1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012, 2013 The FreeBSD Foundation 5 * 6 * This software was developed by Oleksandr Rybalko under sponsorship 7 * from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/bus.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/rman.h> 37 #include <sys/timeet.h> 38 #include <sys/timetc.h> 39 #include <machine/bus.h> 40 #include <machine/intr.h> 41 #include <machine/machdep.h> /* For arm_set_delay */ 42 43 #include <dev/ofw/openfirm.h> 44 #include <dev/ofw/ofw_bus.h> 45 #include <dev/ofw/ofw_bus_subr.h> 46 47 #include <arm/freescale/imx/imx_ccmvar.h> 48 #include <arm/freescale/imx/imx_gptreg.h> 49 50 #define WRITE4(_sc, _r, _v) \ 51 bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v)) 52 #define READ4(_sc, _r) \ 53 bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r)) 54 #define SET4(_sc, _r, _m) \ 55 WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m)) 56 #define CLEAR4(_sc, _r, _m) \ 57 WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m)) 58 59 static u_int imx_gpt_get_timecount(struct timecounter *); 60 static int imx_gpt_timer_start(struct eventtimer *, sbintime_t, 61 sbintime_t); 62 static int imx_gpt_timer_stop(struct eventtimer *); 63 64 static void imx_gpt_do_delay(int, void *); 65 66 static int imx_gpt_intr(void *); 67 static int imx_gpt_probe(device_t); 68 static int imx_gpt_attach(device_t); 69 70 static struct timecounter imx_gpt_timecounter = { 71 .tc_name = "iMXGPT", 72 .tc_get_timecount = imx_gpt_get_timecount, 73 .tc_counter_mask = ~0u, 74 .tc_frequency = 0, 75 .tc_quality = 1000, 76 }; 77 78 struct imx_gpt_softc { 79 device_t sc_dev; 80 struct resource * res[2]; 81 bus_space_tag_t sc_iot; 82 bus_space_handle_t sc_ioh; 83 void * sc_ih; /* interrupt handler */ 84 uint32_t sc_period; 85 uint32_t sc_clksrc; 86 uint32_t clkfreq; 87 uint32_t ir_reg; 88 struct eventtimer et; 89 }; 90 91 /* Try to divide down an available fast clock to this frequency. */ 92 #define TARGET_FREQUENCY 1000000000 93 94 static struct resource_spec imx_gpt_spec[] = { 95 { SYS_RES_MEMORY, 0, RF_ACTIVE }, 96 { SYS_RES_IRQ, 0, RF_ACTIVE }, 97 { -1, 0 } 98 }; 99 100 static struct ofw_compat_data compat_data[] = { 101 {"fsl,imx6dl-gpt", 1}, 102 {"fsl,imx6q-gpt", 1}, 103 {"fsl,imx6ul-gpt", 1}, 104 {"fsl,imx53-gpt", 1}, 105 {"fsl,imx51-gpt", 1}, 106 {"fsl,imx31-gpt", 1}, 107 {"fsl,imx27-gpt", 1}, 108 {"fsl,imx25-gpt", 1}, 109 {NULL, 0} 110 }; 111 112 static int 113 imx_gpt_probe(device_t dev) 114 { 115 116 if (!ofw_bus_status_okay(dev)) 117 return (ENXIO); 118 119 /* 120 * We only support a single unit, because the only thing this driver 121 * does with the complex timer hardware is supply the system 122 * timecounter and eventtimer. There is nothing useful we can do with 123 * the additional device instances that exist in some chips. 124 */ 125 if (device_get_unit(dev) > 0) 126 return (ENXIO); 127 128 if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) { 129 device_set_desc(dev, "Freescale i.MX GPT timer"); 130 return (BUS_PROBE_DEFAULT); 131 } 132 133 return (ENXIO); 134 } 135 136 static int 137 imx_gpt_attach(device_t dev) 138 { 139 struct imx_gpt_softc *sc; 140 int ctlreg, err; 141 uint32_t basefreq, prescale, setup_ticks, t1, t2; 142 143 sc = device_get_softc(dev); 144 145 if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) { 146 device_printf(dev, "could not allocate resources\n"); 147 return (ENXIO); 148 } 149 150 sc->sc_dev = dev; 151 sc->sc_iot = rman_get_bustag(sc->res[0]); 152 sc->sc_ioh = rman_get_bushandle(sc->res[0]); 153 154 /* 155 * For now, just automatically choose a good clock for the hardware 156 * we're running on. Eventually we could allow selection from the fdt; 157 * the code in this driver will cope with any clock frequency. 