xref: /freebsd/sys/arm/include/pmap.h (revision 3bc567b6ad5307706617c420b3252bb96678c620)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 #include <machine/cpuconf.h>
55 /*
56  * Pte related macros
57  */
58 #if ARM_ARCH_6 || ARM_ARCH_7A
59 #ifdef SMP
60 #define PTE_NOCACHE	2
61 #else
62 #define PTE_NOCACHE	1
63 #endif
64 #define PTE_CACHE	6
65 #define PTE_DEVICE	2
66 #define PTE_PAGETABLE	4
67 #else
68 #define PTE_NOCACHE	1
69 #define PTE_CACHE	2
70 #define PTE_PAGETABLE	3
71 #endif
72 
73 enum mem_type {
74 	STRONG_ORD = 0,
75 	DEVICE_NOSHARE,
76 	DEVICE_SHARE,
77 	NRML_NOCACHE,
78 	NRML_IWT_OWT,
79 	NRML_IWB_OWB,
80 	NRML_IWBA_OWBA
81 };
82 
83 #ifndef LOCORE
84 
85 #include <sys/queue.h>
86 #include <sys/_cpuset.h>
87 #include <sys/_lock.h>
88 #include <sys/_mutex.h>
89 
90 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
91 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
92 
93 #ifdef _KERNEL
94 
95 #define vtophys(va)	pmap_kextract((vm_offset_t)(va))
96 
97 #endif
98 
99 #define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
100 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
101 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
102 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
103 
104 /*
105  * Pmap stuff
106  */
107 
108 /*
109  * This structure is used to hold a virtual<->physical address
110  * association and is used mostly by bootstrap code
111  */
112 struct pv_addr {
113 	SLIST_ENTRY(pv_addr) pv_list;
114 	vm_offset_t	pv_va;
115 	vm_paddr_t	pv_pa;
116 };
117 
118 struct	pv_entry;
119 struct	pv_chunk;
120 
121 struct	md_page {
122 	int pvh_attrs;
123 	vm_memattr_t	 pv_memattr;
124 	vm_offset_t pv_kva;		/* first kernel VA mapping */
125 	TAILQ_HEAD(,pv_entry)	pv_list;
126 };
127 
128 struct l1_ttable;
129 struct l2_dtable;
130 
131 
132 /*
133  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
134  * A bucket size of 16 provides for 16MB of contiguous virtual address
135  * space per l2_dtable. Most processes will, therefore, require only two or
136  * three of these to map their whole working set.
137  */
138 #define	L2_BUCKET_LOG2	4
139 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
140 /*
141  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
142  * of l2_dtable structures required to track all possible page descriptors
143  * mappable by an L1 translation table is given by the following constants:
144  */
145 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
146 #define	L2_SIZE		(1 << L2_LOG2)
147 
148 struct	pmap {
149 	struct mtx		pm_mtx;
150 	u_int8_t		pm_domain;
151 	struct l1_ttable	*pm_l1;
152 	struct l2_dtable	*pm_l2[L2_SIZE];
153 	cpuset_t		pm_active;	/* active on cpus */
154 	struct pmap_statistics	pm_stats;	/* pmap statictics */
155 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
156 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
157 #else
158 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
159 #endif
160 };
161 
162 typedef struct pmap *pmap_t;
163 
164 #ifdef _KERNEL
165 extern struct pmap	kernel_pmap_store;
166 #define kernel_pmap	(&kernel_pmap_store)
167 #define pmap_kernel() kernel_pmap
168 
169 #define	PMAP_ASSERT_LOCKED(pmap) \
170 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
171 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
172 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
173 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
174 				    NULL, MTX_DEF | MTX_DUPOK)
175 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
176 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
177 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
178 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
179 #endif
180 
181 
182 /*
183  * For each vm_page_t, there is a list of all currently valid virtual
184  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
185  */
186 typedef struct pv_entry {
187 	vm_offset_t     pv_va;          /* virtual address for mapping */
188 	TAILQ_ENTRY(pv_entry)   pv_list;
189 	int		pv_flags;	/* flags (wired, etc...) */
190 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
191 	pmap_t          pv_pmap;        /* pmap where mapping lies */
192 	TAILQ_ENTRY(pv_entry)	pv_plist;
193 #endif
194 } *pv_entry_t;
195 
196 /*
197  * pv_entries are allocated in chunks per-process.  This avoids the
198  * need to track per-pmap assignments.
