xref: /freebsd/sys/arm/include/pmap.h (revision 287472b39c7985d968be84ea145c3e75a3e6b875)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * the Systems Programming Group of the University of Utah Computer
7  * Science Department and William Jolitz of UUNET Technologies Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * Derived from hp300 version by Mike Hibler, this version by William
38  * Jolitz uses a recursive map [a pde points to the page directory] to
39  * map the page tables using the pagetables themselves. This is done to
40  * reduce the impact on kernel virtual memory for lots of sparse address
41  * space, and to reduce the cost of memory to each process.
42  *
43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
45  * 	from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
46  *
47  * $FreeBSD$
48  */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define _MACHINE_PMAP_H_
52 
53 #include <machine/pte.h>
54 #include <machine/cpuconf.h>
55 /*
56  * Pte related macros
57  */
58 #if ARM_ARCH_6 || ARM_ARCH_7A
59 #ifdef SMP
60 #define PTE_NOCACHE	2
61 #else
62 #define PTE_NOCACHE	1
63 #endif
64 #define PTE_CACHE	6
65 #define PTE_DEVICE	2
66 #define PTE_PAGETABLE	4
67 #else
68 #define PTE_NOCACHE	1
69 #define PTE_CACHE	2
70 #define PTE_PAGETABLE	3
71 #endif
72 
73 enum mem_type {
74 	STRONG_ORD = 0,
75 	DEVICE_NOSHARE,
76 	DEVICE_SHARE,
77 	NRML_NOCACHE,
78 	NRML_IWT_OWT,
79 	NRML_IWB_OWB,
80 	NRML_IWBA_OWBA
81 };
82 
83 #ifndef LOCORE
84 
85 #include <sys/queue.h>
86 #include <sys/_cpuset.h>
87 #include <sys/_lock.h>
88 #include <sys/_mutex.h>
89 
90 #define PDESIZE		sizeof(pd_entry_t)	/* for assembly files */
91 #define PTESIZE		sizeof(pt_entry_t)	/* for assembly files */
92 
93 #ifdef _KERNEL
94 
95 #define vtophys(va)	pmap_kextract((vm_offset_t)(va))
96 
97 #endif
98 
99 #define	pmap_page_get_memattr(m)	((m)->md.pv_memattr)
100 #define	pmap_page_is_mapped(m)	(!TAILQ_EMPTY(&(m)->md.pv_list))
101 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
102 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
103 
104 /*
105  * Pmap stuff
106  */
107 
108 /*
109  * This structure is used to hold a virtual<->physical address
110  * association and is used mostly by bootstrap code
111  */
112 struct pv_addr {
113 	SLIST_ENTRY(pv_addr) pv_list;
114 	vm_offset_t	pv_va;
115 	vm_paddr_t	pv_pa;
116 };
117 
118 struct	pv_entry;
119 struct	pv_chunk;
120 
121 struct	md_page {
122 	int pvh_attrs;
123 	vm_memattr_t	 pv_memattr;
124 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
125 	vm_offset_t pv_kva;		/* first kernel VA mapping */
126 #endif
127 	TAILQ_HEAD(,pv_entry)	pv_list;
128 };
129 
130 struct l1_ttable;
131 struct l2_dtable;
132 
133 
134 /*
135  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
136  * A bucket size of 16 provides for 16MB of contiguous virtual address
137  * space per l2_dtable. Most processes will, therefore, require only two or
138  * three of these to map their whole working set.
