1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * the Systems Programming Group of the University of Utah Computer 7 * Science Department and William Jolitz of UUNET Technologies Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * Derived from hp300 version by Mike Hibler, this version by William 38 * Jolitz uses a recursive map [a pde points to the page directory] to 39 * map the page tables using the pagetables themselves. This is done to 40 * reduce the impact on kernel virtual memory for lots of sparse address 41 * space, and to reduce the cost of memory to each process. 42 * 43 * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 44 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 45 * from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30 46 * 47 * $FreeBSD$ 48 */ 49 50 #ifndef _MACHINE_PMAP_H_ 51 #define _MACHINE_PMAP_H_ 52 53 #include <machine/pte.h> 54 #include <machine/cpuconf.h> 55 /* 56 * Pte related macros 57 */ 58 #if ARM_ARCH_6 || ARM_ARCH_7A 59 #ifdef SMP 60 #define PTE_NOCACHE 2 61 #else 62 #define PTE_NOCACHE 1 63 #endif 64 #define PTE_CACHE 6 65 #define PTE_DEVICE 2 66 #define PTE_PAGETABLE 4 67 #else 68 #define PTE_NOCACHE 1 69 #define PTE_CACHE 2 70 #define PTE_PAGETABLE 3 71 #endif 72 73 enum mem_type { 74 STRONG_ORD = 0, 75 DEVICE_NOSHARE, 76 DEVICE_SHARE, 77 NRML_NOCACHE, 78 NRML_IWT_OWT, 79 NRML_IWB_OWB, 80 NRML_IWBA_OWBA 81 }; 82 83 #ifndef LOCORE 84 85 #include <sys/queue.h> 86 #include <sys/_cpuset.h> 87 #include <sys/_lock.h> 88 #include <sys/_mutex.h> 89 90 #define PDESIZE sizeof(pd_entry_t) /* for assembly files */ 91 #define PTESIZE sizeof(pt_entry_t) /* for assembly files */ 92 93 #ifdef _KERNEL 94 95 #define vtophys(va) pmap_kextract((vm_offset_t)(va)) 96 97 #endif 98 99 #define pmap_page_get_memattr(m) ((m)->md.pv_memattr) 100 #define pmap_page_is_write_mapped(m) (((m)->aflags & PGA_WRITEABLE) != 0) 101 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0 102 boolean_t pmap_page_is_mapped(vm_page_t); 103 #else 104 #define pmap_page_is_mapped(m) (!TAILQ_EMPTY(&(m)->md.pv_list)) 105 #endif 106 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma); 107 108 /* 109 * Pmap stuff 110 */ 111 112 /* 113 * This structure is used to hold a virtual<->physical address 114 * association and is used mostly by bootstrap code 115 */ 116 struct pv_addr { 117 SLIST_ENTRY(pv_addr) pv_list; 118 vm_offset_t pv_va; 119 vm_paddr_t pv_pa; 120 }; 121 122 struct pv_entry; 123 struct pv_chunk; 124 125 struct md_page { 126 int pvh_attrs; 127 vm_memattr_t pv_memattr; 128 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0 129 vm_offset_t pv_kva; /* first kernel VA mapping */ 130 #endif 131 TAILQ_HEAD(,pv_entry) pv_list; 132 }; 133 134 struct l1_ttable; 135 struct l2_dtable; 136 137 138 /* 139 * The number of L2 descriptor tables which can be tracked by an l2_dtable. 140 * A bucket size of 16 provides for 16MB of contiguous virtual address 141 * space per l2_dtable. Most processes will, therefore, require only two or 142 * three of these to map their whole working set. 143 */ 144 #define L2_BUCKET_LOG2 4 145 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) 146 /* 147 * Given the above "L2-descriptors-per-l2_dtable" constant, the number 148 * of l2_dtable structures required to track all possible page descriptors 149 * mappable by an L1 translation table is given by the following constants: 150 */ 151 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2) 152 #define L2_SIZE (1 << L2_LOG2) 153 154 struct pmap { 155 struct mtx pm_mtx; 156 u_int8_t pm_domain; 157 struct l1_ttable *pm_l1; 158 struct l2_dtable *pm_l2[L2_SIZE]; 159 cpuset_t pm_active; /* active on cpus */ 160 struct pmap_statistics pm_stats; /* pmap statictics */ 161 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0 162 TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */ 163 #else 164 TAILQ_HEAD(,pv_entry) pm_pvlist; /* list of mappings in pmap */ 165 #endif 166 }; 167 168 typedef struct pmap *pmap_t; 169 170 #ifdef _KERNEL 171 extern struct pmap kernel_pmap_store; 172 #define kernel_pmap (&kernel_pmap_store) 173 #define pmap_kernel() kernel_pmap 174 175 #define PMAP_ASSERT_LOCKED(pmap) \ 176 mtx_assert(&(pmap)->pm_mtx, MA_OWNED) 177 #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) 178 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) 179 #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ 180 NULL, MTX_DEF | MTX_DUPOK) 181 #define PMAP_OWNED(pmap) mtx_owned(&(pmap)->pm_mtx) 182 #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) 183 #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) 184 #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) 185 #endif 186 187 188 /* 189 * For each vm_page_t, there is a list of all currently valid virtual 190 * mappings of that page. An entry is a pv_entry_t, the list is pv_list. 191 */ 192 typedef struct pv_entry { 193 vm_offset_t pv_va; /* virtual address for mapping */ 194 TAILQ_ENTRY(pv_entry) pv_list; 195 int pv_flags; /* flags (wired, etc...) */ 196 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0 197 pmap_t pv_pmap; /* pmap where mapping lies */ 198 TAILQ_ENTRY(pv_entry) pv_plist; 199 #endif 200 } *pv_entry_t; 201 202 /* 203 * pv_entries are allocated in chunks per-process. This avoids the 204 * need to track per-pmap assignments. 205 */ 206 #define _NPCM 8 207 #define _NPCPV 252 208 209 struct pv_chunk { 210 pmap_t pc_pmap; 211 TAILQ_ENTRY(pv_chunk) pc_list; 212 uint32_t pc_map[_NPCM]; /* bitmap; 1 = free */ 213 uint32_t pc_dummy[3]; /* aligns pv_chunk to 4KB */ 214 TAILQ_ENTRY(pv_chunk) pc_lru; 215 struct pv_entry pc_pventry[_NPCPV]; 216 }; 217 218 #ifdef _KERNEL 219 220 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **); 221 222 /* 223 * virtual address to page table entry and 224 * to physical address. Likewise for alternate address space. 225 * Note: these work recursively, thus vtopte of a pte will give 226 * the corresponding pde that in turn maps it. 227 */ 228 229 /* 230 * The current top of kernel VM. 231 */ 232 extern vm_offset_t pmap_curmaxkvaddr; 233 234 struct pcb; 235 236 void pmap_set_pcb_pagedir(pmap_t, struct pcb *); 237 /* Virtual address to page table entry */ 238 static __inline pt_entry_t * 239 vtopte(vm_offset_t va) 240 { 241 pd_entry_t *pdep; 242 pt_entry_t *ptep; 243 244 if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE) 245 return (NULL); 246 return (ptep); 247 } 248 249 extern vm_paddr_t phys_avail[]; 250 extern vm_offset_t virtual_avail; 251 extern vm_offset_t virtual_end; 252 253 void pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt); 254 int pmap_change_attr(vm_offset_t, vm_size_t, int); 255 void pmap_kenter(vm_offset_t va, vm_paddr_t pa); 256 void pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa); 257 void *pmap_kenter_temp(vm_paddr_t pa, int i); 258 void pmap_kenter_user(vm_offset_t va, vm_paddr_t pa); 259 vm_paddr_t pmap_kextract(vm_offset_t va); 260 void pmap_kremove(vm_offset_t); 