xref: /freebsd/sys/arm/freescale/imx/imx_gpt.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2013 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * This software was developed by Oleksandr Rybalko under sponsorship
8  * from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1.	Redistributions of source code must retain the above copyright
14  *	notice, this list of conditions and the following disclaimer.
15  * 2.	Redistributions in binary form must reproduce the above copyright
16  *	notice, this list of conditions and the following disclaimer in the
17  *	documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/rman.h>
41 #include <sys/timeet.h>
42 #include <sys/timetc.h>
43 #include <machine/bus.h>
44 #include <machine/intr.h>
45 #include <machine/machdep.h> /* For arm_set_delay */
46 
47 #include <dev/ofw/openfirm.h>
48 #include <dev/ofw/ofw_bus.h>
49 #include <dev/ofw/ofw_bus_subr.h>
50 
51 #include <arm/freescale/imx/imx_ccmvar.h>
52 #include <arm/freescale/imx/imx_gptreg.h>
53 
54 #define	WRITE4(_sc, _r, _v)						\
55 	    bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
56 #define	READ4(_sc, _r)							\
57 	    bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
58 #define	SET4(_sc, _r, _m)						\
59 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
60 #define	CLEAR4(_sc, _r, _m)						\
61 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
62 
63 static u_int	imx_gpt_get_timecount(struct timecounter *);
64 static int	imx_gpt_timer_start(struct eventtimer *, sbintime_t,
65     sbintime_t);
66 static int	imx_gpt_timer_stop(struct eventtimer *);
67 
68 static void imx_gpt_do_delay(int, void *);
69 
70 static int imx_gpt_intr(void *);
71 static int imx_gpt_probe(device_t);
72 static int imx_gpt_attach(device_t);
73 
74 static struct timecounter imx_gpt_timecounter = {
75 	.tc_name           = "iMXGPT",
76 	.tc_get_timecount  = imx_gpt_get_timecount,
77 	.tc_counter_mask   = ~0u,
78 	.tc_frequency      = 0,
79 	.tc_quality        = 1000,
80 };
81 
82 struct imx_gpt_softc {
83 	device_t 		sc_dev;
84 	struct resource *	res[2];
85 	bus_space_tag_t 	sc_iot;
86 	bus_space_handle_t	sc_ioh;
87 	void *			sc_ih;			/* interrupt handler */
88 	uint32_t 		sc_period;
89 	uint32_t 		sc_clksrc;
90 	uint32_t 		clkfreq;
91 	uint32_t		ir_reg;
92 	struct eventtimer 	et;
93 };
94 
95 /* Try to divide down an available fast clock to this frequency. */
96 #define	TARGET_FREQUENCY	1000000000
97 
98 static struct resource_spec imx_gpt_spec[] = {
99 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
100 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
101 	{ -1, 0 }
102 };
103 
104 static struct ofw_compat_data compat_data[] = {
105 	{"fsl,imx6dl-gpt", 1},
106 	{"fsl,imx6q-gpt",  1},
107 	{"fsl,imx6ul-gpt", 1},
108 	{"fsl,imx53-gpt",  1},
109 	{"fsl,imx51-gpt",  1},
110 	{"fsl,imx31-gpt",  1},
111 	{"fsl,imx27-gpt",  1},
112 	{"fsl,imx25-gpt",  1},
113 	{NULL,             0}
114 };
115 
116 static int
117 imx_gpt_probe(device_t dev)
118 {
119 
120 	if (!ofw_bus_status_okay(dev))
121 		return (ENXIO);
122 
123 	/*
124 	 *  We only support a single unit, because the only thing this driver
125 	 *  does with the complex timer hardware is supply the system
126 	 *  timecounter and eventtimer.  There is nothing useful we can do with
127 	 *  the additional device instances that exist in some chips.
128 	 */
129 	if (device_get_unit(dev) > 0)
130 		return (ENXIO);
131 
132 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
133 		device_set_desc(dev, "Freescale i.MX GPT timer");
134 		return (BUS_PROBE_DEFAULT);
135 	}
136 
137 	return (ENXIO);
138 }
139 
140 static int
141 imx_gpt_attach(device_t dev)
142 {
143 	struct imx_gpt_softc *sc;
144 	int ctlreg, err;
145 	uint32_t basefreq, prescale, setup_ticks, t1, t2;
146 
147 	sc = device_get_softc(dev);
148 
149 	if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
150 		device_printf(dev, "could not allocate resources\n");
151 		return (ENXIO);
152 	}
153 
154 	sc->sc_dev = dev;
155 	sc->sc_iot = rman_get_bustag(sc->res[0]);
156 	sc->sc_ioh = rman_get_bushandle(sc->res[0]);
157 
158 	/*
159 	 * For now, just automatically choose a good clock for the hardware
160 	 * we're running on.  Eventually we could allow selection from the fdt;
161 	 * the code in this driver will cope with any clock frequency.
