xref: /freebsd/sys/arm/freescale/imx/imx_gpt.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012, 2013 The FreeBSD Foundation
5  *
6  * This software was developed by Oleksandr Rybalko under sponsorship
7  * from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1.	Redistributions of source code must retain the above copyright
13  *	notice, this list of conditions and the following disclaimer.
14  * 2.	Redistributions in binary form must reproduce the above copyright
15  *	notice, this list of conditions and the following disclaimer in the
16  *	documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/rman.h>
38 #include <sys/timeet.h>
39 #include <sys/timetc.h>
40 #include <machine/bus.h>
41 #include <machine/intr.h>
42 #include <machine/machdep.h> /* For arm_set_delay */
43 
44 #include <dev/ofw/openfirm.h>
45 #include <dev/ofw/ofw_bus.h>
46 #include <dev/ofw/ofw_bus_subr.h>
47 
48 #include <arm/freescale/imx/imx_ccmvar.h>
49 #include <arm/freescale/imx/imx_gptreg.h>
50 
51 #define	WRITE4(_sc, _r, _v)						\
52 	    bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
53 #define	READ4(_sc, _r)							\
54 	    bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
55 #define	SET4(_sc, _r, _m)						\
56 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
57 #define	CLEAR4(_sc, _r, _m)						\
58 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
59 
60 static u_int	imx_gpt_get_timecount(struct timecounter *);
61 static int	imx_gpt_timer_start(struct eventtimer *, sbintime_t,
62     sbintime_t);
63 static int	imx_gpt_timer_stop(struct eventtimer *);
64 
65 static void imx_gpt_do_delay(int, void *);
66 
67 static int imx_gpt_intr(void *);
68 static int imx_gpt_probe(device_t);
69 static int imx_gpt_attach(device_t);
70 
71 static struct timecounter imx_gpt_timecounter = {
72 	.tc_name           = "iMXGPT",
73 	.tc_get_timecount  = imx_gpt_get_timecount,
74 	.tc_counter_mask   = ~0u,
75 	.tc_frequency      = 0,
76 	.tc_quality        = 1000,
77 };
78 
79 struct imx_gpt_softc {
80 	device_t 		sc_dev;
81 	struct resource *	res[2];
82 	bus_space_tag_t 	sc_iot;
83 	bus_space_handle_t	sc_ioh;
84 	void *			sc_ih;			/* interrupt handler */
85 	uint32_t 		sc_period;
86 	uint32_t 		sc_clksrc;
87 	uint32_t 		clkfreq;
88 	uint32_t		ir_reg;
89 	struct eventtimer 	et;
90 };
91 
92 /* Try to divide down an available fast clock to this frequency. */
93 #define	TARGET_FREQUENCY	1000000000
94 
95 static struct resource_spec imx_gpt_spec[] = {
96 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
97 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
98 	{ -1, 0 }
99 };
100 
101 static struct ofw_compat_data compat_data[] = {
102 	{"fsl,imx6dl-gpt", 1},
103 	{"fsl,imx6q-gpt",  1},
104 	{"fsl,imx6ul-gpt", 1},
105 	{"fsl,imx53-gpt",  1},
106 	{"fsl,imx51-gpt",  1},
107 	{"fsl,imx31-gpt",  1},
108 	{"fsl,imx27-gpt",  1},
109 	{"fsl,imx25-gpt",  1},
110 	{NULL,             0}
111 };
112 
113 static int
114 imx_gpt_probe(device_t dev)
115 {
116 
117 	if (!ofw_bus_status_okay(dev))
118 		return (ENXIO);
119 
120 	/*
121 	 *  We only support a single unit, because the only thing this driver
122 	 *  does with the complex timer hardware is supply the system
123 	 *  timecounter and eventtimer.  There is nothing useful we can do with
124 	 *  the additional device instances that exist in some chips.
125 	 */
126 	if (device_get_unit(dev) > 0)
127 		return (ENXIO);
128 
129 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
130 		device_set_desc(dev, "Freescale i.MX GPT timer");
131 		return (BUS_PROBE_DEFAULT);
132 	}
133 
134 	return (ENXIO);
135 }
136 
137 static int
138 imx_gpt_attach(device_t dev)
139 {
140 	struct imx_gpt_softc *sc;
141 	int ctlreg, err;
142 	uint32_t basefreq, prescale, setup_ticks, t1, t2;
143 
144 	sc = device_get_softc(dev);
145 
146 	if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
147 		device_printf(dev, "could not allocate resources\n");
148 		return (ENXIO);
149 	}
150 
151 	sc->sc_dev = dev;
152 	sc->sc_iot = rman_get_bustag(sc->res[0]);
153 	sc->sc_ioh = rman_get_bushandle(sc->res[0]);
154 
155 	/*
156 	 * For now, just automatically choose a good clock for the hardware
157 	 * we're running on.  Eventually we could allow selection from the fdt;
158 	 * the code in this driver will cope with any clock frequency.
