xref: /freebsd/sys/arm/freescale/vybrid/vf_ccm.c (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013-2014 Ruslan Bukin <br@bsdpad.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Vybrid Family Clock Controller Module (CCM)
31  * Chapter 10, Vybrid Reference Manual, Rev. 5, 07/2013
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/malloc.h>
40 #include <sys/rman.h>
41 #include <sys/timeet.h>
42 #include <sys/timetc.h>
43 #include <sys/watchdog.h>
44 
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/openfirm.h>
47 #include <dev/ofw/ofw_bus.h>
48 #include <dev/ofw/ofw_bus_subr.h>
49 
50 #include <machine/bus.h>
51 #include <machine/cpu.h>
52 #include <machine/intr.h>
53 
54 #include <arm/freescale/vybrid/vf_common.h>
55 
56 #define	CCM_CCR		0x00	/* Control Register */
57 #define	CCM_CSR		0x04	/* Status Register */
58 #define	CCM_CCSR	0x08	/* Clock Switcher Register */
59 #define	CCM_CACRR	0x0C	/* ARM Clock Root Register */
60 #define	CCM_CSCMR1	0x10	/* Serial Clock Multiplexer Register 1 */
61 #define	CCM_CSCDR1	0x14	/* Serial Clock Divider Register 1 */
62 #define	CCM_CSCDR2	0x18	/* Serial Clock Divider Register 2 */
63 #define	CCM_CSCDR3	0x1C	/* Serial Clock Divider Register 3 */
64 #define	CCM_CSCMR2	0x20	/* Serial Clock Multiplexer Register 2 */
65 #define	CCM_CTOR	0x28	/* Testing Observability Register */
66 #define	CCM_CLPCR	0x2C	/* Low Power Control Register */
67 #define	CCM_CISR	0x30	/* Interrupt Status Register */
68 #define	CCM_CIMR	0x34	/* Interrupt Mask Register */
69 #define	CCM_CCOSR	0x38	/* Clock Output Source Register */
70 #define	CCM_CGPR	0x3C	/* General Purpose Register */
71 
72 #define	CCM_CCGRN	12
73 #define	CCM_CCGR(n)	(0x40 + (n * 0x04))	/* Clock Gating Register */
74 #define	CCM_CMEOR(n)	(0x70 + (n * 0x70))	/* Module Enable Override */
75 #define	CCM_CCPGR(n)	(0x90 + (n * 0x04))	/* Platform Clock Gating */
76 
77 #define	CCM_CPPDSR	0x88	/* PLL PFD Disable Status Register */
78 #define	CCM_CCOWR	0x8C	/* CORE Wakeup Register */
79 
80 #define	PLL3_PFD4_EN	(1U << 31)
81 #define	PLL3_PFD3_EN	(1 << 30)
82 #define	PLL3_PFD2_EN	(1 << 29)
83 #define	PLL3_PFD1_EN	(1 << 28)
84 #define	PLL2_PFD4_EN	(1 << 15)
85 #define	PLL2_PFD3_EN	(1 << 14)
86 #define	PLL2_PFD2_EN	(1 << 13)
87 #define	PLL2_PFD1_EN	(1 << 12)
88 #define	PLL1_PFD4_EN	(1 << 11)
89 #define	PLL1_PFD3_EN	(1 << 10)
90 #define	PLL1_PFD2_EN	(1 << 9)
91 #define	PLL1_PFD1_EN	(1 << 8)
92 
93 /* CCM_CCR */
94 #define	FIRC_EN		(1 << 16)
95 #define	FXOSC_EN	(1 << 12)
96 #define	FXOSC_RDY	(1 << 5)
97 
98 /* CCM_CSCDR1 */
99 #define	ENET_TS_EN	(1 << 23)
100 #define	RMII_CLK_EN	(1 << 24)
101 #define	SAI3_EN		(1 << 19)
102 
103 /* CCM_CSCDR2 */
104 #define	ESAI_EN		(1 << 30)
105 #define	ESDHC1_EN	(1 << 29)
106 #define	ESDHC0_EN	(1 << 28)
107 #define	NFC_EN		(1 << 9)
108 #define	ESDHC1_DIV_S	20
109 #define	ESDHC1_DIV_M	0xf
110 #define	ESDHC0_DIV_S	16
111 #define	ESDHC0_DIV_M	0xf
112 
113 /* CCM_CSCDR3 */
114 #define	DCU0_EN			(1 << 19)
115 
116 #define	QSPI1_EN		(1 << 12)
