xref: /freebsd/sys/arm/include/pmap.h (revision 2be1a816b9ff69588e55be0a84cbe2a31efc0f2f)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 #include <machine/cpuconf.h>
55 /*
56  * Pte related macros
57  */
58 #define PTE_NOCACHE	0
59 #define PTE_CACHE	1
60 #define PTE_PAGETABLE	2
61 
62 #ifndef LOCORE
63 
64 #include <sys/queue.h>
65 #include <sys/_lock.h>
66 #include <sys/_mutex.h>
67 
68 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
69 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
70 
71 #ifdef _KERNEL
72 
73 #define vtophys(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
74 #define pmap_kextract(va)	pmap_extract(pmap_kernel(), (vm_offset_t)(va))
75 
76 #endif
77 
78 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
79 /*
80  * Pmap stuff
81  */
82 
83 /*
84  * This structure is used to hold a virtual<->physical address
85  * association and is used mostly by bootstrap code
86  */
87 struct pv_addr {
88 	SLIST_ENTRY(pv_addr) pv_list;
89 	vm_offset_t	pv_va;
90 	vm_paddr_t	pv_pa;
91 };
92 
93 struct	pv_entry;
94 
95 struct	md_page {
96 	int pvh_attrs;
97 	TAILQ_HEAD(,pv_entry)	pv_list;
98 };
99 
100 #define	VM_MDPAGE_INIT(pg)						\
101 do {									\
102 	TAILQ_INIT(&pg->pv_list);					\
103 	mtx_init(&(pg)->md_page.pvh_mtx, "MDPAGE Mutex", NULL, MTX_DEV);\
104 	(pg)->mdpage.pvh_attrs = 0;					\
105 } while (/*CONSTCOND*/0)
106 
107 struct l1_ttable;
108 struct l2_dtable;
109 
110 
111 /*
112  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
113  * A bucket size of 16 provides for 16MB of contiguous virtual address
114  * space per l2_dtable. Most processes will, therefore, require only two or
115  * three of these to map their whole working set.
116  */
117 #define	L2_BUCKET_LOG2	4
118 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
119 /*
120  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
121  * of l2_dtable structures required to track all possible page descriptors
122  * mappable by an L1 translation table is given by the following constants:
123  */
124 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
125 #define	L2_SIZE		(1 << L2_LOG2)
126 
127 struct	pmap {
128 	struct mtx		pm_mtx;
129 	u_int8_t		pm_domain;
130 	struct l1_ttable	*pm_l1;
131 	struct l2_dtable	*pm_l2[L2_SIZE];
132 	pd_entry_t		*pm_pdir;	/* KVA of page directory */
133 	int			pm_active;	/* active on cpus */
134 	struct pmap_statistics	pm_stats;	/* pmap statictics */
135 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
136 };
137 
138 typedef struct pmap *pmap_t;
139 
140 #ifdef _KERNEL
141 extern pmap_t	kernel_pmap;
142 #define pmap_kernel() kernel_pmap
143 
144 #define	PMAP_ASSERT_LOCKED(pmap) \
145 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
146 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
147 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
148 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
149 				    NULL, MTX_DEF | MTX_DUPOK)
150 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
151 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
152 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
153 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
154 #endif
155 
156 
157 /*
158  * For each vm_page_t, there is a list of all currently valid virtual
159  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
160  */
161 typedef struct pv_entry {
162 	pmap_t          pv_pmap;        /* pmap where mapping lies */
163 	vm_offset_t     pv_va;          /* virtual address for mapping */
164 	TAILQ_ENTRY(pv_entry)   pv_list;
165 	TAILQ_ENTRY(pv_entry)	pv_plist;
166 	int		pv_flags;	/* flags (wired, etc...) */
167 } *pv_entry_t;
168 
169 #define PV_ENTRY_NULL   ((pv_entry_t) 0)
170 
171 #ifdef _KERNEL
172 
173 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
174 
175 /*
176  * virtual address to page table entry and
177  * to physical address. Likewise for alternate address space.
178  * Note: these work recursively, thus vtopte of a pte will give
179  * the corresponding pde that in turn maps it.
180  */
181 
182 /*
183  * The current top of kernel VM.
184  */
185 extern vm_offset_t pmap_curmaxkvaddr;
186 
187 struct pcb;
188 
189 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
190 /* Virtual address to page table entry */
191 static __inline pt_entry_t *
192 vtopte(vm_offset_t va)
193 {
194 	pd_entry_t *pdep;
195 	pt_entry_t *ptep;
196 
197 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
198 		return (NULL);
199 	return (ptep);
200 }
201 
202 extern vm_offset_t phys_avail[];
203 extern vm_offset_t virtual_avail;
204 extern vm_offset_t virtual_end;
205 
206 void	pmap_bootstrap(vm_offset_t, vm_offset_t, struct pv_addr *);
207 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
208 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
209 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
210 void	pmap_kremove(vm_offset_t);
211 void	*pmap_mapdev(vm_offset_t, vm_size_t);
212 void	pmap_unmapdev(vm_offset_t, vm_size_t);
213 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
214 void	pmap_debug(int);
215 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
216 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
217 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
218 void
219 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
220     int cache);
221 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
222 
223 /*
224  * Definitions for MMU domains
225  */
226 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
227 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
228 
229 /*
230  * The new pmap ensures that page-tables are always mapping Write-Thru.