158 */ 159 sc->sc_clksrc = GPT_CR_CLKSRC_IPG; 160 161 ctlreg = 0; 162 163 switch (sc->sc_clksrc) { 164 case GPT_CR_CLKSRC_32K: 165 basefreq = 32768; 166 break; 167 case GPT_CR_CLKSRC_IPG: 168 basefreq = imx_ccm_ipg_hz(); 169 break; 170 case GPT_CR_CLKSRC_IPG_HIGH: 171 basefreq = imx_ccm_ipg_hz() * 2; 172 break; 173 case GPT_CR_CLKSRC_24M: 174 ctlreg |= GPT_CR_24MEN; 175 basefreq = 24000000; 176 break; 177 case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */ 178 case GPT_CR_CLKSRC_EXT: /* No way to get the freq of an ext clock. */ 179 default: 180 device_printf(dev, "Unsupported clock source '%d'\n", 181 sc->sc_clksrc); 182 return (EINVAL); 183 } 184 185 /* 186 * The following setup sequence is from the I.MX6 reference manual, 187 * "Selecting the clock source". First, disable the clock and 188 * interrupts. This also clears input and output mode bits and in 189 * general completes several of the early steps in the procedure. 190 */ 191 WRITE4(sc, IMX_GPT_CR, 0); 192 WRITE4(sc, IMX_GPT_IR, 0); 193 194 /* Choose the clock and the power-saving behaviors. */ 195 ctlreg |= 196 sc->sc_clksrc | /* Use selected clock */ 197 GPT_CR_FRR | /* Just count (FreeRunner mode) */ 198 GPT_CR_STOPEN | /* Run in STOP mode */ 199 GPT_CR_DOZEEN | /* Run in DOZE mode */ 200 GPT_CR_WAITEN | /* Run in WAIT mode */ 201 GPT_CR_DBGEN; /* Run in DEBUG mode */ 202 WRITE4(sc, IMX_GPT_CR, ctlreg); 203 204 /* 205 * The datasheet says to do the software reset after choosing the clock 206 * source. It says nothing about needing to wait for the reset to 207 * complete, but the register description does document the fact that 208 * the reset isn't complete until the SWR bit reads 0, so let's be safe. 209 * The reset also clears all registers except for a few of the bits in 210 * CR, but we'll rewrite all the CR bits when we start the counter. 211 */ 212 WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR); 213 while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR) 214 continue; 215 216 /* Set a prescaler value that gets us near the target frequency. */ 217 if (basefreq < TARGET_FREQUENCY) { 218 prescale = 0; 219 sc->clkfreq = basefreq; 220 } else { 221 prescale = basefreq / TARGET_FREQUENCY; 222 sc->clkfreq = basefreq / prescale; 223 prescale -= 1; /* 1..n range is 0..n-1 in hardware. */ 224 } 225 WRITE4(sc, IMX_GPT_PR, prescale); 226 227 /* Clear the status register. */ 228 WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL); 229 230 /* Start the counter. */ 231 WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN); 232 233 if (bootverbose) 234 device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n", 235 sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR)); 236 237 /* Setup the timer interrupt. */ 238 err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr, 239 NULL, sc, &sc->sc_ih); 240 if (err != 0) { 241 bus_release_resources(dev, imx_gpt_spec, sc->res); 242 device_printf(dev, "Unable to setup the clock irq handler, " 243 "err = %d\n", err); 244 return (ENXIO); 245 } 246 247 /* 248 * Measure how many clock ticks it takes to setup a one-shot event (it's 249 * longer than you might think, due to wait states in accessing gpt 250 * registers). Scale up the result by a factor of 1.5 to be safe, 251 * and use that to set the minimum eventtimer period we can schedule. In 252 * the real world, the value works out to about 750ns on imx5 hardware. 253 */ 254 t1 = READ4(sc, IMX_GPT_CNT); 255 WRITE4(sc, IMX_GPT_OCR3, 0); 256 t2 = READ4(sc, IMX_GPT_CNT); 257 setup_ticks = ((t2 - t1 + 1) * 3) / 2; 258 259 /* Register as an eventtimer. */ 260 sc->et.et_name = "iMXGPT"; 261 sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC; 262 sc->et.et_quality = 800; 263 sc->et.et_frequency = sc->clkfreq; 264 sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq; 265 sc->et.et_max_period = ((uint64_t)0xfffffffe << 32) / sc->clkfreq; 266 sc->et.et_start = imx_gpt_timer_start; 267 sc->et.et_stop = imx_gpt_timer_stop; 268 sc->et.et_priv = sc; 269 et_register(&sc->et); 270 271 /* Register as a timecounter. */ 272 imx_gpt_timecounter.tc_frequency = sc->clkfreq; 273 imx_gpt_timecounter.tc_priv = sc; 274 tc_init(&imx_gpt_timecounter); 275 276 /* If this is the first unit, store the softc