xref: /freebsd/sys/arm/freescale/imx/imx_gpt.c (revision 6c925b9c81036a86db387f75a32b423420eadf6c)
1 /*-
2  * Copyright (c) 2012, 2013 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Oleksandr Rybalko under sponsorship
6  * from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1.	Redistributions of source code must retain the above copyright
12  *	notice, this list of conditions and the following disclaimer.
13  * 2.	Redistributions in binary form must reproduce the above copyright
14  *	notice, this list of conditions and the following disclaimer in the
15  *	documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/kernel.h>
37 #include <sys/module.h>
38 #include <sys/malloc.h>
39 #include <sys/rman.h>
40 #include <sys/timeet.h>
41 #include <sys/timetc.h>
42 #include <sys/watchdog.h>
43 #include <machine/bus.h>
44 #include <machine/cpu.h>
45 #include <machine/intr.h>
46 
47 #include <dev/ofw/openfirm.h>
48 #include <dev/ofw/ofw_bus.h>
49 #include <dev/ofw/ofw_bus_subr.h>
50 
51 #include <arm/freescale/imx/imx_gptvar.h>
52 #include <arm/freescale/imx/imx_gptreg.h>
53 
54 #include <sys/kdb.h>
55 #include <arm/freescale/imx/imx_ccmvar.h>
56 
57 #define	WRITE4(_sc, _r, _v)						\
58 	    bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
59 #define	READ4(_sc, _r)							\
60 	    bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
61 #define	SET4(_sc, _r, _m)						\
62 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
63 #define	CLEAR4(_sc, _r, _m)						\
64 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
65 
66 static u_int	imx_gpt_get_timecount(struct timecounter *);
67 static int	imx_gpt_timer_start(struct eventtimer *, sbintime_t,
68     sbintime_t);
69 static int	imx_gpt_timer_stop(struct eventtimer *);
70 
71 static int imx_gpt_intr(void *);
72 static int imx_gpt_probe(device_t);
73 static int imx_gpt_attach(device_t);
74 
75 static struct timecounter imx_gpt_timecounter = {
76 	.tc_name           = "iMXGPT",
77 	.tc_get_timecount  = imx_gpt_get_timecount,
78 	.tc_counter_mask   = ~0u,
79 	.tc_frequency      = 0,
80 	.tc_quality        = 1000,
81 };
82 
83 /* Global softc pointer for use in DELAY(). */
84 struct imx_gpt_softc *imx_gpt_sc = NULL;
85 
86 /*
87  * Hand-calibrated delay-loop counter.  This was calibrated on an i.MX6 running
88  * at 792mhz.  It will delay a bit too long on slower processors -- that's
89  * better than not delaying long enough.  In practice this is unlikely to get
90  * used much since the clock driver is one of the first to start up, and once
91  * we're attached the delay loop switches to using the timer hardware.
92  */
93 static const int imx_gpt_delay_count = 78;
94 
95 /* Try to divide down an available fast clock to this frequency. */
96 #define	TARGET_FREQUENCY	1000000000
97 
98 /* Don't try to set an event timer period smaller than this. */
99 #define	MIN_ET_PERIOD		10LLU
100 
101 
102 static struct resource_spec imx_gpt_spec[] = {
103 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
104 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
105 	{ -1, 0 }
106 };
107 
108 static struct ofw_compat_data compat_data[] = {
109 	{"fsl,imx6dl-gpt",  1},
110 	{"fsl,imx6q-gpt",  1},
111 	{"fsl,imx53-gpt",  1},
112 	{"fsl,imx51-gpt",  1},
113 	{"fsl,imx31-gpt",  1},
114 	{"fsl,imx27-gpt",  1},
115 	{"fsl,imx25-gpt",  1},
116 	{NULL,             0}
117 };
118 
119 static int
120 imx_gpt_probe(device_t dev)
121 {
122 
123 	if (!ofw_bus_status_okay(dev))
124 		return (ENXIO);
125 
126 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
127 		device_set_desc(dev, "Freescale i.MX GPT timer");
128 		return (BUS_PROBE_DEFAULT);
129 	}
130 
131 	return (ENXIO);
132 }
133 
134 static int
135 imx_gpt_attach(device_t dev)
136 {
137 	struct imx_gpt_softc *sc;
138 	int ctlreg, err;
139 	uint32_t basefreq, prescale;
140 
141 	sc = device_get_softc(dev);
142 
143 	if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
144 		device_printf(dev, "could not allocate resources\n");
145 		return (ENXIO);
146 	}
147 
148 	sc->sc_dev = dev;
149 	sc->sc_iot = rman_get_bustag(sc->res[0]);
150 	sc->sc_ioh = rman_get_bushandle(sc->res[0]);
151 
152 	/*
153 	 * For now, just automatically choose a good clock for the hardware
154 	 * we're running on.  Eventually we could allow selection from the fdt;
155 	 * the code in this driver will cope with any clock frequency.