159 	 */
160 	sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
161 
162 	ctlreg = 0;
163 
164 	switch (sc->sc_clksrc) {
165 	case GPT_CR_CLKSRC_32K:
166 		basefreq = 32768;
167 		break;
168 	case GPT_CR_CLKSRC_IPG:
169 		basefreq = imx_ccm_ipg_hz();
170 		break;
171 	case GPT_CR_CLKSRC_IPG_HIGH:
172 		basefreq = imx_ccm_ipg_hz() * 2;
173 		break;
174 	case GPT_CR_CLKSRC_24M:
175 		ctlreg |= GPT_CR_24MEN;
176 		basefreq = 24000000;
177 		break;
178 	case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
179 	case GPT_CR_CLKSRC_EXT:	/* No way to get the freq of an ext clock. */
180 	default:
181 		device_printf(dev, "Unsupported clock source '%d'\n",
182 		    sc->sc_clksrc);
183 		return (EINVAL);
184 	}
185 
186 	/*
187 	 * The following setup sequence is from the I.MX6 reference manual,
188 	 * "Selecting the clock source".  First, disable the clock and
189 	 * interrupts.  This also clears input and output mode bits and in
190 	 * general completes several of the early steps in the procedure.
191 	 */
192 	WRITE4(sc, IMX_GPT_CR, 0);
193 	WRITE4(sc, IMX_GPT_IR, 0);
194 
195 	/* Choose the clock and the power-saving behaviors. */
196 	ctlreg |=
197 	    sc->sc_clksrc |	/* Use selected clock */
198 	    GPT_CR_FRR |	/* Just count (FreeRunner mode) */
199 	    GPT_CR_STOPEN |	/* Run in STOP mode */
200 	    GPT_CR_DOZEEN |	/* Run in DOZE mode */
201 	    GPT_CR_WAITEN |	/* Run in WAIT mode */
202 	    GPT_CR_DBGEN;	/* Run in DEBUG mode */
203 	WRITE4(sc, IMX_GPT_CR, ctlreg);
204 
205 	/*
206 	 * The datasheet says to do the software reset after choosing the clock
207 	 * source.  It says nothing about needing to wait for the reset to
208 	 * complete, but the register description does document the fact that
209 	 * the reset isn't complete until the SWR bit reads 0, so let's be safe.
210 	 * The reset also clears all registers except for a few of the bits in
211 	 * CR, but we'll rewrite all the CR bits when we start the counter.
212 	 */
213 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
214 	while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
215 		continue;
216 
217 	/* Set a prescaler value that gets us near the target frequency. */
218 	if (basefreq < TARGET_FREQUENCY) {
219 		prescale = 0;
220 		sc->clkfreq = basefreq;
221 	} else {
222 		prescale = basefreq / TARGET_FREQUENCY;
223 		sc->clkfreq = basefreq / prescale;
224 		prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
225 	}
226 	WRITE4(sc, IMX_GPT_PR, prescale);
227 
228 	/* Clear the status register. */
229 	WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
230 
231 	/* Start the counter. */
232 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
233 
234 	if (bootverbose)
235 		device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
236 		    sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
237 
238 	/* Setup the timer interrupt. */
239 	err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
240 	    NULL, sc, &sc->sc_ih);
241 	if (err != 0) {
242 		bus_release_resources(dev, imx_gpt_spec, sc->res);
243 		device_printf(dev, "Unable to setup the clock irq handler, "
244 		    "err = %d\n", err);
245 		return (ENXIO);
246 	}
247 
248 	/*
249 	 * Measure how many clock ticks it takes to setup a one-shot event (it's
250 	 * longer than you might think, due to wait states in accessing gpt
251 	 * registers).  Scale up the result by a factor of 1.5 to be safe,
252 	 * and use that to set the minimum eventtimer period we can schedule. In
253 	 * the real world, the value works out to about 750ns on imx5 hardware.