139  */
140 #define	L2_BUCKET_LOG2	4
141 #define	L2_BUCKET_SIZE	(1 << L2_BUCKET_LOG2)
142 /*
143  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
144  * of l2_dtable structures required to track all possible page descriptors
145  * mappable by an L1 translation table is given by the following constants:
146  */
147 #define	L2_LOG2		((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
148 #define	L2_SIZE		(1 << L2_LOG2)
149 
150 struct	pmap {
151 	struct mtx		pm_mtx;
152 	u_int8_t		pm_domain;
153 	struct l1_ttable	*pm_l1;
154 	struct l2_dtable	*pm_l2[L2_SIZE];
155 	cpuset_t		pm_active;	/* active on cpus */
156 	struct pmap_statistics	pm_stats;	/* pmap statictics */
157 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
158 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
159 #else
160 	TAILQ_HEAD(,pv_entry)	pm_pvlist;	/* list of mappings in pmap */
161 #endif
162 };
163 
164 typedef struct pmap *pmap_t;
165 
166 #ifdef _KERNEL
167 extern struct pmap	kernel_pmap_store;
168 #define kernel_pmap	(&kernel_pmap_store)
169 #define pmap_kernel() kernel_pmap
170 
171 #define	PMAP_ASSERT_LOCKED(pmap) \
172 				mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
173 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
174 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
175 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
176 				    NULL, MTX_DEF | MTX_DUPOK)
177 #define	PMAP_OWNED(pmap)	mtx_owned(&(pmap)->pm_mtx)
178 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
179 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
180 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
181 #endif
182 
183 
184 /*
185  * For each vm_page_t, there is a list of all currently valid virtual
186  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
187  */
188 typedef struct pv_entry {
189 	vm_offset_t     pv_va;          /* virtual address for mapping */
190 	TAILQ_ENTRY(pv_entry)   pv_list;
191 	int		pv_flags;	/* flags (wired, etc...) */
192 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
193 	pmap_t          pv_pmap;        /* pmap where mapping lies */
194 	TAILQ_ENTRY(pv_entry)	pv_plist;
195 #endif
196 } *pv_entry_t;
197 
198 /*
199  * pv_entries are allocated in chunks per-process.  This avoids the
200  * need to track per-pmap assignments.
201  */
202 #define	_NPCM	8
203 #define	_NPCPV	252
204 
205 struct pv_chunk {
206 	pmap_t			pc_pmap;
207 	TAILQ_ENTRY(pv_chunk)	pc_list;
208 	uint32_t		pc_map[_NPCM];	/* bitmap; 1 = free */
209 	uint32_t		pc_dummy[3];	/* aligns pv_chunk to 4KB */
210 	TAILQ_ENTRY(pv_chunk)	pc_lru;
211 	struct pv_entry		pc_pventry[_NPCPV];
212 };
213 
214 #ifdef _KERNEL
215 
216 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
217 
218 /*
219  * virtual address to page table entry and
220  * to physical address. Likewise for alternate address space.
221  * Note: these work recursively, thus vtopte of a pte will give
222  * the corresponding pde that in turn maps it.
223  */
224 
225 /*
226  * The current top of kernel VM.
227  */
228 extern vm_offset_t pmap_curmaxkvaddr;
229 
230 struct pcb;
231 
232 void	pmap_set_pcb_pagedir(pmap_t, struct pcb *);
233 /* Virtual address to page table entry */
234 static __inline pt_entry_t *
235 vtopte(vm_offset_t va)
236 {
237 	pd_entry_t *pdep;
238 	pt_entry_t *ptep;
239 
240 	if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
241 		return (NULL);
242 	return (ptep);
243 }
244 
245 extern vm_paddr_t phys_avail[];
246 extern vm_offset_t virtual_avail;
247 extern vm_offset_t virtual_end;
248 
249 void	pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
250 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
251 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
252 void	pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
253 void	*pmap_kenter_temp(vm_paddr_t pa, int i);
254 void 	pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
255 vm_paddr_t pmap_kextract(vm_offset_t va);
256 void	pmap_kremove(vm_offset_t);
257 void	*pmap_mapdev(vm_offset_t, vm_size_t);
258 void	pmap_unmapdev(vm_offset_t, vm_size_t);
259 vm_page_t	pmap_use_pt(pmap_t, vm_offset_t);
260 void	pmap_debug(int);
261 void	pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
262 void	pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
263 vm_size_t	pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
264 void
265 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
266     int cache);
267 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
268 int pmap_dmap_iscurrent(pmap_t pmap);
269 
270 /*
271  * Definitions for MMU domains
272  */
273 #define	PMAP_DOMAINS		15	/* 15 'user' domains (1-15) */
274 #define	PMAP_DOMAIN_KERNEL	0	/* The kernel uses domain #0 */
275 
276 /*
277  * The new pmap ensures that page-tables are always mapping Write-Thru.
