xref: /freebsd/sys/arm/include/pmap.h (revision 3b8f08459569bf0faa21473e5cec2491e95c9349)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 #include <machine/cpuconf.h>
55 /*
56  * Pte related macros
57  */
58 #if ARM_ARCH_6 || ARM_ARCH_7A
59 #ifdef SMP
60 #define PTE_NOCACHE	2
61 #else
62 #define PTE_NOCACHE	1
63 #endif
64 #define PTE_CACHE	6
65 #define PTE_DEVICE	2
66 #define PTE_PAGETABLE	6
67 #else
68 #define PTE_NOCACHE	1
69 #define PTE_CACHE	2
70 #define PTE_DEVICE	PTE_NOCACHE
71 #define PTE_PAGETABLE	3
72 #endif
73 
74 enum mem_type {
75 	STRONG_ORD = 0,
76 	DEVICE_NOSHARE,
77 	DEVICE_SHARE,
78 	NRML_NOCACHE,
79 	NRML_IWT_OWT,
80 	NRML_IWB_OWB,
81 	NRML_IWBA_OWBA
82 };
83 
84 #ifndef LOCORE
85 
86 #include <sys/queue.h>
87 #include <sys/_cpuset.h>
88 #include <sys/_lock.h>
89 #include <sys/_mutex.h>
90 
91 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
92 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
93 
94 #ifdef _KERNEL
95 
96 #define vtophys(va)	pmap_kextract((vm_offset_t)(va))
97 
98 #endif
99 
100 #define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
101 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
102 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
103 boolean_t pmap_page_is_mapped(vm_page_t);
104 #else
105 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
106 #endif
107 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
108 
109 /*
110  * Pmap stuff
111  */
112 
113 /*
114  * This structure is used to hold a virtual<->physical address
115  * association and is used mostly by bootstrap code
116  */
117 struct pv_addr {
118 	SLIST_ENTRY(pv_addr) pv_list;
119 	vm_offset_t	pv_va;
120 	vm_paddr_t	pv_pa;
121 };
122 
123 struct	pv_entry;
124 struct	pv_chunk;
125 
126 struct	md_page {
127 	int pvh_attrs;
128 	vm_memattr_t	 pv_memattr;
129 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
130 	vm_offset_t pv_kva;		/* first kernel VA mapping */
131 #endif
132 	TAILQ_HEAD(,pv_entry)	pv_list;
133 };
134 
135 struct l1_ttable;
136 struct l2_dtable;
137 
138 
139 /*
140  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
141  * A bucket size of 16 provides for 16MB of contiguous virtual address
142  * space per l2_dtable. Most processes will, therefore, require only two or
143  * three of these to map their whole working set.
144  */
145 #define	L2_BUCKET_LOG2	4
146 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
147 /*
148  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
149  * of l2_dtable structures required to track all possible page descriptors
150  * mappable by an L1 translation table is given by the following constants:
151  */
152 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
153 #define	L2_SIZE		(1 << L2_LOG2)
154 
155 struct	pmap {
156 	struct mtx		pm_mtx;
157 	u_int8_t		pm_domain;
158 	struct l1_ttable	*pm_l1;
159 	struct l2_dtable	*pm_l2[L2_SIZE];
160 	cpuset_t		pm_active;	/* active on cpus */
161 	struct pmap_statistics	pm_stats;	/* pmap statictics */
162 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
163 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
164 #else
165 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
166 #endif
167 };
168 
169 typedef struct pmap *pmap_t;
170 
171 #ifdef _KERNEL
172 extern struct pmap	kernel_pmap_store;
173 #define kernel_pmap	(&kernel_pmap_store)
174 #define pmap_kernel() kernel_pmap
175 
176 #define	PMAP_ASSERT_LOCKED(pmap) \
177 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
178 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
179 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
180 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
181 				    NULL, MTX_DEF | MTX_DUPOK)
182 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
183 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
184 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
185 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
186 #endif
187 
188 
189 /*
190  * For each vm_page_t, there is a list of all currently valid virtual
191  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
192  */
193 typedef struct pv_entry {
194 	vm_offset_t     pv_va;          /* virtual address for mapping */
195 	TAILQ_ENTRY(pv_entry)   pv_list;
196 	int		pv_flags;	/* flags (wired, etc...) */
197 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
198 	pmap_t          pv_pmap;        /* pmap where mapping lies */
199 	TAILQ_ENTRY(pv_entry)	pv_plist;
200 #endif
201 } *pv_entry_t;
202 
203 /*
204  * pv_entries are allocated in chunks per-process.  This avoids the
205  * need to track per-pmap assignments.