117 #define	QSPI1_DIV		(1 << 11)
118 #define	QSPI1_X2_DIV		(1 << 10)
119 #define	QSPI1_X4_DIV_M		0x3
120 #define	QSPI1_X4_DIV_S		8
121 
122 #define	QSPI0_EN		(1 << 4)
123 #define	QSPI0_DIV		(1 << 3)
124 #define	QSPI0_X2_DIV		(1 << 2)
125 #define	QSPI0_X4_DIV_M		0x3
126 #define	QSPI0_X4_DIV_S		0
127 
128 #define	SAI3_DIV_SHIFT		12
129 #define	SAI3_DIV_MASK		0xf
130 #define	ESAI_DIV_SHIFT		24
131 #define	ESAI_DIV_MASK		0xf
132 
133 #define	PLL4_CLK_DIV_SHIFT	6
134 #define	PLL4_CLK_DIV_MASK	0x7
135 
136 #define	IPG_CLK_DIV_SHIFT	11
137 #define	IPG_CLK_DIV_MASK	0x3
138 
139 #define	ESAI_CLK_SEL_SHIFT	20
140 #define	ESAI_CLK_SEL_MASK	0x3
141 
142 #define	SAI3_CLK_SEL_SHIFT	6
143 #define	SAI3_CLK_SEL_MASK	0x3
144 
145 #define	CKO1_EN			(1 << 10)
146 #define	CKO1_DIV_MASK		0xf
147 #define	CKO1_DIV_SHIFT		6
148 #define	CKO1_SEL_MASK		0x3f
149 #define	CKO1_SEL_SHIFT		0
150 #define	CKO1_PLL4_MAIN		0x6
151 #define	CKO1_PLL4_DIVD		0x7
152 
153 struct clk {
154 	uint32_t	reg;
155 	uint32_t	enable_reg;
156 	uint32_t	div_mask;
157 	uint32_t	div_shift;
158 	uint32_t	div_val;
159 	uint32_t	sel_reg;
160 	uint32_t	sel_mask;
161 	uint32_t	sel_shift;
162 	uint32_t	sel_val;
163 };
164 
165 static struct clk ipg_clk = {
166 	.reg = CCM_CACRR,
167 	.enable_reg = 0,
168 	.div_mask = IPG_CLK_DIV_MASK,
169 	.div_shift = IPG_CLK_DIV_SHIFT,
170 	.div_val = 1, /* Divide by 2 */
171 	.sel_reg = 0,
172 	.sel_mask = 0,
173 	.sel_shift = 0,
174 	.sel_val = 0,
175 };
176 
177 /*
178   PLL4 clock divider (before switching the clocks should be gated)
179   000 Divide by 1 (only if PLL frequency less than or equal to 650 MHz)
180   001 Divide by 4
181   010 Divide by 6
182   011 Divide by 8
183   100 Divide by 10
184   101 Divide by 12
185   110 Divide by 14
186   111 Divide by 16
187 */
188 
189 static struct clk pll4_clk = {
190 	.reg = CCM_CACRR,
191 	.enable_reg = 0,
192 	.div_mask = PLL4_CLK_DIV_MASK,
193 	.div_shift = PLL4_CLK_DIV_SHIFT,
194 	.div_val = 5, /* Divide by 12 */
195 	.sel_reg = 0,
196 	.sel_mask = 0,
197 	.sel_shift = 0,
198 	.sel_val = 0,
199 };
200 
201 static struct clk sai3_clk = {
202 	.reg = CCM_CSCDR1,
203 	.enable_reg = SAI3_EN,
204 	.div_mask = SAI3_DIV_MASK,
205 	.div_shift = SAI3_DIV_SHIFT,
206 	.div_val = 1,
207 	.sel_reg = CCM_CSCMR1,
208 	.sel_mask = SAI3_CLK_SEL_MASK,
209 	.sel_shift = SAI3_CLK_SEL_SHIFT,
210 	.sel_val = 0x3, /* Divided PLL4 main clock */
211 };
212 
213 static struct clk cko1_clk = {
214 	.reg = CCM_CCOSR,
215 	.enable_reg = CKO1_EN,
216 	.div_mask = CKO1_DIV_MASK,
217 	.div_shift = CKO1_DIV_SHIFT,
218 	.div_val = 1,
219 	.sel_reg = CCM_CCOSR,
220 	.sel_mask = CKO1_SEL_MASK,
221 	.sel_shift = CKO1_SEL_SHIFT,
222 	.sel_val = CKO1_PLL4_DIVD,
223 };
224 
225 static struct clk esdhc0_clk = {
226 	.reg = CCM_CSCDR2,
227 	.enable_reg = ESDHC0_EN,
228 	.div_mask = ESDHC0_DIV_M,
229 	.div_shift = ESDHC0_DIV_S,
230 	.div_val = 0x9,
231 	.sel_reg = 0,
232 	.sel_mask = 0,
233 	.sel_shift = 0,
234 	.sel_val = 0,
235 };
236 
237 static struct clk esdhc1_clk = {