156 	 */
157 	sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
158 
159 	ctlreg = 0;
160 
161 	switch (sc->sc_clksrc) {
162 	case GPT_CR_CLKSRC_32K:
163 		basefreq = 32768;
164 		break;
165 	case GPT_CR_CLKSRC_IPG:
166 		basefreq = imx_ccm_ipg_hz();
167 		break;
168 	case GPT_CR_CLKSRC_IPG_HIGH:
169 		basefreq = imx_ccm_ipg_hz() * 2;
170 		break;
171 	case GPT_CR_CLKSRC_24M:
172 		ctlreg |= GPT_CR_24MEN;
173 		basefreq = 24000000;
174 		break;
175 	case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
176 	case GPT_CR_CLKSRC_EXT:	/* No way to get the freq of an ext clock. */
177 	default:
178 		device_printf(dev, "Unsupported clock source '%d'\n",
179 		    sc->sc_clksrc);
180 		return (EINVAL);
181 	}
182 
183 	/*
184 	 * The following setup sequence is from the I.MX6 reference manual,
185 	 * "Selecting the clock source".  First, disable the clock and
186 	 * interrupts.  This also clears input and output mode bits and in
187 	 * general completes several of the early steps in the procedure.
188 	 */
189 	WRITE4(sc, IMX_GPT_CR, 0);
190 	WRITE4(sc, IMX_GPT_IR, 0);
191 
192 	/* Choose the clock and the power-saving behaviors. */
193 	ctlreg |=
194 	    sc->sc_clksrc |	/* Use selected clock */
195 	    GPT_CR_FRR |	/* Just count (FreeRunner mode) */
196 	    GPT_CR_STOPEN |	/* Run in STOP mode */
197 	    GPT_CR_DOZEEN |	/* Run in DOZE mode */
198 	    GPT_CR_WAITEN |	/* Run in WAIT mode */
199 	    GPT_CR_DBGEN;	/* Run in DEBUG mode */
200 	WRITE4(sc, IMX_GPT_CR, ctlreg);
201 
202 	/*
203 	 * The datasheet says to do the software reset after choosing the clock
204 	 * source.  It says nothing about needing to wait for the reset to
205 	 * complete, but the register description does document the fact that
206 	 * the reset isn't complete until the SWR bit reads 0, so let's be safe.
207 	 * The reset also clears all registers except for a few of the bits in
208 	 * CR, but we'll rewrite all the CR bits when we start the counter.
209 	 */
210 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
211 	while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
212 		continue;
213 
214 	/* Set a prescaler value that gets us near the target frequency. */
215 	if (basefreq < TARGET_FREQUENCY) {
216 		prescale = 0;
217 		sc->clkfreq = basefreq;
218 	} else {
219 		prescale = basefreq / TARGET_FREQUENCY;
220 		sc->clkfreq = basefreq / prescale;
221 		prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
222 	}
223 	WRITE4(sc, IMX_GPT_PR, prescale);
224 
225 	/* Clear the status register. */
226 	WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
227 
228 	/* Start the counter. */
229 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
230 
231 	if (bootverbose)
232 		device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
233 		    sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
234 
235 	/* Setup the timer interrupt. */
236 	err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
237 	    NULL, sc, &sc->sc_ih);
238 	if (err != 0) {
239 		bus_release_resources(dev, imx_gpt_spec, sc->res);
240 		device_printf(dev, "Unable to setup the clock irq handler, "
241 		    "err = %d\n", err);
242 		return (ENXIO);
243 	}
244 
245 	/* Register as an eventtimer. */
246 	sc->et.et_name = "iMXGPT";
247 	sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
248 	sc->et.et_quality = 800;
249 	sc->et.et_frequency = sc->clkfreq;
250 	sc->et.et_min_period = (MIN_ET_PERIOD << 32) / sc->et.et_frequency;
251 	sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency;
252 	sc->et.et_start = imx_gpt_timer_start;
253 	sc->et.et_stop = imx_gpt_timer_stop;
254 	sc->et.et_priv = sc;
255 	et_register(&sc->et);
256 
257 	/* Register as a timecounter. */
258 	imx_gpt_timecounter.tc_frequency = sc->clkfreq;
259 	tc_init(&imx_gpt_timecounter);
260 
261 	/* If this is the first unit, store the softc for use in DELAY. */
262 	if (device_get_unit(dev) == 0)
263 	    imx_gpt_sc = sc;
264 
265 	return (0);
266 }
267 
268 static int
269 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
270 {
271 	struct imx_gpt_softc *sc;