278  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
279  * on every change.
280  *
281  * Unfortunately, not all CPUs have a write-through cache mode.  So we
282  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
283  * and if there is the chance for PTE syncs to be needed, we define
284  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
285  * the code.
286  */
287 extern int pmap_needs_pte_sync;
288 
289 /*
290  * These macros define the various bit masks in the PTE.
291  *
292  * We use these macros since we use different bits on different processor
293  * models.
294  */
295 
296 #define	L1_S_CACHE_MASK_generic	(L1_S_B|L1_S_C)
297 #define	L1_S_CACHE_MASK_xscale	(L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
298     				L1_S_XSCALE_TEX(TEX_XSCALE_T))
299 
300 #define	L2_L_CACHE_MASK_generic	(L2_B|L2_C)
301 #define	L2_L_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
302     				L2_XSCALE_L_TEX(TEX_XSCALE_T))
303 
304 #define	L2_S_PROT_U_generic	(L2_AP(AP_U))
305 #define	L2_S_PROT_W_generic	(L2_AP(AP_W))
306 #define	L2_S_PROT_MASK_generic	(L2_S_PROT_U|L2_S_PROT_W)
307 
308 #define	L2_S_PROT_U_xscale	(L2_AP0(AP_U))
309 #define	L2_S_PROT_W_xscale	(L2_AP0(AP_W))
310 #define	L2_S_PROT_MASK_xscale	(L2_S_PROT_U|L2_S_PROT_W)
311 
312 #define	L2_S_CACHE_MASK_generic	(L2_B|L2_C)
313 #define	L2_S_CACHE_MASK_xscale	(L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
314     				 L2_XSCALE_T_TEX(TEX_XSCALE_X))
315 
316 #define	L1_S_PROTO_generic	(L1_TYPE_S | L1_S_IMP)
317 #define	L1_S_PROTO_xscale	(L1_TYPE_S)
318 
319 #define	L1_C_PROTO_generic	(L1_TYPE_C | L1_C_IMP2)
320 #define	L1_C_PROTO_xscale	(L1_TYPE_C)
321 
322 #define	L2_L_PROTO		(L2_TYPE_L)
323 
324 #define	L2_S_PROTO_generic	(L2_TYPE_S)
325 #define	L2_S_PROTO_xscale	(L2_TYPE_XSCALE_XS)
326 
327 /*
328  * User-visible names for the ones that vary with MMU class.