261 void *pmap_mapdev(vm_offset_t, vm_size_t); 262 void pmap_unmapdev(vm_offset_t, vm_size_t); 263 vm_page_t pmap_use_pt(pmap_t, vm_offset_t); 264 void pmap_debug(int); 265 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0 266 void pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int); 267 #endif 268 void pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *); 269 vm_size_t pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int); 270 void 271 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot, 272 int cache); 273 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int); 274 int pmap_dmap_iscurrent(pmap_t pmap); 275 276 /* 277 * Definitions for MMU domains 278 */ 279 #define PMAP_DOMAINS 15 /* 15 'user' domains (1-15) */ 280 #define PMAP_DOMAIN_KERNEL 0 /* The kernel uses domain #0 */ 281 282 /* 283 * The new pmap ensures that page-tables are always mapping Write-Thru. 284 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs 285 * on every change. 286 * 287 * Unfortunately, not all CPUs have a write-through cache mode. So we 288 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, 289 * and if there is the chance for PTE syncs to be needed, we define 290 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) 291 * the code. 292 */ 293 extern int pmap_needs_pte_sync; 294 295 /* 296 * These macros define the various bit masks in the PTE. 297 * 298 * We use these macros since we use different bits on different processor 299 * models. 300 */ 301 302 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) 303 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\ 304 L1_S_XSCALE_TEX(TEX_XSCALE_T)) 305 306 #define L2_L_CACHE_MASK_generic (L2_B|L2_C) 307 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \ 308 L2_XSCALE_L_TEX(TEX_XSCALE_T)) 309 310 #define L2_S_PROT_U_generic (L2_AP(AP_U)) 311 #define L2_S_PROT_W_generic (L2_AP(AP_W)) 312 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W) 313 314 #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) 315 #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) 316 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W) 317 318 #define L2_S_CACHE_MASK_generic (L2_B|L2_C) 319 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \ 320 L2_XSCALE_T_TEX(TEX_XSCALE_X)) 321 322 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) 323 #define L1_S_PROTO_xscale (L1_TYPE_S) 324 325 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) 326 #define L1_C_PROTO_xscale (L1_TYPE_C) 327 328 #define L2_L_PROTO (L2_TYPE_L) 329 330 #define L2_S_PROTO_generic (L2_TYPE_S) 331 #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS) 332 333 /* 334 * User-visible names for the ones that vary with MMU class. 335 */ 336 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0 337 #define L2_AP(x) (L2_AP0(x)) 338 #else 339 #define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x)) 340 #endif 341 342 #if ARM_NMMUS > 1 343 /* More than one MMU class configured; use variables. */ 344 #define L2_S_PROT_U pte_l2_s_prot_u 345 #define L2_S_PROT_W pte_l2_s_prot_w 346 #define L2_S_PROT_MASK pte_l2_s_prot_mask 347 348 #define L1_S_CACHE_MASK pte_l1_s_cache_mask 349 #define L2_L_CACHE_MASK pte_l2_l_cache_mask 350 #define L2_S_CACHE_MASK pte_l2_s_cache_mask 351 352 #define L1_S_PROTO pte_l1_s_proto 353 #define L1_C_PROTO pte_l1_c_proto 354 #define L2_S_PROTO pte_l2_s_proto 355 356 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 357 #define L2_S_PROT_U