206  */
207 #define	_NPCM	8
208 #define	_NPCPV	252
209 
210 struct pv_chunk {
211 	pmap_t			pc_pmap;
212 	TAILQ_ENTRY(pv_chunk)	pc_list;
213 	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
214 	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
215 	TAILQ_ENTRY(pv_chunk)	pc_lru;
216 	struct pv_entry		pc_pventry[_NPCPV];
217 };
218 
219 #ifdef _KERNEL
220 
221 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
222 
223 /*
224  * virtual address to page table entry and
225  * to physical address. Likewise for alternate address space.
226  * Note: these work recursively, thus vtopte of a pte will give
227  * the corresponding pde that in turn maps it.
228  */
229 
230 /*
231  * The current top of kernel VM.
232  */
233 extern vm_offset_t pmap_curmaxkvaddr;
234 
235 struct pcb;
236 
237 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
238 /* Virtual address to page table entry */
239 static __inline pt_entry_t *
240 vtopte(vm_offset_t va)
241 {
242 	pd_entry_t *pdep;
243 	pt_entry_t *ptep;
244 
245 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
246 		return (NULL);
247 	return (ptep);
248 }
249 
250 extern vm_paddr_t phys_avail[];
251 extern vm_offset_t virtual_avail;
252 extern vm_offset_t virtual_end;
253 
254 void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
255 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
256 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
257 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
258 void	pmap_kenter_device(vm_offset_t va, vm_paddr_t pa);
259 void	*pmap_kenter_temp(vm_paddr_t pa, int i);
260 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
261 vm_paddr_t pmap_kextract(vm_offset_t va);
262 void	pmap_kremove(vm_offset_t);
263 void	*pmap_mapdev(vm_offset_t, vm_size_t);
264 void	pmap_unmapdev(vm_offset_t, vm_size_t);
265 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
266 void	pmap_debug(int);
267 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
268 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
269 #endif
270 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
271 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
272 void
273 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
274     int cache);
275 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
276 int pmap_dmap_iscurrent(pmap_t pmap);
277 
278 /*
279  * Definitions for MMU domains
280  */
281 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
282 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
283 
284 /*
285  * The new pmap ensures that page-tables are always mapping Write-Thru.
286  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
287  * on every change.
288  *
289  * Unfortunately, not all CPUs have a write-through cache mode.  So we
290  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
291  * and if there is the chance for PTE syncs to be needed, we define
292  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
293  * the code.
294  */
295 extern int pmap_needs_pte_sync;
296 
297 /*
298  * These macros define the various bit masks in the PTE.
299  *
300  * We use these macros since we use different bits on different processor
301  * models.
302  */
303 
304 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
305 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
306     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
307 
308 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
309 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
310     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
311 
312 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
313 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
314 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
315 
316 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
317 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
318 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
319 
320 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
321 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
322     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
323 
324 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
325 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
326 
327 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
328 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
329 
330 #define	L2_L_PROTO		(L2_TYPE_L)
331 
332 #define	L2_S_PROTO_generic	(L2_TYPE_S)
333 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
334 
335 /*
336  * User-visible names for the ones that vary with MMU class.