199  */
200 #define	_NPCM	8
201 #define	_NPCPV	252
202 
203 struct pv_chunk {
204 	pmap_t			pc_pmap;
205 	TAILQ_ENTRY(pv_chunk)	pc_list;
206 	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
207 	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
208 	TAILQ_ENTRY(pv_chunk)	pc_lru;
209 	struct pv_entry		pc_pventry[_NPCPV];
210 };
211 
212 #ifdef _KERNEL
213 
214 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
215 
216 /*
217  * virtual address to page table entry and
218  * to physical address. Likewise for alternate address space.
219  * Note: these work recursively, thus vtopte of a pte will give
220  * the corresponding pde that in turn maps it.
221  */
222 
223 /*
224  * The current top of kernel VM.
225  */
226 extern vm_offset_t pmap_curmaxkvaddr;
227 
228 struct pcb;
229 
230 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
231 /* Virtual address to page table entry */
232 static __inline pt_entry_t *
233 vtopte(vm_offset_t va)
234 {
235 	pd_entry_t *pdep;
236 	pt_entry_t *ptep;
237 
238 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
239 		return (NULL);
240 	return (ptep);
241 }
242 
243 extern vm_paddr_t phys_avail[];
244 extern vm_offset_t virtual_avail;
245 extern vm_offset_t virtual_end;
246 
247 void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
248 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
249 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
250 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
251 void	*pmap_kenter_temp(vm_paddr_t pa, int i);
252 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
253 vm_paddr_t pmap_kextract(vm_offset_t va);
254 void	pmap_kremove(vm_offset_t);
255 void	*pmap_mapdev(vm_offset_t, vm_size_t);
256 void	pmap_unmapdev(vm_offset_t, vm_size_t);
257 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
258 void	pmap_debug(int);
259 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
260 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
261 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
262 void
263 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
264     int cache);
265 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
266 int pmap_dmap_iscurrent(pmap_t pmap);
267 
268 /*
269  * Definitions for MMU domains
270  */
271 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
272 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
273 
274 /*
275  * The new pmap ensures that page-tables are always mapping Write-Thru.
276  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
277  * on every change.
278  *
279  * Unfortunately, not all CPUs have a write-through cache mode.  So we
280  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
281  * and if there is the chance for PTE syncs to be needed, we define
282  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
283  * the code.
284  */
285 extern int pmap_needs_pte_sync;
286 
287 /*
288  * These macros define the various bit masks in the PTE.
289  *
290  * We use these macros since we use different bits on different processor
291  * models.
292  */
293 
294 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
295 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
296     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
297 
298 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
299 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
300     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
301 
302 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
303 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
304 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
305 
306 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
307 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
308 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
309 
310 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
311 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
312     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
313 
314 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
315 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
316 
317 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
318 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
319 
320 #define	L2_L_PROTO		(L2_TYPE_L)
321 
322 #define	L2_S_PROTO_generic	(L2_TYPE_S)
323 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
324 
325 /*
326  * User-visible names for the ones that vary with MMU class.