L2_S_PROT_U_generic 358 #define L2_S_PROT_W L2_S_PROT_W_generic 359 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic 360 361 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic 362 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic 363 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic 364 365 #define L1_S_PROTO L1_S_PROTO_generic 366 #define L1_C_PROTO L1_C_PROTO_generic 367 #define L2_S_PROTO L2_S_PROTO_generic 368 369 #elif ARM_MMU_XSCALE == 1 370 #define L2_S_PROT_U L2_S_PROT_U_xscale 371 #define L2_S_PROT_W L2_S_PROT_W_xscale 372 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale 373 374 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale 375 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale 376 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale 377 378 #define L1_S_PROTO L1_S_PROTO_xscale 379 #define L1_C_PROTO L1_C_PROTO_xscale 380 #define L2_S_PROTO L2_S_PROTO_xscale 381 382 #elif (ARM_MMU_V6 + ARM_MMU_V7) != 0 383 /* 384 * AP[2:1] access permissions model: 385 * 386 * AP[2](APX) - Write Disable 387 * AP[1] - User Enable 388 * AP[0] - Reference Flag 389 * 390 * AP[2] AP[1] Kernel User 391 * 0 0 R/W N 392 * 0 1 R/W R/W 393 * 1 0 R N 394 * 1 1 R R 395 * 396 */ 397 #define L2_S_PROT_R (0) /* kernel read */ 398 #define L2_S_PROT_U (L2_AP0(2)) /* user read */ 399 #define L2_S_REF (L2_AP0(1)) /* reference flag */ 400 401 #define L2_S_PROT_MASK (L2_S_PROT_U|L2_S_PROT_R|L2_APX) 402 #define L2_S_EXECUTABLE(pte) (!(pte & L2_XN)) 403 #define L2_S_WRITABLE(pte) (!(pte & L2_APX)) 404 #define L2_S_REFERENCED(pte) (!!(pte & L2_S_REF)) 405 406 #ifndef SMP 407 #define L1_S_CACHE_MASK (L1_S_TEX_MASK|L1_S_B|L1_S_C) 408 #define L2_L_CACHE_MASK (L2_L_TEX_MASK|L2_B|L2_C) 409 #define L2_S_CACHE_MASK (L2_S_TEX_MASK|L2_B|L2_C) 410 #else 411 #define L1_S_CACHE_MASK (L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED) 412 #define L2_L_CACHE_MASK (L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED) 413 #define L2_S_CACHE_MASK (L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED) 414 #endif /* SMP */ 415 416 #define L1_S_PROTO (L1_TYPE_S) 417 #define L1_C_PROTO (L1_TYPE_C) 418 #define L2_S_PROTO (L2_TYPE_S) 419 420 /* 421 * Promotion to a 1MB (SECTION) mapping requires that the corresponding 422 * 4KB (SMALL) page mappings have identical settings for the following fields: 423 */ 424 #define L2_S_PROMOTE (L2_S_REF | L2_SHARED | L2_S_PROT_MASK | \ 425 L2_XN | L2_S_PROTO) 426 427 /* 428 * In order to compare 1MB (SECTION) entry settings with the 4KB (SMALL) 429 * page mapping it is necessary to read and shift appropriate bits from 430 * L1 entry to positions of the corresponding bits in the L2 entry. 431 */ 432 #define L1_S_DEMOTE(l1pd) ((((l1pd) & L1_S_PROTO) >> 0) | \ 433 (((l1pd) & L1_SHARED) >> 6) | \ 434 (((l1pd) & L1_S_REF) >> 6) | \ 435 (((l1pd) & L1_S_PROT_MASK) >> 6) | \ 436 (((l1pd) & L1_S_XN) >> 4)) 437 438 #ifndef SMP 439 #define ARM_L1S_STRONG_ORD (0) 440 #define ARM_L1S_DEVICE_NOSHARE (L1_S_TEX(2)) 441 #define ARM_L1S_DEVICE_SHARE (L1_S_B) 442 #define ARM_L1S_NRML_NOCACHE (L1_S_TEX(1)) 443 #define ARM_L1S_NRML_IWT_OWT (L1_S_C) 444 #define ARM_L1S_NRML_IWB_OWB (L1_S_C|L1_S_B) 445 #define ARM_L1S_NRML_IWBA_OWBA (L1_S_TEX(1)|L1_S_C|L1_S_B) 446 447 #define ARM_L2L_STRONG_ORD (0) 448 #define ARM_L2L_DEVICE_NOSHARE (L2_L_TEX(2)) 449 #define ARM_L2L_DEVICE_SHARE (L2_B) 450 #define ARM_L2L_NRML_NOCACHE (L2_L_TEX(1)) 451 #define ARM_L2L_NRML_IWT_OWT (L2_C) 452 #define