231  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
232  * on every change.
233  *
234  * Unfortunately, not all CPUs have a write-through cache mode.  So we
235  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
236  * and if there is the chance for PTE syncs to be needed, we define
237  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
238  * the code.
239  */
240 extern int pmap_needs_pte_sync;
241 
242 /*
243  * These macros define the various bit masks in the PTE.
244  *
245  * We use these macros since we use different bits on different processor
246  * models.
247  */
248 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
249 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
250 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
251 
252 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
253 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
254     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
255 
256 #define	L2_L_PROT_U		(L2_AP(AP_U))
257 #define	L2_L_PROT_W		(L2_AP(AP_W))
258 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
259 
260 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
261 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
262     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
263 
264 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
265 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
266 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
267 
268 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
269 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
270 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
271 
272 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
273 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
274     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
275 
276 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
277 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
278 
279 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
280 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
281 
282 #define	L2_L_PROTO		(L2_TYPE_L)
283 
284 #define	L2_S_PROTO_generic	(L2_TYPE_S)
285 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
286 
287 /*
288  * User-visible names for the ones that vary with MMU class.
289  */
290 
291 #if ARM_NMMUS > 1
292 /* More than one MMU class configured; use variables. */
293 #define	L2_S_PROT_U		pte_l2_s_prot_u
294 #define	L2_S_PROT_W		pte_l2_s_prot_w
295 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
296 
297 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
298 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
299 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
300 
301 #define	L1_S_PROTO		pte_l1_s_proto
302 #define	L1_C_PROTO		pte_l1_c_proto
303 #define	L2_S_PROTO		pte_l2_s_proto
304 
305 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
306 #define	L2_S_PROT_U		L2_S_PROT_U_generic
307 #define	L2_S_PROT_W		L2_S_PROT_W_generic
308 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
309 
310 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
311 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
312 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
313 
314 #define	L1_S_PROTO		L1_S_PROTO_generic
315 #define	L1_C_PROTO		L1_C_PROTO_generic
316 #define	L2_S_PROTO		L2_S_PROTO_generic
317 
318 #elif ARM_MMU_XSCALE == 1
319 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
320 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
321 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
322 
323 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
324 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
325 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
326 
327 #define	L1_S_PROTO		L1_S_PROTO_xscale
328 #define	L1_C_PROTO		L1_C_PROTO_xscale
329 #define	L2_S_PROTO		L2_S_PROTO_xscale
330 
331 #endif /* ARM_NMMUS > 1 */
332 
333 #ifdef SKYEYE_WORKAROUNDS
334 #define PMAP_NEEDS_PTE_SYNC     1
335 #define PMAP_INCLUDE_PTE_SYNC
336 #else
337 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
338 #define	PMAP_NEEDS_PTE_SYNC	1
339 #define	PMAP_INCLUDE_PTE_SYNC
340 #elif defined(CPU_XSCALE_81342)
341 #define PMAP_NEEDS_PTE_SYNC	1
342 #define PMAP_INCLUDE_PTE_SYNC
343 #elif (ARM_MMU_SA1 == 0)
344 #define	PMAP_NEEDS_PTE_SYNC	0
345 #endif
346 #endif
347 
348 /*
349  * These macros return various bits based on kernel/user and protection.
350  * Note that the compiler will usually fold these at compile time.
351  */
352 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
353 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
354 
355 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
356 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
357 
358 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
359 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
360 
361 /*
362  * Macros to test if a mapping is mappable with an L1 Section mapping
363  * or an L2 Large Page mapping.
364  */
365 #define	L1_S_MAPPABLE_P(va, pa, size)					\
366 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
367 
368 #define	L2_L_MAPPABLE_P(va, pa, size)					\
369 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
370 
371 /*
372  * Provide a fallback in case we were not able to determine it at
373  * compile-time.