327  */
328 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
329 #define	L2_AP(x)	(L2_AP0(x))
330 #else
331 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
332 #endif
333 
334 #if ARM_NMMUS > 1
335 /* More than one MMU class configured; use variables. */
336 #define	L2_S_PROT_U		pte_l2_s_prot_u
337 #define	L2_S_PROT_W		pte_l2_s_prot_w
338 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
339 
340 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
341 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
342 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
343 
344 #define	L1_S_PROTO		pte_l1_s_proto
345 #define	L1_C_PROTO		pte_l1_c_proto
346 #define	L2_S_PROTO		pte_l2_s_proto
347 
348 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
349 #define	L2_S_PROT_U		L2_S_PROT_U_generic
350 #define	L2_S_PROT_W		L2_S_PROT_W_generic
351 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
352 
353 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
354 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
355 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
356 
357 #define	L1_S_PROTO		L1_S_PROTO_generic
358 #define	L1_C_PROTO		L1_C_PROTO_generic
359 #define	L2_S_PROTO		L2_S_PROTO_generic
360 
361 #elif ARM_MMU_XSCALE == 1
362 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
363 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
364 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
365 
366 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
367 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
368 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
369 
370 #define	L1_S_PROTO		L1_S_PROTO_xscale
371 #define	L1_C_PROTO		L1_C_PROTO_xscale
372 #define	L2_S_PROTO		L2_S_PROTO_xscale
373 
374 #elif (ARM_MMU_V6 + ARM_MMU_V7) != 0
375 /*
376  * AP[2:1] access permissions model:
377  *
378  * AP[2](APX)	- Write Disable
379  * AP[1]	- User Enable
380  * AP[0]	- Reference Flag
381  *
382  * AP[2]     AP[1]     Kernel     User
383  *  0          0        R/W        N
384  *  0          1        R/W       R/W
385  *  1          0         R         N
386  *  1          1         R         R
387  *
388  */
389 #define	L2_S_PROT_R		(0)		/* kernel read */
390 #define	L2_S_PROT_U		(L2_AP0(2))	/* user read */
391 #define L2_S_REF		(L2_AP0(1))	/* reference flag */
392 
393 #define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R)
394 #define	L2_S_EXECUTABLE(pte)	(!(pte & L2_XN))
395 #define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
396 #define	L2_S_REFERENCED(pte)	(!!(pte & L2_S_REF))
397 
398 #ifndef SMP
399 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
400 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
401 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
402 #else
403 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
404 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
405 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
406 #endif  /* SMP */
407 
408 #define	L1_S_PROTO		(L1_TYPE_S)
409 #define	L1_C_PROTO		(L1_TYPE_C)
410 #define	L2_S_PROTO		(L2_TYPE_S)
411 
412 #ifndef SMP
413 #define ARM_L1S_STRONG_ORD	(0)
414 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
415 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
416 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
417 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
418 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
419 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
420 
421 #define ARM_L2L_STRONG_ORD	(0)
422 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
423 #define ARM_L2L_DEVICE_SHARE	(L2_B)
424 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
425 #define ARM_L2L_NRML_IWT_OWT	(L2_C)
426 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
427 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
428 
429 #define ARM_L2S_STRONG_ORD	(0)
430 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
431 #define ARM_L2S_DEVICE_SHARE	(L2_B)
432 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
433 #define ARM_L2S_NRML_IWT_OWT	(L2_C)
434 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
435 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
436 #else
437 #define ARM_L1S_STRONG_ORD	(0)
438 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
439 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
440 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
441 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
442 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
443 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
444 
445 #define ARM_L2L_STRONG_ORD	(0)
446 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
447 #define ARM_L2L_DEVICE_SHARE	(L2_B)
448 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
449 #define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
450 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
451 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
452 
453 #define ARM_L2S_STRONG_ORD	(0)
454 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
455 #define ARM_L2S_DEVICE_SHARE	(L2_B)
456 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
457 #define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
458 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
459 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
460 #endif /* SMP */
461 #endif /* ARM_NMMUS > 1 */
462 
463 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
464 #define	PMAP_NEEDS_PTE_SYNC	1
465 #define	PMAP_INCLUDE_PTE_SYNC
466 #elif defined(CPU_XSCALE_81342)
467 #define PMAP_NEEDS_PTE_SYNC	1
468 #define PMAP_INCLUDE_PTE_SYNC
469 #elif (ARM_MMU_SA1 == 0)
470 #define	PMAP_NEEDS_PTE_SYNC	0
471 #endif
472 
473 /*
474  * These macros return various bits based on kernel/user and protection.