162 	 */
163 	sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
164 
165 	ctlreg = 0;
166 
167 	switch (sc->sc_clksrc) {
168 	case GPT_CR_CLKSRC_32K:
169 		basefreq = 32768;
170 		break;
171 	case GPT_CR_CLKSRC_IPG:
172 		basefreq = imx_ccm_ipg_hz();
173 		break;
174 	case GPT_CR_CLKSRC_IPG_HIGH:
175 		basefreq = imx_ccm_ipg_hz() * 2;
176 		break;
177 	case GPT_CR_CLKSRC_24M:
178 		ctlreg |= GPT_CR_24MEN;
179 		basefreq = 24000000;
180 		break;
181 	case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
182 	case GPT_CR_CLKSRC_EXT:	/* No way to get the freq of an ext clock. */
183 	default:
184 		device_printf(dev, "Unsupported clock source '%d'\n",
185 		    sc->sc_clksrc);
186 		return (EINVAL);
187 	}
188 
189 	/*
190 	 * The following setup sequence is from the I.MX6 reference manual,
191 	 * "Selecting the clock source".  First, disable the clock and
192 	 * interrupts.  This also clears input and output mode bits and in
193 	 * general completes several of the early steps in the procedure.
194 	 */
195 	WRITE4(sc, IMX_GPT_CR, 0);
196 	WRITE4(sc, IMX_GPT_IR, 0);
197 
198 	/* Choose the clock and the power-saving behaviors. */
199 	ctlreg |=
200 	    sc->sc_clksrc |	/* Use selected clock */
201 	    GPT_CR_FRR |	/* Just count (FreeRunner mode) */
202 	    GPT_CR_STOPEN |	/* Run in STOP mode */
203 	    GPT_CR_DOZEEN |	/* Run in DOZE mode */
204 	    GPT_CR_WAITEN |	/* Run in WAIT mode */
205 	    GPT_CR_DBGEN;	/* Run in DEBUG mode */
206 	WRITE4(sc, IMX_GPT_CR, ctlreg);
207 
208 	/*
209 	 * The datasheet says to do the software reset after choosing the clock
210 	 * source.  It says nothing about needing to wait for the reset to
211 	 * complete, but the register description does document the fact that
212 	 * the reset isn't complete until the SWR bit reads 0, so let's be safe.
213 	 * The reset also clears all registers except for a few of the bits in
214 	 * CR, but we'll rewrite all the CR bits when we start the counter.
215 	 */
216 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
217 	while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
218 		continue;
219 
220 	/* Set a prescaler value that gets us near the target frequency. */
221 	if (basefreq < TARGET_FREQUENCY) {
222 		prescale = 0;
223 		sc->clkfreq = basefreq;
224 	} else {
225 		prescale = basefreq / TARGET_FREQUENCY;
226 		sc->clkfreq = basefreq / prescale;
227 		prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
228 	}
229 	WRITE4(sc, IMX_GPT_PR, prescale);
230 
231 	/* Clear the status register. */
232 	WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
233 
234 	/* Start the counter. */
235 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
236 
237 	if (bootverbose)
238 		device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
239 		    sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
240 
241 	/* Setup the timer interrupt. */
242 	err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
243 	    NULL, sc, &sc->sc_ih);
244 	if (err != 0) {
245 		bus_release_resources(dev, imx_gpt_spec, sc->res);
246 		device_printf(dev, "Unable to setup the clock irq handler, "
247 		    "err = %d\n", err);
248 		return (ENXIO);
249 	}
250 
251 	/*
252 	 * Measure how many clock ticks it takes to setup a one-shot event (it's
253 	 * longer than you might think, due to wait states in accessing gpt
254 	 * registers).  Scale up the result by a factor of 1.5 to be safe,
255 	 * and use that to set the minimum eventtimer period we can schedule. In
256 	 * the real world, the value works out to about 750ns on imx5 hardware.