329  */
330 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
331 #define	L2_AP(x)	(L2_AP0(x))
332 #else
333 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
334 #endif
335 
336 #if ARM_NMMUS > 1
337 /* More than one MMU class configured; use variables. */
338 #define	L2_S_PROT_U		pte_l2_s_prot_u
339 #define	L2_S_PROT_W		pte_l2_s_prot_w
340 #define	L2_S_PROT_MASK		pte_l2_s_prot_mask
341 
342 #define	L1_S_CACHE_MASK		pte_l1_s_cache_mask
343 #define	L2_L_CACHE_MASK		pte_l2_l_cache_mask
344 #define	L2_S_CACHE_MASK		pte_l2_s_cache_mask
345 
346 #define	L1_S_PROTO		pte_l1_s_proto
347 #define	L1_C_PROTO		pte_l1_c_proto
348 #define	L2_S_PROTO		pte_l2_s_proto
349 
350 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
351 #define	L2_S_PROT_U		L2_S_PROT_U_generic
352 #define	L2_S_PROT_W		L2_S_PROT_W_generic
353 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_generic
354 
355 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_generic
356 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_generic
357 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_generic
358 
359 #define	L1_S_PROTO		L1_S_PROTO_generic
360 #define	L1_C_PROTO		L1_C_PROTO_generic
361 #define	L2_S_PROTO		L2_S_PROTO_generic
362 
363 #elif ARM_MMU_XSCALE == 1
364 #define	L2_S_PROT_U		L2_S_PROT_U_xscale
365 #define	L2_S_PROT_W		L2_S_PROT_W_xscale
366 #define	L2_S_PROT_MASK		L2_S_PROT_MASK_xscale
367 
368 #define	L1_S_CACHE_MASK		L1_S_CACHE_MASK_xscale
369 #define	L2_L_CACHE_MASK		L2_L_CACHE_MASK_xscale
370 #define	L2_S_CACHE_MASK		L2_S_CACHE_MASK_xscale
371 
372 #define	L1_S_PROTO		L1_S_PROTO_xscale
373 #define	L1_C_PROTO		L1_C_PROTO_xscale
374 #define	L2_S_PROTO		L2_S_PROTO_xscale
375 
376 #elif (ARM_MMU_V6 + ARM_MMU_V7) != 0
377 /*
378  * AP[2:1] access permissions model:
379  *
380  * AP[2](APX)	- Write Disable
381  * AP[1]	- User Enable
382  * AP[0]	- Reference Flag
383  *
384  * AP[2]     AP[1]     Kernel     User
385  *  0          0        R/W        N
386  *  0          1        R/W       R/W
387  *  1          0         R         N
388  *  1          1         R         R
389  *
390  */
391 #define	L2_S_PROT_R		(0)		/* kernel read */
392 #define	L2_S_PROT_U		(L2_AP0(2))	/* user read */
393 #define L2_S_REF		(L2_AP0(1))	/* reference flag */
394 
395 #define	L2_S_PROT_MASK		(L2_S_PROT_U|L2_S_PROT_R|L2_APX)
396 #define	L2_S_EXECUTABLE(pte)	(!(pte & L2_XN))
397 #define	L2_S_WRITABLE(pte)	(!(pte & L2_APX))
398 #define	L2_S_REFERENCED(pte)	(!!(pte & L2_S_REF))
399 
400 #ifndef SMP
401 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C)
402 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C)
403 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C)
404 #else
405 #define	L1_S_CACHE_MASK		(L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
406 #define	L2_L_CACHE_MASK		(L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
407 #define	L2_S_CACHE_MASK		(L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
408 #endif  /* SMP */
409 
410 #define	L1_S_PROTO		(L1_TYPE_S)
411 #define	L1_C_PROTO		(L1_TYPE_C)
412 #define	L2_S_PROTO		(L2_TYPE_S)
413 
414 #ifndef SMP
415 #define ARM_L1S_STRONG_ORD	(0)
416 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
417 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
418 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1))
419 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C)
420 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B)
421 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B)
422 
423 #define ARM_L2L_STRONG_ORD	(0)
424 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
425 #define ARM_L2L_DEVICE_SHARE	(L2_B)
426 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1))
427 #define ARM_L2L_NRML_IWT_OWT	(L2_C)
428 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B)