254 	 */
255 	t1 = READ4(sc, IMX_GPT_CNT);
256 	WRITE4(sc, IMX_GPT_OCR3, 0);
257 	t2 = READ4(sc, IMX_GPT_CNT);
258 	setup_ticks = ((t2 - t1 + 1) * 3) / 2;
259 
260 	/* Register as an eventtimer. */
261 	sc->et.et_name = "iMXGPT";
262 	sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
263 	sc->et.et_quality = 800;
264 	sc->et.et_frequency = sc->clkfreq;
265 	sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq;
266 	sc->et.et_max_period = ((uint64_t)0xfffffffe  << 32) / sc->clkfreq;
267 	sc->et.et_start = imx_gpt_timer_start;
268 	sc->et.et_stop = imx_gpt_timer_stop;
269 	sc->et.et_priv = sc;
270 	et_register(&sc->et);
271 
272 	/* Register as a timecounter. */
273 	imx_gpt_timecounter.tc_frequency = sc->clkfreq;
274 	imx_gpt_timecounter.tc_priv = sc;
275 	tc_init(&imx_gpt_timecounter);
276 
277 	/* If this is the first unit, store the softc for use in DELAY. */
278 	if (device_get_unit(dev) == 0) {
279 		arm_set_delay(imx_gpt_do_delay, sc);
280 	}
281 
282 	return (0);
283 }
284 
285 static int
286 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
287 {
288 	struct imx_gpt_softc *sc;
289 	uint32_t ticks;
290 
291 	sc = (struct imx_gpt_softc *)et->et_priv;
292 
293 	if (period != 0) {
294 		sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
295 		/* Set expected value */
296 		WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
297 		/* Enable compare register 2 Interrupt */
298 		sc->ir_reg |= GPT_IR_OF2;
299 		WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
300 		return (0);
301 	} else if (first != 0) {
302 		/* Enable compare register 3 interrupt if not already on. */
303 		if ((sc->ir_reg & GPT_IR_OF3) == 0) {
304 			sc->ir_reg |= GPT_IR_OF3;
305 			WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
306 		}
307 		ticks = ((uint32_t)et->et_frequency * first) >> 32;
308 		/* Do not disturb, otherwise event will be lost */
309 		spinlock_enter();
310 		/* Set expected value */
311 		WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
312 		/* Now everybody can relax */
313 		spinlock_exit();
314 		return (0);
315 	}
316 
317 	return (EINVAL);
318 }
319 
320 static int
321 imx_gpt_timer_stop(struct eventtimer *et)
322 {
323 	struct imx_gpt_softc *sc;
324 
325 	sc = (struct imx_gpt_softc *)et->et_priv;
326 
327 	/* Disable interrupts and clear any pending status. */
328 	sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3);
329 	WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
330 	WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3);
331 	sc->sc_period = 0;
332 
333 	return (0);
334 }
335 
336 static int
337 imx_gpt_intr(void *arg)
338 {
339 	struct imx_gpt_softc *sc;
340 	uint32_t status;
341 
342 	sc = (struct imx_gpt_softc *)arg;
343 
344 	status = READ4(sc, IMX_GPT_SR);
345 
346 	/*
347 	* Clear interrupt status before invoking event callbacks.  The callback
348 	* often sets up a new one-shot timer event and if the interval is short
349 	* enough it can fire before we get out of this function.  If we cleared
350 	* at the bottom we'd miss the interrupt and hang until the clock wraps.
351 	*/
352 	WRITE4(sc, IMX_GPT_SR, status);
353 
354 	/* Handle one-shot timer events. */
355 	if (status & GPT_IR_OF3) {
356 		if (sc->et.et_active) {
357 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
358 		}
359 	}
360 
361 	/* Handle periodic timer events. */
362 	if (status & GPT_IR_OF2) {
363 		if (sc->et.et_active)
364 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
365 		if (sc->sc_period != 0)
366 			WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
367 			    sc->sc_period);
368 	}
369 
370 	return (FILTER_HANDLED);
371 }
372 
373 static u_int
374 imx_gpt_get_timecount(struct timecounter *tc)
375 {
376 	struct imx_gpt_softc *sc;
377 
378 	sc = tc->tc_priv;
379 	return (READ4(sc, IMX_GPT_CNT));
380 }
381 
382 static device_method_t imx_gpt_methods[] = {
383 	DEVMETHOD(device_probe,		imx_gpt_probe),
384 	DEVMETHOD(device_attach,	imx_gpt_attach),
385 
386 	DEVMETHOD_END
387 };
388 
389 static driver_t imx_gpt_driver = {
390 	"imx_gpt",
391 	imx_gpt_methods,
392 	sizeof(struct imx_gpt_softc),
393 };
394 
395 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, 0, 0, BUS_PASS_TIMER);
396 
397 static void
398 imx_gpt_do_delay(int usec, void *arg)
399 {
400 	struct imx_gpt_softc *sc = arg;
401 	uint64_t curcnt, endcnt, startcnt, ticks;
402 
403 	/*
404 	 * Calculate the tick count with 64-bit values so that it works for any
405 	 * clock frequency.  Loop until the hardware count reaches start+ticks.
406 	 * If the 32-bit hardware count rolls over while we're looping, just
407 	 * manually do a carry into the high bits after each read; don't worry
408 	 * that doing this on each loop iteration is inefficient -- we're trying
409 	 * to waste time here.
410 	 */
411 	ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000;
412 	curcnt = startcnt = READ4(sc, IMX_GPT_CNT);
413 	endcnt = startcnt + ticks;
414 	while (curcnt < endcnt) {
415 		curcnt = READ4(sc, IMX_GPT_CNT);
416 		if (curcnt < startcnt)
417 			curcnt += 1ULL << 32;
418 	}
419 }
420