337  */
338 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
339 #define	L2_AP(x)	(L2_AP0(x))
340 #else
341 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
342 #endif
343 
344 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
345 /*
346  * AP[2:1] access permissions model:
347  *
348  * AP[2](APX)	- Write Disable
349  * AP[1]	- User Enable
350  * AP[0]	- Reference Flag
351  *
352  * AP[2]     AP[1]     Kernel     User
353  *  0          0        R/W        N
354  *  0          1        R/W       R/W
355  *  1          0         R         N
356  *  1          1         R         R
357  *
358  */
359 #define	L2_S_PROT_R		(0)		/* kernel read */
360 #define	L2_S_PROT_U		(L2_AP0(2))	/* user read */
361 #define L2_S_REF		(L2_AP0(1))	/* reference flag */
362 
363 #define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R|L2_APX)
364 #define	L2_S_EXECUTABLE(pte)	(!(pte & L2_XN))
365 #define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
366 #define	L2_S_REFERENCED(pte)	(!!(pte & L2_S_REF))
367 
368 #ifndef SMP
369 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
370 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
371 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
372 #else
373 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
374 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
375 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
376 #endif  /* SMP */
377 
378 #define	L1_S_PROTO		(L1_TYPE_S)
379 #define	L1_C_PROTO		(L1_TYPE_C)
380 #define	L2_S_PROTO		(L2_TYPE_S)
381 
382 /*
383  * Promotion to a 1MB (SECTION) mapping requires that the corresponding
384  * 4KB (SMALL) page mappings have identical settings for the following fields:
385  */
386 #define	L2_S_PROMOTE		(L2_S_REF | L2_SHARED | L2_S_PROT_MASK | \
387 				 L2_XN | L2_S_PROTO)
388 
389 /*
390  * In order to compare 1MB (SECTION) entry settings with the 4KB (SMALL)
391  * page mapping it is necessary to read and shift appropriate bits from
392  * L1 entry to positions of the corresponding bits in the L2 entry.
393  */
394 #define L1_S_DEMOTE(l1pd)	((((l1pd) & L1_S_PROTO) >> 0) | \
395 				(((l1pd) & L1_SHARED) >> 6) | \
396 				(((l1pd) & L1_S_REF) >> 6) | \
397 				(((l1pd) & L1_S_PROT_MASK) >> 6) | \
398 				(((l1pd) & L1_S_XN) >> 4))
399 
400 #ifndef SMP
401 #define ARM_L1S_STRONG_ORD	(0)
402 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
403 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
404 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
405 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
406 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
407 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
408 
409 #define ARM_L2L_STRONG_ORD	(0)
410 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
411 #define ARM_L2L_DEVICE_SHARE	(L2_B)
412 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
413 #define ARM_L2L_NRML_IWT_OWT	(L2_C)
414 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
415 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
416 
417 #define ARM_L2S_STRONG_ORD	(0)
418 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
419 #define ARM_L2S_DEVICE_SHARE	(L2_B)
420 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
421 #define ARM_L2S_NRML_IWT_OWT	(L2_C)
422 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
423 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
424 #else
425 #define ARM_L1S_STRONG_ORD	(0)
426 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
427 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
428 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
429 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
430 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
431 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
432 
433 #define ARM_L2L_STRONG_ORD	(0)
434 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
435 #define ARM_L2L_DEVICE_SHARE	(L2_B)
436 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
437 #define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
438 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
439 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
440 
441 #define ARM_L2S_STRONG_ORD	(0)
442 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
443 #define ARM_L2S_DEVICE_SHARE	(L2_B)
444 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
445 #define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
446 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
447 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
448 #endif /* SMP */
449 
450 #elif ARM_NMMUS > 1
451 /* More than one MMU class configured; use variables. */
452 #define	L2_S_PROT_U		pte_l2_s_prot_u
453 #define	L2_S_PROT_W		pte_l2_s_prot_w
454 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
455 
456 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
457 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
458 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
459 
460 #define	L1_S_PROTO		pte_l1_s_proto
461 #define	L1_C_PROTO		pte_l1_c_proto
462 #define	L2_S_PROTO		pte_l2_s_proto
463 
464 #elif ARM_MMU_GENERIC != 0
465 #define	L2_S_PROT_U		L2_S_PROT_U_generic
466 #define	L2_S_PROT_W		L2_S_PROT_W_generic
467 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
468 
469 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
470 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
471 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
472 
473 #define	L1_S_PROTO		L1_S_PROTO_generic
474 #define	L1_C_PROTO		L1_C_PROTO_generic
475 #define	L2_S_PROTO		L2_S_PROTO_generic
476 
477 #elif ARM_MMU_XSCALE == 1
478 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
479 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
480 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
481 
482 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
483 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
484 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
485 
486 #define	L1_S_PROTO		L1_S_PROTO_xscale
487 #define	L1_C_PROTO		L1_C_PROTO_xscale
488 #define	L2_S_PROTO		L2_S_PROTO_xscale
489 
490 #endif /* ARM_NMMUS > 1 */
491 
492 #if defined(CPU_XSCALE_81342) || ARM_ARCH_6 || ARM_ARCH_7A
493 #define PMAP_NEEDS_PTE_SYNC	1
494 #define PMAP_INCLUDE_PTE_SYNC
495 #else
496 #define	PMAP_NEEDS_PTE_SYNC	0
497 #endif
498 
499 /*
500  * These macros return various bits based on kernel/user and protection.