429 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B)
430 
431 #define ARM_L2S_STRONG_ORD	(0)
432 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
433 #define ARM_L2S_DEVICE_SHARE	(L2_B)
434 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1))
435 #define ARM_L2S_NRML_IWT_OWT	(L2_C)
436 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B)
437 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B)
438 #else
439 #define ARM_L1S_STRONG_ORD	(0)
440 #define ARM_L1S_DEVICE_NOSHARE	(L1_S_TEX(2))
441 #define ARM_L1S_DEVICE_SHARE	(L1_S_B)
442 #define ARM_L1S_NRML_NOCACHE	(L1_S_TEX(1)|L1_SHARED)
443 #define ARM_L1S_NRML_IWT_OWT	(L1_S_C|L1_SHARED)
444 #define ARM_L1S_NRML_IWB_OWB	(L1_S_C|L1_S_B|L1_SHARED)
445 #define ARM_L1S_NRML_IWBA_OWBA	(L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
446 
447 #define ARM_L2L_STRONG_ORD	(0)
448 #define ARM_L2L_DEVICE_NOSHARE	(L2_L_TEX(2))
449 #define ARM_L2L_DEVICE_SHARE	(L2_B)
450 #define ARM_L2L_NRML_NOCACHE	(L2_L_TEX(1)|L2_SHARED)
451 #define ARM_L2L_NRML_IWT_OWT	(L2_C|L2_SHARED)
452 #define ARM_L2L_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
453 #define ARM_L2L_NRML_IWBA_OWBA	(L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
454 
455 #define ARM_L2S_STRONG_ORD	(0)
456 #define ARM_L2S_DEVICE_NOSHARE	(L2_S_TEX(2))
457 #define ARM_L2S_DEVICE_SHARE	(L2_B)
458 #define ARM_L2S_NRML_NOCACHE	(L2_S_TEX(1)|L2_SHARED)
459 #define ARM_L2S_NRML_IWT_OWT	(L2_C|L2_SHARED)
460 #define ARM_L2S_NRML_IWB_OWB	(L2_C|L2_B|L2_SHARED)
461 #define ARM_L2S_NRML_IWBA_OWBA	(L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
462 #endif /* SMP */
463 #endif /* ARM_NMMUS > 1 */
464 
465 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
466 #define	PMAP_NEEDS_PTE_SYNC	1
467 #define	PMAP_INCLUDE_PTE_SYNC
468 #elif defined(CPU_XSCALE_81342)
469 #define PMAP_NEEDS_PTE_SYNC	1
470 #define PMAP_INCLUDE_PTE_SYNC
471 #elif (ARM_MMU_SA1 == 0)
472 #define	PMAP_NEEDS_PTE_SYNC	0
473 #endif
474 
475 /*
476  * These macros return various bits based on kernel/user and protection.
477  * Note that the compiler will usually fold these at compile time.
478  */
479 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
480 
481 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
482 #define	L1_S_PROT_W		(L1_S_AP(AP_W))
483 #define	L1_S_PROT_MASK		(L1_S_PROT_U|L1_S_PROT_W)
484 #define	L1_S_WRITABLE(pd)	((pd) & L1_S_PROT_W)
485 
486 #define	L1_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
487 				 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
488 
489 #define	L2_L_PROT_U		(L2_AP(AP_U))
490 #define	L2_L_PROT_W		(L2_AP(AP_W))
491 #define	L2_L_PROT_MASK		(L2_L_PROT_U|L2_L_PROT_W)
492 
493 #define	L2_L_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
494 				 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
495 
496 #define	L2_S_PROT(ku, pr)	((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
497 				 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
498 #else
499 #define	L1_S_PROT_U		(L1_S_AP(AP_U))
500 #define	L1_S_PROT_MASK		(L1_S_APX|L1_S_AP(0x3))
501 #define	L1_S_WRITABLE(pd)	(!((pd) & L1_S_APX))
502 
503 #define	L1_S_PROT(ku, pr)	(L1_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L1_S_PROT_U : 0) | \
504 				 (((pr) & VM_PROT_WRITE) ? L1_S_APX : 0)))
505 
506 #define	L2_L_PROT_MASK		(L2_APX|L2_AP0(0x3))
507 #define	L2_L_PROT(ku, pr)	(L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
508 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
509 
510 #define	L2_S_PROT(ku, pr)	(L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
511 				 (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
512 
513 #endif
514 
515 /*
516  * Macros to test if a mapping is mappable with an L1 Section mapping
517  * or an L2 Large Page mapping.