475  * Note that the compiler will usually fold these at compile time.
476  */
477 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
478 
479 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
480 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
481 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
482 #define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
483 
484 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
485 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
486 
487 #define	L2_L_PROT_U		(L2_AP(AP_U))
488 #define	L2_L_PROT_W		(L2_AP(AP_W))
489 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
490 
491 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
492 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
493 
494 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
495 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
496 #else
497 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
498 #define	L1_S_PROT_MASK		(L1_S_APX|L1_S_AP(0x3))
499 #define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_APX))
500 
501 #define	L1_S_PROT(ku, pr)	(L1_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L1_S_PROT_U : 0) | \
502 				 (((pr) & VM_PROT_WRITE) ? L1_S_APX : 0)))
503 
504 #define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
505 #define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
506 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
507 
508 #define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
509 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
510 
511 #endif
512 
513 /*
514  * Macros to test if a mapping is mappable with an L1 Section mapping
515  * or an L2 Large Page mapping.
516  */
517 #define	L1_S_MAPPABLE_P(va, pa, size)					\
518 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
519 
520 #define	L2_L_MAPPABLE_P(va, pa, size)					\
521 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
522 
523 /*
524  * Provide a fallback in case we were not able to determine it at
525  * compile-time.
526  */
527 #ifndef PMAP_NEEDS_PTE_SYNC
528 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
529 #define	PMAP_INCLUDE_PTE_SYNC
530 #endif
531 
532 #define	PTE_SYNC(pte)							\
533 do {									\
534 	if (PMAP_NEEDS_PTE_SYNC) {					\
535 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
536 		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
537 	} else								\
538 		cpu_drain_writebuf();					\
539 } while (/*CONSTCOND*/0)
540 
541 #define	PTE_SYNC_RANGE(pte, cnt)					\
542 do {									\
543 	if (PMAP_NEEDS_PTE_SYNC) {					\
544 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
545 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
546 		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
547 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
548 	} else								\
549 		cpu_drain_writebuf();					\
550 } while (/*CONSTCOND*/0)
551 
552 extern pt_entry_t		pte_l1_s_cache_mode;
553 extern pt_entry_t		pte_l1_s_cache_mask;
554 
555 extern pt_entry_t		pte_l2_l_cache_mode;
556 extern pt_entry_t		pte_l2_l_cache_mask;
557 
558 extern pt_entry_t		pte_l2_s_cache_mode;
559 extern pt_entry_t		pte_l2_s_cache_mask;
560 
561 extern pt_entry_t		pte_l1_s_cache_mode_pt;
562 extern pt_entry_t		pte_l2_l_cache_mode_pt;
563 extern pt_entry_t		pte_l2_s_cache_mode_pt;
564 
565 extern pt_entry_t		pte_l2_s_prot_u;
566 extern pt_entry_t		pte_l2_s_prot_w;
567 extern pt_entry_t		pte_l2_s_prot_mask;
568 
569 extern pt_entry_t		pte_l1_s_proto;
570 extern pt_entry_t		pte_l1_c_proto;
571 extern pt_entry_t		pte_l2_s_proto;
572 
573 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
574 extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
575     vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
576 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
577 
578 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
579 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
580 void	pmap_zero_page_generic(vm_paddr_t, int, int);
581 
582 void	pmap_pte_init_generic(void);
583 #if defined(CPU_ARM8)
584 void	pmap_pte_init_arm8(void);
585 #endif
586 #if defined(CPU_ARM9)
587 void	pmap_pte_init_arm9(void);
588 #endif /* CPU_ARM9 */
589 #if defined(CPU_ARM10)
590 void	pmap_pte_init_arm10(void);