501  * Note that the compiler will usually fold these at compile time.
502  */
503 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
504 
505 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
506 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
507 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
508 #define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
509 
510 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
511 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
512 
513 #define	L2_L_PROT_U		(L2_AP(AP_U))
514 #define	L2_L_PROT_W		(L2_AP(AP_W))
515 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
516 
517 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
518 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
519 
520 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
521 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
522 #else
523 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
524 #define	L1_S_PROT_W		(L1_S_APX)		/* Write disable */
525 #define	L1_S_PROT_MASK		(L1_S_PROT_W|L1_S_PROT_U)
526 #define	L1_S_REF		(L1_S_AP(AP_REF))	/* Reference flag */
527 #define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_PROT_W))
528 #define	L1_S_EXECUTABLE(pd)	(!((pd) & L1_S_XN))
529 #define	L1_S_REFERENCED(pd)	((pd) & L1_S_REF)
530 
531 #define	L1_S_PROT(ku, pr)	(((((ku) == PTE_KERNEL) ? 0 : L1_S_PROT_U) | \
532 				 (((pr) & VM_PROT_WRITE) ? 0 : L1_S_PROT_W) | \
533 				 (((pr) & VM_PROT_EXECUTE) ? 0 : L1_S_XN)))
534 
535 #define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
536 #define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
537 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
538 
539 #define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
540 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
541 
542 #endif
543 
544 /*
545  * Macros to test if a mapping is mappable with an L1 Section mapping
546  * or an L2 Large Page mapping.
547  */
548 #define	L1_S_MAPPABLE_P(va, pa, size)					\
549 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
550 
551 #define	L2_L_MAPPABLE_P(va, pa, size)					\
552 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
553 
554 /*
555  * Provide a fallback in case we were not able to determine it at
556  * compile-time.
557  */
558 #ifndef PMAP_NEEDS_PTE_SYNC
559 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
560 #define	PMAP_INCLUDE_PTE_SYNC
561 #endif
562 
563 #ifdef ARM_L2_PIPT
564 #define _sync_l2(pte, size) 	cpu_l2cache_wb_range(vtophys(pte), size)
565 #else
566 #define _sync_l2(pte, size) 	cpu_l2cache_wb_range(pte, size)
567 #endif
568 
569 #define	PTE_SYNC(pte)							\
570 do {									\
571 	if (PMAP_NEEDS_PTE_SYNC) {					\
572 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
573 		cpu_drain_writebuf();					\
574 		_sync_l2((vm_offset_t)(pte), sizeof(pt_entry_t));\
575 	} else								\
576 		cpu_drain_writebuf();					\
577 } while (/*CONSTCOND*/0)
578 
579 #define	PTE_SYNC_RANGE(pte, cnt)					\
580 do {									\
581 	if (PMAP_NEEDS_PTE_SYNC) {					\
582 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
583 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
584 		cpu_drain_writebuf();					\
585 		_sync_l2((vm_offset_t)(pte),		 		\
586 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
587 	} else								\
588 		cpu_drain_writebuf();					\
589 } while (/*CONSTCOND*/0)
590 
591 extern pt_entry_t		pte_l1_s_cache_mode;
592 extern pt_entry_t		pte_l1_s_cache_mask;
593 
594 extern pt_entry_t		pte_l2_l_cache_mode;
595 extern pt_entry_t		pte_l2_l_cache_mask;
596 
597 extern pt_entry_t		pte_l2_s_cache_mode;
598 extern pt_entry_t		pte_l2_s_cache_mask;
599 
600 extern pt_entry_t		pte_l1_s_cache_mode_pt;
601 extern pt_entry_t		pte_l2_l_cache_mode_pt;
602 extern pt_entry_t		pte_l2_s_cache_mode_pt;
603 
604 extern pt_entry_t		pte_l2_s_prot_u;
605 extern pt_entry_t		pte_l2_s_prot_w;