518  */
519 #define	L1_S_MAPPABLE_P(va, pa, size)					\
520 	((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
521 
522 #define	L2_L_MAPPABLE_P(va, pa, size)					\
523 	((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
524 
525 /*
526  * Provide a fallback in case we were not able to determine it at
527  * compile-time.
528  */
529 #ifndef PMAP_NEEDS_PTE_SYNC
530 #define	PMAP_NEEDS_PTE_SYNC	pmap_needs_pte_sync
531 #define	PMAP_INCLUDE_PTE_SYNC
532 #endif
533 
534 #define	PTE_SYNC(pte)							\
535 do {									\
536 	if (PMAP_NEEDS_PTE_SYNC) {					\
537 		cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
538 		cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
539 	} else								\
540 		cpu_drain_writebuf();					\
541 } while (/*CONSTCOND*/0)
542 
543 #define	PTE_SYNC_RANGE(pte, cnt)					\
544 do {									\
545 	if (PMAP_NEEDS_PTE_SYNC) {					\
546 		cpu_dcache_wb_range((vm_offset_t)(pte),			\
547 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
548 		cpu_l2cache_wb_range((vm_offset_t)(pte), 		\
549 		    (cnt) << 2); /* * sizeof(pt_entry_t) */		\
550 	} else								\
551 		cpu_drain_writebuf();					\
552 } while (/*CONSTCOND*/0)
553 
554 extern pt_entry_t		pte_l1_s_cache_mode;
555 extern pt_entry_t		pte_l1_s_cache_mask;
556 
557 extern pt_entry_t		pte_l2_l_cache_mode;
558 extern pt_entry_t		pte_l2_l_cache_mask;
559 
560 extern pt_entry_t		pte_l2_s_cache_mode;
561 extern pt_entry_t		pte_l2_s_cache_mask;
562 
563 extern pt_entry_t		pte_l1_s_cache_mode_pt;
564 extern pt_entry_t		pte_l2_l_cache_mode_pt;
565 extern pt_entry_t		pte_l2_s_cache_mode_pt;
566 
567 extern pt_entry_t		pte_l2_s_prot_u;
568 extern pt_entry_t		pte_l2_s_prot_w;
569 extern pt_entry_t		pte_l2_s_prot_mask;
570 
571 extern pt_entry_t		pte_l1_s_proto;
572 extern pt_entry_t		pte_l1_c_proto;
573 extern pt_entry_t		pte_l2_s_proto;
574 
575 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
576 extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
577     vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
578 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
579 
580 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
581 void	pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
582 void	pmap_zero_page_generic(vm_paddr_t, int, int);
583 
584 void	pmap_pte_init_generic(void);
585 #if defined(CPU_ARM8)
586 void	pmap_pte_init_arm8(void);
587 #endif
588 #if defined(CPU_ARM9)
589 void	pmap_pte_init_arm9(void);
590 #endif /* CPU_ARM9 */
591 #if defined(CPU_ARM10)
592 void	pmap_pte_init_arm10(void);
593 #endif /* CPU_ARM10 */
594 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
595 void	pmap_pte_init_mmu_v6(void);
596 #endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
597 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
598 
599 #if /* ARM_MMU_SA1 == */1
600 void	pmap_pte_init_sa1(void);
601 #endif /* ARM_MMU_SA1 == 1 */
602 
603 #if ARM_MMU_XSCALE == 1
604 void	pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
605 void	pmap_zero_page_xscale(vm_paddr_t, int, int);
606 
607 void	pmap_pte_init_xscale(void);
608 
609 void	xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
610 
611 void	pmap_use_minicache(vm_offset_t, vm_size_t);
612 #endif /* ARM_MMU_XSCALE == 1 */
613 #if defined(CPU_XSCALE_81342)
614 #define ARM_HAVE_SUPERSECTIONS
615 #endif
616 
617 #define PTE_KERNEL	0
618 #define PTE_USER	1
619 #define	l1pte_valid(pde)	((pde) != 0)