257 	 */
258 	t1 = READ4(sc, IMX_GPT_CNT);
259 	WRITE4(sc, IMX_GPT_OCR3, 0);
260 	t2 = READ4(sc, IMX_GPT_CNT);
261 	setup_ticks = ((t2 - t1 + 1) * 3) / 2;
262 
263 	/* Register as an eventtimer. */
264 	sc->et.et_name = "iMXGPT";
265 	sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
266 	sc->et.et_quality = 800;
267 	sc->et.et_frequency = sc->clkfreq;
268 	sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq;
269 	sc->et.et_max_period = ((uint64_t)0xfffffffe  << 32) / sc->clkfreq;
270 	sc->et.et_start = imx_gpt_timer_start;
271 	sc->et.et_stop = imx_gpt_timer_stop;
272 	sc->et.et_priv = sc;
273 	et_register(&sc->et);
274 
275 	/* Register as a timecounter. */
276 	imx_gpt_timecounter.tc_frequency = sc->clkfreq;
277 	imx_gpt_timecounter.tc_priv = sc;
278 	tc_init(&imx_gpt_timecounter);
279 
280 	/* If this is the first unit, store the softc for use in DELAY. */
281 	if (device_get_unit(dev) == 0) {
282 		arm_set_delay(imx_gpt_do_delay, sc);
283 	}
284 
285 	return (0);
286 }
287 
288 static int
289 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
290 {
291 	struct imx_gpt_softc *sc;
292 	uint32_t ticks;
293 
294 	sc = (struct imx_gpt_softc *)et->et_priv;
295 
296 	if (period != 0) {
297 		sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
298 		/* Set expected value */
299 		WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
300 		/* Enable compare register 2 Interrupt */
301 		sc->ir_reg |= GPT_IR_OF2;
302 		WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
303 		return (0);
304 	} else if (first != 0) {
305 		/* Enable compare register 3 interrupt if not already on. */
306 		if ((sc->ir_reg & GPT_IR_OF3) == 0) {
307 			sc->ir_reg |= GPT_IR_OF3;
308 			WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
309 		}
310 		ticks = ((uint32_t)et->et_frequency * first) >> 32;
311 		/* Do not disturb, otherwise event will be lost */
312 		spinlock_enter();
313 		/* Set expected value */
314 		WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
315 		/* Now everybody can relax */
316 		spinlock_exit();
317 		return (0);
318 	}
319 
320 	return (EINVAL);
321 }
322 
323 static int
324 imx_gpt_timer_stop(struct eventtimer *et)
325 {
326 	struct imx_gpt_softc *sc;
327 
328 	sc = (struct imx_gpt_softc *)et->et_priv;
329 
330 	/* Disable interrupts and clear any pending status. */
331 	sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3);
332 	WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
333 	WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3);
334 	sc->sc_period = 0;
335 
336 	return (0);
337 }
338 
339 static int
340 imx_gpt_intr(void *arg)
341 {
342 	struct imx_gpt_softc *sc;
343 	uint32_t status;
344 
345 	sc = (struct imx_gpt_softc *)arg;
346 
347 	status = READ4(sc, IMX_GPT_SR);
348 
349 	/*
350 	* Clear interrupt status before invoking event callbacks.  The callback
351 	* often sets up a new one-shot timer event and if the interval is short
352 	* enough it can fire before we get out of this function.  If we cleared
353 	* at the bottom we'd miss the interrupt and hang until the clock wraps.
354 	*/
355 	WRITE4(sc, IMX_GPT_SR, status);
356 
357 	/* Handle one-shot timer events. */
358 	if (status & GPT_IR_OF3) {
359 		if (sc->et.et_active) {
360 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
361 		}
362 	}
363 
364 	/* Handle periodic timer events. */
365 	if (status & GPT_IR_OF2) {
366 		if (sc->et.et_active)
367 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
368 		if (sc->sc_period != 0)
369 			WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
370 			    sc->sc_period);
371 	}
372 
373 	return (FILTER_HANDLED);
374 }
375 
376 static u_int
377 imx_gpt_get_timecount(struct timecounter *tc)
378 {
379 	struct imx_gpt_softc *sc;
380 
381 	sc = tc->tc_priv;
382 	return (READ4(sc, IMX_GPT_CNT));
383 }
384 
385 static device_method_t imx_gpt_methods[] = {
386 	DEVMETHOD(device_probe,		imx_gpt_probe),
387 	DEVMETHOD(device_attach,	imx_gpt_attach),
388 
389 	DEVMETHOD_END
390 };
391 
392 static driver_t imx_gpt_driver = {
393 	"imx_gpt",
394 	imx_gpt_methods,
395 	sizeof(struct imx_gpt_softc),
396 };
397 
398 static devclass_t imx_gpt_devclass;
399 
400 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, imx_gpt_devclass, 0,
401     0, BUS_PASS_TIMER);
402 
403 static void
404 imx_gpt_do_delay(int usec, void *arg)
405 {
406 	struct imx_gpt_softc *sc = arg;
407 	uint64_t curcnt, endcnt, startcnt, ticks;
408 
409 	/*
410 	 * Calculate the tick count with 64-bit values so that it works for any
411 	 * clock frequency.  Loop until the hardware count reaches start+ticks.
412 	 * If the 32-bit hardware count rolls over while we're looping, just
413 	 * manually do a carry into the high bits after each read; don't worry
414 	 * that doing this on each loop iteration is inefficient -- we're trying
415 	 * to waste time here.
416 	 */
417 	ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000;
418 	curcnt = startcnt = READ4(sc, IMX_GPT_CNT);
419 	endcnt = startcnt + ticks;
420 	while (curcnt < endcnt) {
421 		curcnt = READ4(sc, IMX_GPT_CNT);
422 		if (curcnt < startcnt)
423 			curcnt += 1ULL << 32;
424 	}
425 }
426