374  */
375 #ifndef PMAP_NEEDS_PTE_SYNC
376 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
377 #define	PMAP_INCLUDE_PTE_SYNC
378 #endif
379 
380 #define	PTE_SYNC(pte)							\
381 do {									\
382 	if (PMAP_NEEDS_PTE_SYNC) {					\
383 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
384 		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
385 	}\
386 } while (/*CONSTCOND*/0)
387 
388 #define	PTE_SYNC_RANGE(pte, cnt)					\
389 do {									\
390 	if (PMAP_NEEDS_PTE_SYNC) {					\
391 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
392 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
393 		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
394 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
395 	}								\
396 } while (/*CONSTCOND*/0)
397 
398 extern pt_entry_t		pte_l1_s_cache_mode;
399 extern pt_entry_t		pte_l1_s_cache_mask;
400 
401 extern pt_entry_t		pte_l2_l_cache_mode;
402 extern pt_entry_t		pte_l2_l_cache_mask;
403 
404 extern pt_entry_t		pte_l2_s_cache_mode;
405 extern pt_entry_t		pte_l2_s_cache_mask;
406 
407 extern pt_entry_t		pte_l1_s_cache_mode_pt;
408 extern pt_entry_t		pte_l2_l_cache_mode_pt;
409 extern pt_entry_t		pte_l2_s_cache_mode_pt;
410 
411 extern pt_entry_t		pte_l2_s_prot_u;
412 extern pt_entry_t		pte_l2_s_prot_w;
413 extern pt_entry_t		pte_l2_s_prot_mask;
414 
415 extern pt_entry_t		pte_l1_s_proto;
416 extern pt_entry_t		pte_l1_c_proto;
417 extern pt_entry_t		pte_l2_s_proto;
418 
419 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
420 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
421 
422 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
423 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
424 void	pmap_zero_page_generic(vm_paddr_t, int, int);
425 
426 void	pmap_pte_init_generic(void);
427 #if defined(CPU_ARM8)
428 void	pmap_pte_init_arm8(void);
429 #endif
430 #if defined(CPU_ARM9)
431 void	pmap_pte_init_arm9(void);
432 #endif /* CPU_ARM9 */
433 #if defined(CPU_ARM10)
434 void	pmap_pte_init_arm10(void);
435 #endif /* CPU_ARM10 */
436 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
437 
438 #if /* ARM_MMU_SA1 == */1
439 void	pmap_pte_init_sa1(void);
440 #endif /* ARM_MMU_SA1 == 1 */
441 
442 #if ARM_MMU_XSCALE == 1
443 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
444 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
445 
446 void	pmap_pte_init_xscale(void);
447 
448 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
449 
450 void	pmap_use_minicache(vm_offset_t, vm_size_t);
451 #endif /* ARM_MMU_XSCALE == 1 */
452 #if defined(CPU_XSCALE_81342)
453 #define ARM_HAVE_SUPERSECTIONS
454 #endif
455 
456 #define PTE_KERNEL	0
457 #define PTE_USER	1
458 #define	l1pte_valid(pde)	((pde) != 0)
459 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
460 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
461 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
462 
463 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
464 #define	l2pte_valid(pte)	((pte) != 0)
465 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
466 #define l2pte_minidata(pte)	(((pte) & \
467 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
468 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
469 
470 /* L1 and L2 page table macros */
471 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
472 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
473 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
474 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
475 
476 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
477 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
478 
479 /*
480  * Flags that indicate attributes of pages or mappings of pages.
481  *
482  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
483  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
484  * pv_entry's for each page.  They live in the same "namespace" so
485  * that we can clear multiple attributes at a time.
486  *
487  * Note the "non-cacheable" flag generally means the page has
488  * multiple mappings in a given address space.
489  */
490 #define	PVF_MOD		0x01		/* page is modified */
491 #define	PVF_REF		0x02		/* page is referenced */
492 #define	PVF_WIRED	0x04		/* mapping is wired */
493 #define	PVF_WRITE	0x08		/* mapping is writable */
494 #define	PVF_EXEC	0x10		/* mapping is executable */
495 #define	PVF_NC		0x20		/* mapping is non-cacheable */
496 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
497 
498 void vector_page_setprot(int);
499 
500 void pmap_update(pmap_t);
501 
502 /*
503  * This structure is used by machine-dependent code to describe
504  * static mappings of devices, created at bootstrap time.
505  */
506 struct pmap_devmap {
507 	vm_offset_t	pd_va;		/* virtual address */
508 	vm_paddr_t	pd_pa;		/* physical address */
509 	vm_size_t	pd_size;	/* size of region */
510 	vm_prot_t	pd_prot;	/* protection code */
511 	int		pd_cache;	/* cache attributes */
512 };
513 
514 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
515 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
516 
517 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
518 void	pmap_devmap_register(const struct pmap_devmap *);
519 
520 #define SECTION_CACHE	0x1
521 #define SECTION_PT	0x2
522 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
523 #ifdef ARM_HAVE_SUPERSECTIONS
524 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
525 #endif
526 
527 extern char *_tmppt;
528 
529 void	pmap_postinit(void);
530 
531 #ifdef ARM_USE_SMALL_ALLOC
532 void	arm_add_smallalloc_pages(void *, void *, int, int);
533 vm_offset_t arm_ptovirt(vm_paddr_t);
534 void arm_init_smallalloc(void);
535 struct arm_small_page {
536 	void *addr;
537 	TAILQ_ENTRY(arm_small_page) pg_list;
538 };
539 
540 #endif
541 
542 #define ARM_NOCACHE_KVA_SIZE 0x1000000
543 extern vm_offset_t arm_nocache_startaddr;
544 void *arm_remap_nocache(void *, vm_size_t);
545 void arm_unmap_nocache(void *, vm_size_t);
546 
547 extern vm_paddr_t dump_avail[];
548 #endif	/* _KERNEL */
549 
550 #endif	/* !LOCORE */
551 
552 #endif	/* !_MACHINE_PMAP_H_ */
553