ARM_L2L_NRML_IWB_OWB (L2_C|L2_B) 453 #define ARM_L2L_NRML_IWBA_OWBA (L2_L_TEX(1)|L2_C|L2_B) 454 455 #define ARM_L2S_STRONG_ORD (0) 456 #define ARM_L2S_DEVICE_NOSHARE (L2_S_TEX(2)) 457 #define ARM_L2S_DEVICE_SHARE (L2_B) 458 #define ARM_L2S_NRML_NOCACHE (L2_S_TEX(1)) 459 #define ARM_L2S_NRML_IWT_OWT (L2_C) 460 #define ARM_L2S_NRML_IWB_OWB (L2_C|L2_B) 461 #define ARM_L2S_NRML_IWBA_OWBA (L2_S_TEX(1)|L2_C|L2_B) 462 #else 463 #define ARM_L1S_STRONG_ORD (0) 464 #define ARM_L1S_DEVICE_NOSHARE (L1_S_TEX(2)) 465 #define ARM_L1S_DEVICE_SHARE (L1_S_B) 466 #define ARM_L1S_NRML_NOCACHE (L1_S_TEX(1)|L1_SHARED) 467 #define ARM_L1S_NRML_IWT_OWT (L1_S_C|L1_SHARED) 468 #define ARM_L1S_NRML_IWB_OWB (L1_S_C|L1_S_B|L1_SHARED) 469 #define ARM_L1S_NRML_IWBA_OWBA (L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED) 470 471 #define ARM_L2L_STRONG_ORD (0) 472 #define ARM_L2L_DEVICE_NOSHARE (L2_L_TEX(2)) 473 #define ARM_L2L_DEVICE_SHARE (L2_B) 474 #define ARM_L2L_NRML_NOCACHE (L2_L_TEX(1)|L2_SHARED) 475 #define ARM_L2L_NRML_IWT_OWT (L2_C|L2_SHARED) 476 #define ARM_L2L_NRML_IWB_OWB (L2_C|L2_B|L2_SHARED) 477 #define ARM_L2L_NRML_IWBA_OWBA (L2_L_TEX(1)|L2_C|L2_B|L2_SHARED) 478 479 #define ARM_L2S_STRONG_ORD (0) 480 #define ARM_L2S_DEVICE_NOSHARE (L2_S_TEX(2)) 481 #define ARM_L2S_DEVICE_SHARE (L2_B) 482 #define ARM_L2S_NRML_NOCACHE (L2_S_TEX(1)|L2_SHARED) 483 #define ARM_L2S_NRML_IWT_OWT (L2_C|L2_SHARED) 484 #define ARM_L2S_NRML_IWB_OWB (L2_C|L2_B|L2_SHARED) 485 #define ARM_L2S_NRML_IWBA_OWBA (L2_S_TEX(1)|L2_C|L2_B|L2_SHARED) 486 #endif /* SMP */ 487 #endif /* ARM_NMMUS > 1 */ 488 489 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1) 490 #define PMAP_NEEDS_PTE_SYNC 1 491 #define PMAP_INCLUDE_PTE_SYNC 492 #elif defined(CPU_XSCALE_81342) 493 #define PMAP_NEEDS_PTE_SYNC 1 494 #define PMAP_INCLUDE_PTE_SYNC 495 #elif (ARM_MMU_SA1 == 0) 496 #define PMAP_NEEDS_PTE_SYNC 0 497 #endif 498 499 /* 500 * These macros return various bits based on kernel/user and protection. 501 * Note that the compiler will usually fold these at compile time. 502 */ 503 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0 504 505 #define L1_S_PROT_U (L1_S_AP(AP_U)) 506 #define L1_S_PROT_W (L1_S_AP(AP_W)) 507 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W) 508 #define L1_S_WRITABLE(pd) ((pd) & L1_S_PROT_W) 509 510 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \ 511 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0)) 512 513 #define L2_L_PROT_U (L2_AP(AP_U)) 514 #define L2_L_PROT_W (L2_AP(AP_W)) 515 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W) 516 517 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \ 518 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0)) 519 520 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \ 521 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0)) 522 #else 523 #define L1_S_PROT_U (L1_S_AP(AP_U)) 524 #define L1_S_PROT_W (L1_S_APX) /* Write disable */ 525 #define L1_S_PROT_MASK (L1_S_PROT_W|L1_S_PROT_U) 526 #define L1_S_REF (L1_S_AP(AP_REF)) /* Reference flag */ 527 #define L1_S_WRITABLE(pd) (!((pd) & L1_S_PROT_W)) 528 #define L1_S_REFERENCED(pd) ((pd) & L1_S_REF) 529 530 #define L1_S_PROT(ku, pr) (((((ku) == PTE_KERNEL) ? 0 : L1_S_PROT_U) | \ 531 (((pr) & VM_PROT_WRITE) ? 0 : L1_S_PROT_W) | \ 532 (((pr) & VM_PROT_EXECUTE) ? 