238 	.reg = CCM_CSCDR2,
239 	.enable_reg = ESDHC1_EN,
240 	.div_mask = ESDHC1_DIV_M,
241 	.div_shift = ESDHC1_DIV_S,
242 	.div_val = 0x9,
243 	.sel_reg = 0,
244 	.sel_mask = 0,
245 	.sel_shift = 0,
246 	.sel_val = 0,
247 };
248 
249 static struct clk qspi0_clk = {
250 	.reg = CCM_CSCDR3,
251 	.enable_reg = QSPI0_EN,
252 	.div_mask = 0,
253 	.div_shift = 0,
254 	.div_val = 0,
255 	.sel_reg = 0,
256 	.sel_mask = 0,
257 	.sel_shift = 0,
258 	.sel_val = 0,
259 };
260 
261 static struct clk dcu0_clk = {
262 	.reg = CCM_CSCDR3,
263 	.enable_reg = DCU0_EN,
264 	.div_mask = 0x7,
265 	.div_shift = 16, /* DCU0_DIV */
266 	.div_val = 0, /* divide by 1 */
267 	.sel_reg = 0,
268 	.sel_mask = 0,
269 	.sel_shift = 0,
270 	.sel_val = 0,
271 };
272 
273 static struct clk enet_clk = {
274 	.reg = CCM_CSCDR1,
275 	.enable_reg = (ENET_TS_EN | RMII_CLK_EN),
276 	.div_mask = 0,
277 	.div_shift = 0,
278 	.div_val = 0,
279 	.sel_reg = 0,
280 	.sel_mask = 0,
281 	.sel_shift = 0,
282 	.sel_val = 0,
283 };
284 
285 static struct clk nand_clk = {
286 	.reg = CCM_CSCDR2,
287 	.enable_reg = NFC_EN,
288 	.div_mask = 0,
289 	.div_shift = 0,
290 	.div_val = 0,
291 	.sel_reg = 0,
292 	.sel_mask = 0,
293 	.sel_shift = 0,
294 	.sel_val = 0,
295 };
296 
297 /*
298   Divider to generate ESAI clock
299   0000    Divide by 1
300   0001    Divide by 2
301   ...     ...
302   1111    Divide by 16
303 */
304 
305 static struct clk esai_clk = {
306 	.reg = CCM_CSCDR2,
307 	.enable_reg = ESAI_EN,
308 	.div_mask = ESAI_DIV_MASK,
309 	.div_shift = ESAI_DIV_SHIFT,
310 	.div_val = 3, /* Divide by 4 */
311 	.sel_reg = CCM_CSCMR1,
312 	.sel_mask = ESAI_CLK_SEL_MASK,
313 	.sel_shift = ESAI_CLK_SEL_SHIFT,
314 	.sel_val = 0x3, /* Divided PLL4 main clock */
315 };
316 
317 struct clock_entry {
318 	char		*name;
319 	struct clk	*clk;
320 };
321 
322 static struct clock_entry clock_map[] = {
323 	{"ipg",		&ipg_clk},
324 	{"pll4",	&pll4_clk},
325 	{"sai3",	&sai3_clk},
326 	{"cko1",	&cko1_clk},
327 	{"esdhc0",	&esdhc0_clk},
328 	{"esdhc1",	&esdhc1_clk},
329 	{"qspi0",	&qspi0_clk},
330 	{"dcu0",	&dcu0_clk},
331 	{"enet",	&enet_clk},
332 	{"nand",	&nand_clk},
333 	{"esai",	&esai_clk},
334 	{NULL,	NULL}
335 };
336 
337 struct ccm_softc {
338 	struct resource		*res[1];
339 	bus_space_tag_t		bst;
340 	bus_space_handle_t	bsh;
341 	device_t		dev;
342 };
343 
344 static struct resource_spec ccm_spec[] = {
345 	{ SYS_RES_MEMORY,       0,      RF_ACTIVE },
346 	{ -1, 0 }
347 };
348 
349 static int
350 ccm_probe(device_t dev)
351 {
352 
353 	if (!ofw_bus_status_okay(dev))
354 		return (ENXIO);
355 
356 	if (!ofw_bus_is_compatible(dev, "fsl,mvf600-ccm"))
357 		return (ENXIO);
358 
359 	device_set_desc(dev, "Vybrid Family CCM Unit");
360 	return (BUS_PROBE_DEFAULT);
361 }
362 
363 static int
364 set_clock(struct ccm_softc *sc, char *name)
365 {
366 	struct clk *clk;
367 	int reg;
368 	int i;
369 
370 	for (i = 0; clock_map[i].name != NULL; i++) {
371 		if (strcmp(clock_map[i].name, name) == 0) {
372 #if 0