for use in DELAY. */ 277 if (device_get_unit(dev) == 0) { 278 arm_set_delay(imx_gpt_do_delay, sc); 279 } 280 281 return (0); 282 } 283 284 static int 285 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period) 286 { 287 struct imx_gpt_softc *sc; 288 uint32_t ticks; 289 290 sc = (struct imx_gpt_softc *)et->et_priv; 291 292 if (period != 0) { 293 sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32; 294 /* Set expected value */ 295 WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period); 296 /* Enable compare register 2 Interrupt */ 297 sc->ir_reg |= GPT_IR_OF2; 298 WRITE4(sc, IMX_GPT_IR, sc->ir_reg); 299 return (0); 300 } else if (first != 0) { 301 /* Enable compare register 3 interrupt if not already on. */ 302 if ((sc->ir_reg & GPT_IR_OF3) == 0) { 303 sc->ir_reg |= GPT_IR_OF3; 304 WRITE4(sc, IMX_GPT_IR, sc->ir_reg); 305 } 306 ticks = ((uint32_t)et->et_frequency * first) >> 32; 307 /* Do not disturb, otherwise event will be lost */ 308 spinlock_enter(); 309 /* Set expected value */ 310 WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks); 311 /* Now everybody can relax */ 312 spinlock_exit(); 313 return (0); 314 } 315 316 return (EINVAL); 317 } 318 319 static int 320 imx_gpt_timer_stop(struct eventtimer *et) 321 { 322 struct imx_gpt_softc *sc; 323 324 sc = (struct imx_gpt_softc *)et->et_priv; 325 326 /* Disable interrupts and clear any pending status. */ 327 sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3); 328 WRITE4(sc, IMX_GPT_IR, sc->ir_reg); 329 WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3); 330 sc->sc_period = 0; 331 332 return (0); 333 } 334 335 static int 336 imx_gpt_intr(void *arg) 337 { 338 struct imx_gpt_softc *sc; 339 uint32_t status; 340 341 sc = (struct imx_gpt_softc *)arg; 342 343 status = READ4(sc, IMX_GPT_SR); 344 345 /* 346 * Clear interrupt status before invoking event callbacks. The callback 347 * often sets up a new one-shot timer event and if the interval is short 348 * enough it can fire before we get out of this function. If we cleared 349 * at the bottom we'd miss the interrupt and hang until the clock wraps. 350 */ 351 WRITE4(sc, IMX_GPT_SR, status); 352 353 /* Handle one-shot timer events. */ 354 if (status & GPT_IR_OF3) { 355 if (sc->et.et_active) { 356 sc->et.et_event_cb(&sc->et, sc->et.et_arg); 357 } 358 } 359 360 /* Handle periodic timer events. */ 361 if (status & GPT_IR_OF2) { 362 if (sc->et.et_active) 363 sc->et.et_event_cb(&sc->et, sc->et.et_arg); 364 if (sc->sc_period != 0) 365 WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + 366 sc->sc_period); 367 } 368 369 return (FILTER_HANDLED); 370 } 371 372 static u_int 373 imx_gpt_get_timecount(struct timecounter *tc) 374 { 375 struct imx_gpt_softc *sc; 376 377 sc = tc->tc_priv; 378 return (READ4(sc, IMX_GPT_CNT)); 379 } 380 381 static device_method_t imx_gpt_methods[] = { 382 DEVMETHOD(device_probe, imx_gpt_probe), 383 DEVMETHOD(device_attach, imx_gpt_attach), 384 385 DEVMETHOD_END 386 }; 387 388 static driver_t imx_gpt_driver = { 389 "imx_gpt", 390 imx_gpt_methods, 391 sizeof(struct imx_gpt_softc), 392 }; 393 394 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, 0, 0, BUS_PASS_TIMER); 395 396 static void 397 imx_gpt_do_delay(int usec, void *arg) 398 { 399 struct imx_gpt_softc *sc = arg; 400 uint64_t curcnt, endcnt, startcnt, ticks; 401 402 /* 403 * Calculate the tick count with 64-bit values so that it works for any 404 * clock frequency. Loop until the hardware count reaches start+ticks. 405 * If the 32-bit hardware count rolls over while we're looping, just 406 * manually do a carry into the high bits after each read; don't worry 407 * that doing this on each loop iteration is inefficient -- we're trying 408 * to waste time here. 409 */ 410 ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000; 411 curcnt = startcnt = READ4(sc, IMX_GPT_CNT); 412 endcnt = startcnt + ticks; 413 while (curcnt < endcnt) { 414 curcnt = READ4(sc, IMX_GPT_CNT); 415 if (curcnt < startcnt) 416 curcnt += 1ULL << 32; 417 } 418 } 419