0 : L1_S_XN))) 533 534 #define L2_L_PROT_MASK (L2_APX|L2_AP0(0x3)) 535 #define L2_L_PROT(ku, pr) (L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \ 536 (((pr) & VM_PROT_WRITE) ? L2_APX : 0))) 537 538 #define L2_S_PROT(ku, pr) (L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \ 539 (((pr) & VM_PROT_WRITE) ? L2_APX : 0))) 540 541 #endif 542 543 /* 544 * Macros to test if a mapping is mappable with an L1 Section mapping 545 * or an L2 Large Page mapping. 546 */ 547 #define L1_S_MAPPABLE_P(va, pa, size) \ 548 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) 549 550 #define L2_L_MAPPABLE_P(va, pa, size) \ 551 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) 552 553 /* 554 * Provide a fallback in case we were not able to determine it at 555 * compile-time. 556 */ 557 #ifndef PMAP_NEEDS_PTE_SYNC 558 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync 559 #define PMAP_INCLUDE_PTE_SYNC 560 #endif 561 562 #define PTE_SYNC(pte) \ 563 do { \ 564 if (PMAP_NEEDS_PTE_SYNC) { \ 565 cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\ 566 cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\ 567 } else \ 568 cpu_drain_writebuf(); \ 569 } while (/*CONSTCOND*/0) 570 571 #define PTE_SYNC_RANGE(pte, cnt) \ 572 do { \ 573 if (PMAP_NEEDS_PTE_SYNC) { \ 574 cpu_dcache_wb_range((vm_offset_t)(pte), \ 575 (cnt) << 2); /* * sizeof(pt_entry_t) */ \ 576 cpu_l2cache_wb_range((vm_offset_t)(pte), \ 577 (cnt) << 2); /* * sizeof(pt_entry_t) */ \ 578 } else \ 579 cpu_drain_writebuf(); \ 580 } while (/*CONSTCOND*/0) 581 582 extern pt_entry_t pte_l1_s_cache_mode; 583 extern pt_entry_t pte_l1_s_cache_mask; 584 585 extern pt_entry_t pte_l2_l_cache_mode; 586 extern pt_entry_t pte_l2_l_cache_mask; 587 588 extern pt_entry_t pte_l2_s_cache_mode; 589 extern pt_entry_t pte_l2_s_cache_mask; 590 591 extern pt_entry_t pte_l1_s_cache_mode_pt; 592 extern pt_entry_t pte_l2_l_cache_mode_pt; 593 extern pt_entry_t pte_l2_s_cache_mode_pt; 594 595 extern pt_entry_t pte_l2_s_prot_u; 596 extern pt_entry_t pte_l2_s_prot_w; 597 extern pt_entry_t pte_l2_s_prot_mask; 598 599 extern pt_entry_t pte_l1_s_proto; 600 extern pt_entry_t pte_l1_c_proto; 601 extern pt_entry_t pte_l2_s_proto; 602 603 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t); 604 extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys, 605 vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt); 606 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int); 607 608 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342) 609 void pmap_copy_page_generic(vm_paddr_t, vm_paddr_t); 610 void pmap_zero_page_generic(vm_paddr_t, int, int); 611 612 void pmap_pte_init_generic(void); 613 #if defined(CPU_ARM8) 614 void pmap_pte_init_arm8(void); 615 #endif 616 #if defined(CPU_ARM9) 617 void pmap_pte_init_arm9(void); 618 #endif /* CPU_ARM9 */ 619 #if defined(CPU_ARM10) 620 void pmap_pte_init_arm10(void); 621 #endif /* CPU_ARM10 */ 622 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0 623 void pmap_pte_init_mmu_v6(void); 624 #endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */ 625 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ 626 627 #if /* ARM_MMU_SA1 == */1 628 void pmap_pte_init_sa1(void); 629 #endif /* ARM_MMU_SA1 == 1 */ 630 631 #if ARM_MMU_XSCALE == 1 632 void pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t); 633 void pmap_zero_page_xscale(vm_paddr_t, int, int); 634 635 void pmap_pte_init_xscale(void); 636 637 void xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t); 638 639 void pmap_use_minicache(vm_offset_t, vm_size_t); 640 #endif /* ARM_MMU_XSCALE == 1 */ 641 #if defined(CPU_XSCALE_81342) 642 #define