pages.
670  *
671  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
672  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
673  * pv_entry's for each page.  They live in the same "namespace" so
674  * that we can clear multiple attributes at a time.
675  *
676  * Note the "non-cacheable" flag generally means the page has
677  * multiple mappings in a given address space.
678  */
679 #define	PVF_MOD		0x01		/* page is modified */
680 #define	PVF_REF		0x02		/* page is referenced */
681 #define	PVF_WIRED	0x04		/* mapping is wired */
682 #define	PVF_WRITE	0x08		/* mapping is writable */
683 #define	PVF_EXEC	0x10		/* mapping is executable */
684 #define	PVF_NC		0x20		/* mapping is non-cacheable */
685 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
686 #define	PVF_UNMAN	0x80		/* mapping is unmanaged */
687 
688 void vector_page_setprot(int);
689 
690 #define SECTION_CACHE	0x1
691 #define SECTION_PT	0x2
692 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
693 #ifdef ARM_HAVE_SUPERSECTIONS
694 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
695 #endif
696 
697 extern char *_tmppt;
698 
699 void	pmap_postinit(void);
700 
701 extern vm_paddr_t dump_avail[];
702 #endif	/* _KERNEL */
703 
704 #endif	/* !LOCORE */
705 
706 #endif	/* !_MACHINE_PMAP_H_ */
707 #endif	/* !ARM_NEW_PMAP */
708