591 #endif /* CPU_ARM10 */
592 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
593 void	pmap_pte_init_mmu_v6(void);
594 #endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
595 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
596 
597 #if /* ARM_MMU_SA1 == */1
598 void	pmap_pte_init_sa1(void);
599 #endif /* ARM_MMU_SA1 == 1 */
600 
601 #if ARM_MMU_XSCALE == 1
602 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
603 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
604 
605 void	pmap_pte_init_xscale(void);
606 
607 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
608 
609 void	pmap_use_minicache(vm_offset_t, vm_size_t);
610 #endif /* ARM_MMU_XSCALE == 1 */
611 #if defined(CPU_XSCALE_81342)
612 #define ARM_HAVE_SUPERSECTIONS
613 #endif
614 
615 #define PTE_KERNEL	0
616 #define PTE_USER	1
617 #define	l1pte_valid(pde)	((pde) != 0)
618 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
619 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
620 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
621 
622 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
623 #define	l2pte_valid(pte)	((pte) != 0)
624 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
625 #define l2pte_minidata(pte)	(((pte) & \
626 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
627 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
628 
629 /* L1 and L2 page table macros */
630 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
631 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
632 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
633 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
634 
635 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
636 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
637 
638 /*
639  * Flags that indicate attributes of pages or mappings of pages.
640  *
641  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
642  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
643  * pv_entry's for each page.  They live in the same "namespace" so
644  * that we can clear multiple attributes at a time.
645  *
646  * Note the "non-cacheable" flag generally means the page has
647  * multiple mappings in a given address space.
648  */
649 #define	PVF_MOD		0x01		/* page is modified */
650 #define	PVF_REF		0x02		/* page is referenced */
651 #define	PVF_WIRED	0x04		/* mapping is wired */
652 #define	PVF_WRITE	0x08		/* mapping is writable */
653 #define	PVF_EXEC	0x10		/* mapping is executable */
654 #define	PVF_NC		0x20		/* mapping is non-cacheable */
655 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
656 #define	PVF_UNMAN	0x80		/* mapping is unmanaged */
657 
658 void vector_page_setprot(int);
659 
660 /*
661  * This structure is used by machine-dependent code to describe
662  * static mappings of devices, created at bootstrap time.
663  */
664 struct pmap_devmap {
665 	vm_offset_t	pd_va;		/* virtual address */
666 	vm_paddr_t	pd_pa;		/* physical address */
667 	vm_size_t	pd_size;	/* size of region */
668 	vm_prot_t	pd_prot;	/* protection code */
669 	int		pd_cache;	/* cache attributes */
670 };
671 
672 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
673 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
674 
675 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
676 void	pmap_devmap_register(const struct pmap_devmap *);
677 
678 #define SECTION_CACHE	0x1
679 #define SECTION_PT	0x2
680 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
681 #ifdef ARM_HAVE_SUPERSECTIONS
682 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
683 #endif
684 
685 extern char *_tmppt;
686 
687 void	pmap_postinit(void);
688 
689 #ifdef ARM_USE_SMALL_ALLOC
690 void	arm_add_smallalloc_pages(void *, void *, int, int);
691 vm_offset_t arm_ptovirt(vm_paddr_t);
692 void arm_init_smallalloc(void);
693 struct arm_small_page {
694 	void *addr;
695 	TAILQ_ENTRY(arm_small_page) pg_list;
696 };
697 
698 #endif
699 
700 #define ARM_NOCACHE_KVA_SIZE 0x1000000
701 extern vm_offset_t arm_nocache_startaddr;
702 void *arm_remap_nocache(void *, vm_size_t);
703 void arm_unmap_nocache(void *, vm_size_t);
704 
705 extern vm_paddr_t dump_avail[];
706 #endif	/* _KERNEL */
707 
708 #endif	/* !LOCORE */
709 
710 #endif	/* !_MACHINE_PMAP_H_ */
711