ARM_HAVE_SUPERSECTIONS 643 #endif 644 645 #define PTE_KERNEL 0 646 #define PTE_USER 1 647 #define l1pte_valid(pde) ((pde) != 0) 648 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) 649 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) 650 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) 651 652 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT) 653 #define l2pte_valid(pte) ((pte) != 0) 654 #define l2pte_pa(pte) ((pte) & L2_S_FRAME) 655 #define l2pte_minidata(pte) (((pte) & \ 656 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\ 657 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X))) 658 659 /* L1 and L2 page table macros */ 660 #define pmap_pde_v(pde) l1pte_valid(*(pde)) 661 #define pmap_pde_section(pde) l1pte_section_p(*(pde)) 662 #define pmap_pde_page(pde) l1pte_page_p(*(pde)) 663 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) 664 665 #define pmap_pte_v(pte) l2pte_valid(*(pte)) 666 #define pmap_pte_pa(pte) l2pte_pa(*(pte)) 667 668 /* 669 * Flags that indicate attributes of pages or mappings of pages. 670 * 671 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each 672 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual 673 * pv_entry's for each page. They live in the same "namespace" so 674 * that we can clear multiple attributes at a time. 675 * 676 * Note the "non-cacheable" flag generally means the page has 677 * multiple mappings in a given address space. 678 */ 679 #define PVF_MOD 0x01 /* page is modified */ 680 #define PVF_REF 0x02 /* page is referenced */ 681 #define PVF_WIRED 0x04 /* mapping is wired */ 682 #define PVF_WRITE 0x08 /* mapping is writable */ 683 #define PVF_EXEC 0x10 /* mapping is executable */ 684 #define PVF_NC 0x20 /* mapping is non-cacheable */ 685 #define PVF_MWC 0x40 /* mapping is used multiple times in userland */ 686 #define PVF_UNMAN 0x80 /* mapping is unmanaged */ 687 688 void vector_page_setprot(int); 689 690 /* 691 * This structure is used by machine-dependent code to describe 692 * static mappings of devices, created at bootstrap time. 693 */ 694 struct pmap_devmap { 695 vm_offset_t pd_va; /* virtual address */ 696 vm_paddr_t pd_pa; /* physical address */ 697 vm_size_t pd_size; /* size of region */ 698 vm_prot_t pd_prot; /* protection code */ 699 int pd_cache; /* cache attributes */ 700 }; 701 702 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t); 703 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t); 704 705 void pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *); 706 void pmap_devmap_register(const struct pmap_devmap *); 707 708 #define SECTION_CACHE 0x1 709 #define SECTION_PT 0x2 710 void pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags); 711 #ifdef ARM_HAVE_SUPERSECTIONS 712 void pmap_kenter_supersection(vm_offset_t, uint64_t, int flags); 713 #endif 714 715 extern char *_tmppt; 716 717 void pmap_postinit(void); 718 719 #ifdef ARM_USE_SMALL_ALLOC 720 void arm_add_smallalloc_pages(void *, void *, int, int); 721 vm_offset_t arm_ptovirt(vm_paddr_t); 722 void arm_init_smallalloc(void); 723 struct arm_small_page { 724 void *addr; 725 TAILQ_ENTRY(arm_small_page) pg_list; 726 }; 727 728 #endif 729 730 #define ARM_NOCACHE_KVA_SIZE 0x1000000 731 extern vm_offset_t arm_nocache_startaddr; 732 void *arm_remap_nocache(void *, vm_size_t); 733 void arm_unmap_nocache(void *, vm_size_t); 734 735 extern vm_paddr_t dump_avail[]; 736 #endif /* _KERNEL */ 737 738 #endif /* !LOCORE */ 739 740 #endif /* !_MACHINE_PMAP_H_ */ 741