606 extern pt_entry_t		pte_l2_s_prot_mask;
607 
608 extern pt_entry_t		pte_l1_s_proto;
609 extern pt_entry_t		pte_l1_c_proto;
610 extern pt_entry_t		pte_l2_s_proto;
611 
612 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
613 extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
614     vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
615 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
616 
617 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7) != 0 || defined(CPU_XSCALE_81342)
618 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
619 void	pmap_zero_page_generic(vm_paddr_t, int, int);
620 
621 void	pmap_pte_init_generic(void);
622 #if defined(CPU_ARM9)
623 void	pmap_pte_init_arm9(void);
624 #endif /* CPU_ARM9 */
625 #if defined(CPU_ARM10)
626 void	pmap_pte_init_arm10(void);
627 #endif /* CPU_ARM10 */
628 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
629 void	pmap_pte_init_mmu_v6(void);
630 #endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
631 #endif /* (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7) != 0 */
632 
633 #if ARM_MMU_XSCALE == 1
634 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
635 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
636 
637 void	pmap_pte_init_xscale(void);
638 
639 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
640 
641 void	pmap_use_minicache(vm_offset_t, vm_size_t);
642 #endif /* ARM_MMU_XSCALE == 1 */
643 #if defined(CPU_XSCALE_81342)
644 #define ARM_HAVE_SUPERSECTIONS
645 #endif
646 
647 #define PTE_KERNEL	0
648 #define PTE_USER	1
649 #define	l1pte_valid(pde)	((pde) != 0)
650 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
651 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
652 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
653 
654 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
655 #define	l2pte_valid(pte)	((pte) != 0)
656 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
657 #define l2pte_minidata(pte)	(((pte) & \
658 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
659 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
660 
661 /* L1 and L2 page table macros */
662 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
663 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
664 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
665 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
666 
667 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
668 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
669 
670 /*
671  * Flags that indicate attributes of pages or mappings of pages.
672  *
673  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
674  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
675  * pv_entry's for each page.  They live in the same "namespace" so
676  * that we can clear multiple attributes at a time.
677  *
678  * Note the "non-cacheable" flag generally means the page has
679  * multiple mappings in a given address space.
680  */
681 #define	PVF_MOD		0x01		/* page is modified */
682 #define	PVF_REF		0x02		/* page is referenced */
683 #define	PVF_WIRED	0x04		/* mapping is wired */
684 #define	PVF_WRITE	0x08		/* mapping is writable */
685 #define	PVF_EXEC	0x10		/* mapping is executable */
686 #define	PVF_NC		0x20		/* mapping is non-cacheable */
687 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
688 #define	PVF_UNMAN	0x80		/* mapping is unmanaged */
689 
690 void vector_page_setprot(int);
691 
692 #define SECTION_CACHE	0x1
693 #define SECTION_PT	0x2
694 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
695 #ifdef ARM_HAVE_SUPERSECTIONS
696 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
697 #endif
698 
699 extern char *_tmppt;
700 
701 void	pmap_postinit(void);
702 
703 extern vm_paddr_t dump_avail[];
704 #endif	/* _KERNEL */
705 
706 #endif	/* !LOCORE */
707 
708 #endif	/* !_MACHINE_PMAP_H_ */
709