373 			device_printf(sc->dev, "Configuring %s clk\n", name);
374 #endif
375 			clk = clock_map[i].clk;
376 			if (clk->sel_reg != 0) {
377 				reg = READ4(sc, clk->sel_reg);
378 				reg &= ~(clk->sel_mask << clk->sel_shift);
379 				reg |= (clk->sel_val << clk->sel_shift);
380 				WRITE4(sc, clk->sel_reg, reg);
381 			}
382 
383 			reg = READ4(sc, clk->reg);
384 			reg |= clk->enable_reg;
385 			reg &= ~(clk->div_mask << clk->div_shift);
386 			reg |= (clk->div_val << clk->div_shift);
387 			WRITE4(sc, clk->reg, reg);
388 		}
389 	}
390 
391 	return (0);
392 }
393 
394 static int
395 ccm_fdt_set(struct ccm_softc *sc)
396 {
397 	phandle_t child, parent, root;
398 	int len;
399 	char *fdt_config, *name;
400 
401 	root = OF_finddevice("/");
402 	len = 0;
403 	parent = root;
404 
405 	/* Find 'clock_names' prop in the tree */
406 	for (child = OF_child(parent); child != 0; child = OF_peer(child)) {
407 		/* Find a 'leaf'. Start the search from this node. */
408 		while (OF_child(child)) {
409 			parent = child;
410 			child = OF_child(child);
411 		}
412 
413 		if (!ofw_bus_node_status_okay(child))
414 			continue;
415 
416 		if ((len = OF_getproplen(child, "clock_names")) > 0) {
417 			len = OF_getproplen(child, "clock_names");
418 			OF_getprop_alloc(child, "clock_names",
419 			    (void **)&fdt_config);
420 
421 			while (len > 0) {
422 				name = fdt_config;
423 				fdt_config += strlen(name) + 1;
424 				len -= strlen(name) + 1;
425 				set_clock(sc, name);
426 			}
427 		}
428 
429 		if (OF_peer(child) == 0) {
430 			/* No more siblings. */
431 			child = parent;
432 			parent = OF_parent(child);
433 		}
434 	}
435 
436 	return (0);
437 }
438 
439 static int
440 ccm_attach(device_t dev)
441 {
442 	struct ccm_softc *sc;
443 	int reg;
444 	int i;
445 
446 	sc = device_get_softc(dev);
447 	sc->dev = dev;
448 
449 	if (bus_alloc_resources(dev, ccm_spec, sc->res)) {
450 		device_printf(dev, "could not allocate resources\n");
451 		return (ENXIO);
452 	}
453 
454 	/* Memory interface */
455 	sc->bst = rman_get_bustag(sc->res[0]);
456 	sc->bsh = rman_get_bushandle(sc->res[0]);
457 
458 	/* Enable oscillator */
459 	reg = READ4(sc, CCM_CCR);
460 	reg |= (FIRC_EN | FXOSC_EN);
461 	WRITE4(sc, CCM_CCR, reg);
462 
463 	/* Wait 10 times */
464 	for (i = 0; i < 10; i++) {
465 		if (READ4(sc, CCM_CSR) & FXOSC_RDY) {
466 			device_printf(sc->dev, "On board oscillator is ready.\n");
467 			break;
468 		}
469 
470 		cpufunc_nullop();
471 	}
472 
473 	/* Clock is on during all modes, except stop mode. */
474 	for (i = 0; i < CCM_CCGRN; i++) {
475 		WRITE4(sc, CCM_CCGR(i), 0xffffffff);
476 	}
477 
478 	/* Take and apply FDT clocks */
479 	ccm_fdt_set(sc);
480 
481 	return (0);
482 }
483 
484 static device_method_t ccm_methods[] = {
485 	DEVMETHOD(device_probe,		ccm_probe),
486 	DEVMETHOD(device_attach,	ccm_attach),
487 	{ 0, 0 }
488 };
489 
490 static driver_t ccm_driver = {
491 	"ccm",
492 	ccm_methods,
493 	sizeof(struct ccm_softc),
494 };
495 
496 DRIVER_MODULE(ccm, simplebus, ccm_driver, 0, 0);
497