620 #define	l1pte_section_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_S)
621 #define	l1pte_page_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_C)
622 #define	l1pte_fpage_p(pde)	(((pde) & L1_TYPE_MASK) == L1_TYPE_F)
623 
624 #define l2pte_index(v)		(((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
625 #define	l2pte_valid(pte)	((pte) != 0)
626 #define	l2pte_pa(pte)		((pte) & L2_S_FRAME)
627 #define l2pte_minidata(pte)	(((pte) & \
628 				 (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
629 				 == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
630 
631 /* L1 and L2 page table macros */
632 #define pmap_pde_v(pde)		l1pte_valid(*(pde))
633 #define pmap_pde_section(pde)	l1pte_section_p(*(pde))
634 #define pmap_pde_page(pde)	l1pte_page_p(*(pde))
635 #define pmap_pde_fpage(pde)	l1pte_fpage_p(*(pde))
636 
637 #define	pmap_pte_v(pte)		l2pte_valid(*(pte))
638 #define	pmap_pte_pa(pte)	l2pte_pa(*(pte))
639 
640 /*
641  * Flags that indicate attributes of pages or mappings of pages.
642  *
643  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
644  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
645  * pv_entry's for each page.  They live in the same "namespace" so
646  * that we can clear multiple attributes at a time.
647  *
648  * Note the "non-cacheable" flag generally means the page has
649  * multiple mappings in a given address space.
650  */
651 #define	PVF_MOD		0x01		/* page is modified */
652 #define	PVF_REF		0x02		/* page is referenced */
653 #define	PVF_WIRED	0x04		/* mapping is wired */
654 #define	PVF_WRITE	0x08		/* mapping is writable */
655 #define	PVF_EXEC	0x10		/* mapping is executable */
656 #define	PVF_NC		0x20		/* mapping is non-cacheable */
657 #define	PVF_MWC		0x40		/* mapping is used multiple times in userland */
658 #define	PVF_UNMAN	0x80		/* mapping is unmanaged */
659 
660 void vector_page_setprot(int);
661 
662 /*
663  * This structure is used by machine-dependent code to describe
664  * static mappings of devices, created at bootstrap time.
665  */
666 struct pmap_devmap {
667 	vm_offset_t	pd_va;		/* virtual address */
668 	vm_paddr_t	pd_pa;		/* physical address */
669 	vm_size_t	pd_size;	/* size of region */
670 	vm_prot_t	pd_prot;	/* protection code */
671 	int		pd_cache;	/* cache attributes */
672 };
673 
674 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
675 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
676 
677 void	pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
678 void	pmap_devmap_register(const struct pmap_devmap *);
679 
680 #define SECTION_CACHE	0x1
681 #define SECTION_PT	0x2
682 void	pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
683 #ifdef ARM_HAVE_SUPERSECTIONS
684 void	pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
685 #endif
686 
687 extern char *_tmppt;
688 
689 void	pmap_postinit(void);
690 
691 #ifdef ARM_USE_SMALL_ALLOC
692 void	arm_add_smallalloc_pages(void *, void *, int, int);
693 vm_offset_t arm_ptovirt(vm_paddr_t);
694 void arm_init_smallalloc(void);
695 struct arm_small_page {
696 	void *addr;
697 	TAILQ_ENTRY(arm_small_page) pg_list;
698 };
699 
700 #endif
701 
702 #define ARM_NOCACHE_KVA_SIZE 0x1000000
703 extern vm_offset_t arm_nocache_startaddr;
704 void *arm_remap_nocache(void *, vm_size_t);
705 void arm_unmap_nocache(void *, vm_size_t);
706 
707 extern vm_paddr_t dump_avail[];
708 #endif	/* _KERNEL */
709 
710 #endif	/* !LOCORE */
711 
712 #endif	/* !_MACHINE_PMAP_H_ */
713