272 	uint32_t ticks;
273 
274 	sc = (struct imx_gpt_softc *)et->et_priv;
275 
276 	if (period != 0) {
277 		sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
278 		/* Set expected value */
279 		WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
280 		/* Enable compare register 2 Interrupt */
281 		SET4(sc, IMX_GPT_IR, GPT_IR_OF2);
282 		return (0);
283 	} else if (first != 0) {
284 		ticks = ((uint32_t)et->et_frequency * first) >> 32;
285 		/* Do not disturb, otherwise event will be lost */
286 		spinlock_enter();
287 		/* Set expected value */
288 		WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
289 		/* Enable compare register 1 Interrupt */
290 		SET4(sc, IMX_GPT_IR, GPT_IR_OF3);
291 		/* Now everybody can relax */
292 		spinlock_exit();
293 		return (0);
294 	}
295 
296 	return (EINVAL);
297 }
298 
299 static int
300 imx_gpt_timer_stop(struct eventtimer *et)
301 {
302 	struct imx_gpt_softc *sc;
303 
304 	sc = (struct imx_gpt_softc *)et->et_priv;
305 
306 	/* Disable OF2 Interrupt */
307 	CLEAR4(sc, IMX_GPT_IR, GPT_IR_OF2);
308 	WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2);
309 	sc->sc_period = 0;
310 
311 	return (0);
312 }
313 
314 int
315 imx_gpt_get_timerfreq(struct imx_gpt_softc *sc)
316 {
317 
318 	return (sc->clkfreq);
319 }
320 
321 static int
322 imx_gpt_intr(void *arg)
323 {
324 	struct imx_gpt_softc *sc;
325 	uint32_t status;
326 
327 	sc = (struct imx_gpt_softc *)arg;
328 
329 	status = READ4(sc, IMX_GPT_SR);
330 
331 	/*
332 	* Clear interrupt status before invoking event callbacks.  The callback
333 	* often sets up a new one-shot timer event and if the interval is short
334 	* enough it can fire before we get out of this function.  If we cleared
335 	* at the bottom we'd miss the interrupt and hang until the clock wraps.
336 	*/
337 	WRITE4(sc, IMX_GPT_SR, status);
338 
339 	/* Handle one-shot timer events. */
340 	if (status & GPT_IR_OF3) {
341 		if (sc->et.et_active) {
342 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
343 		}
344 	}
345 
346 	/* Handle periodic timer events. */
347 	if (status & GPT_IR_OF2) {
348 		if (sc->et.et_active)
349 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
350 		if (sc->sc_period != 0)
351 			WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
352 			    sc->sc_period);
353 	}
354 
355 	return (FILTER_HANDLED);
356 }
357 
358 u_int
359 imx_gpt_get_timecount(struct timecounter *tc)
360 {
361 
362 	if (imx_gpt_sc == NULL)
363 		return (0);
364 
365 	return (READ4(imx_gpt_sc, IMX_GPT_CNT));
366 }
367 
368 static device_method_t imx_gpt_methods[] = {
369 	DEVMETHOD(device_probe,		imx_gpt_probe),
370 	DEVMETHOD(device_attach,	imx_gpt_attach),
371 
372 	DEVMETHOD_END
373 };
374 
375 static driver_t imx_gpt_driver = {
376 	"imx_gpt",
377 	imx_gpt_methods,
378 	sizeof(struct imx_gpt_softc),
379 };
380 
381 static devclass_t imx_gpt_devclass;
382 
383 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, imx_gpt_devclass, 0,
384     0, BUS_PASS_TIMER);
385 
386 void
387 DELAY(int usec)
388 {
389 	uint64_t curcnt, endcnt, startcnt, ticks;
390 
391 	/* If the timer hardware is not accessible, just use a loop. */
392 	if (imx_gpt_sc == NULL) {
393 		while (usec-- > 0)
394 			for (ticks = 0; ticks < imx_gpt_delay_count; ++ticks)
395 				cpufunc_nullop();
396 		return;
397 	}
398 
399 	/*
400 	 * Calculate the tick count with 64-bit values so that it works for any
401 	 * clock frequency.  Loop until the hardware count reaches start+ticks.
402 	 * If the 32-bit hardware count rolls over while we're looping, just
403 	 * manually do a carry into the high bits after each read; don't worry
404 	 * that doing this on each loop iteration is inefficient -- we're trying
405 	 * to waste time here.
406 	 */
407 	ticks = 1 + ((uint64_t)usec * imx_gpt_sc->clkfreq) / 1000000;
408 	curcnt = startcnt = READ4(imx_gpt_sc, IMX_GPT_CNT);
409 	endcnt = startcnt + ticks;
410 	while (curcnt < endcnt) {
411 		curcnt = READ4(imx_gpt_sc, IMX_GPT_CNT);
412 		if (curcnt < startcnt)
413 			curcnt += 1ULL << 32;
414 	}
415 }
416