xref: /freebsd/sys/arm/freescale/imx/imx_gpt.c (revision 13464e4a44fc58490a03bb8bfc7e3c972e9c30b2)
1 /*-
2  * Copyright (c) 2012, 2013 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Oleksandr Rybalko under sponsorship
6  * from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1.	Redistributions of source code must retain the above copyright
12  *	notice, this list of conditions and the following disclaimer.
13  * 2.	Redistributions in binary form must reproduce the above copyright
14  *	notice, this list of conditions and the following disclaimer in the
15  *	documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/kernel.h>
37 #include <sys/module.h>
38 #include <sys/rman.h>
39 #include <sys/timeet.h>
40 #include <sys/timetc.h>
41 #include <machine/bus.h>
42 #include <machine/intr.h>
43 #include <machine/machdep.h> /* For arm_set_delay */
44 
45 #include <dev/ofw/openfirm.h>
46 #include <dev/ofw/ofw_bus.h>
47 #include <dev/ofw/ofw_bus_subr.h>
48 
49 #include <arm/freescale/imx/imx_ccmvar.h>
50 #include <arm/freescale/imx/imx_gptreg.h>
51 
52 #define	WRITE4(_sc, _r, _v)						\
53 	    bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
54 #define	READ4(_sc, _r)							\
55 	    bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
56 #define	SET4(_sc, _r, _m)						\
57 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
58 #define	CLEAR4(_sc, _r, _m)						\
59 	    WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
60 
61 static u_int	imx_gpt_get_timecount(struct timecounter *);
62 static int	imx_gpt_timer_start(struct eventtimer *, sbintime_t,
63     sbintime_t);
64 static int	imx_gpt_timer_stop(struct eventtimer *);
65 
66 static void imx_gpt_do_delay(int, void *);
67 
68 static int imx_gpt_intr(void *);
69 static int imx_gpt_probe(device_t);
70 static int imx_gpt_attach(device_t);
71 
72 static struct timecounter imx_gpt_timecounter = {
73 	.tc_name           = "iMXGPT",
74 	.tc_get_timecount  = imx_gpt_get_timecount,
75 	.tc_counter_mask   = ~0u,
76 	.tc_frequency      = 0,
77 	.tc_quality        = 1000,
78 };
79 
80 struct imx_gpt_softc {
81 	device_t 		sc_dev;
82 	struct resource *	res[2];
83 	bus_space_tag_t 	sc_iot;
84 	bus_space_handle_t	sc_ioh;
85 	void *			sc_ih;			/* interrupt handler */
86 	uint32_t 		sc_period;
87 	uint32_t 		sc_clksrc;
88 	uint32_t 		clkfreq;
89 	uint32_t		ir_reg;
90 	struct eventtimer 	et;
91 };
92 
93 /* Try to divide down an available fast clock to this frequency. */
94 #define	TARGET_FREQUENCY	1000000000
95 
96 static struct resource_spec imx_gpt_spec[] = {
97 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
98 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
99 	{ -1, 0 }
100 };
101 
102 static struct ofw_compat_data compat_data[] = {
103 	{"fsl,imx6dl-gpt", 1},
104 	{"fsl,imx6q-gpt",  1},
105 	{"fsl,imx6ul-gpt", 1},
106 	{"fsl,imx53-gpt",  1},
107 	{"fsl,imx51-gpt",  1},
108 	{"fsl,imx31-gpt",  1},
109 	{"fsl,imx27-gpt",  1},
110 	{"fsl,imx25-gpt",  1},
111 	{NULL,             0}
112 };
113 
114 static int
115 imx_gpt_probe(device_t dev)
116 {
117 
118 	if (!ofw_bus_status_okay(dev))
119 		return (ENXIO);
120 
121 	/*
122 	 *  We only support a single unit, because the only thing this driver
123 	 *  does with the complex timer hardware is supply the system
124 	 *  timecounter and eventtimer.  There is nothing useful we can do with
125 	 *  the additional device instances that exist in some chips.
126 	 */
127 	if (device_get_unit(dev) > 0)
128 		return (ENXIO);
129 
130 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
131 		device_set_desc(dev, "Freescale i.MX GPT timer");
132 		return (BUS_PROBE_DEFAULT);
133 	}
134 
135 	return (ENXIO);
136 }
137 
138 static int
139 imx_gpt_attach(device_t dev)
140 {
141 	struct imx_gpt_softc *sc;
142 	int ctlreg, err;
143 	uint32_t basefreq, prescale, setup_ticks, t1, t2;
144 
145 	sc = device_get_softc(dev);
146 
147 	if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
148 		device_printf(dev, "could not allocate resources\n");
149 		return (ENXIO);
150 	}
151 
152 	sc->sc_dev = dev;
153 	sc->sc_iot = rman_get_bustag(sc->res[0]);
154 	sc->sc_ioh = rman_get_bushandle(sc->res[0]);
155 
156 	/*
157 	 * For now, just automatically choose a good clock for the hardware
158 	 * we're running on.  Eventually we could allow selection from the fdt;
159 	 * the code in this driver will cope with any clock frequency.
160 	 */
161 	sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
162 
163 	ctlreg = 0;
164 
165 	switch (sc->sc_clksrc) {
166 	case GPT_CR_CLKSRC_32K:
167 		basefreq = 32768;
168 		break;
169 	case GPT_CR_CLKSRC_IPG:
170 		basefreq = imx_ccm_ipg_hz();
171 		break;
172 	case GPT_CR_CLKSRC_IPG_HIGH:
173 		basefreq = imx_ccm_ipg_hz() * 2;
174 		break;
175 	case GPT_CR_CLKSRC_24M:
176 		ctlreg |= GPT_CR_24MEN;
177 		basefreq = 24000000;
178 		break;
179 	case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
180 	case GPT_CR_CLKSRC_EXT:	/* No way to get the freq of an ext clock. */
181 	default:
182 		device_printf(dev, "Unsupported clock source '%d'\n",
183 		    sc->sc_clksrc);
184 		return (EINVAL);
185 	}
186 
187 	/*
188 	 * The following setup sequence is from the I.MX6 reference manual,
189 	 * "Selecting the clock source".  First, disable the clock and
190 	 * interrupts.  This also clears input and output mode bits and in
191 	 * general completes several of the early steps in the procedure.
192 	 */
193 	WRITE4(sc, IMX_GPT_CR, 0);
194 	WRITE4(sc, IMX_GPT_IR, 0);
195 
196 	/* Choose the clock and the power-saving behaviors. */
197 	ctlreg |=
198 	    sc->sc_clksrc |	/* Use selected clock */
199 	    GPT_CR_FRR |	/* Just count (FreeRunner mode) */
200 	    GPT_CR_STOPEN |	/* Run in STOP mode */
201 	    GPT_CR_DOZEEN |	/* Run in DOZE mode */
202 	    GPT_CR_WAITEN |	/* Run in WAIT mode */
203 	    GPT_CR_DBGEN;	/* Run in DEBUG mode */
204 	WRITE4(sc, IMX_GPT_CR, ctlreg);
205 
206 	/*
207 	 * The datasheet says to do the software reset after choosing the clock
208 	 * source.  It says nothing about needing to wait for the reset to
209 	 * complete, but the register description does document the fact that
210 	 * the reset isn't complete until the SWR bit reads 0, so let's be safe.
211 	 * The reset also clears all registers except for a few of the bits in
212 	 * CR, but we'll rewrite all the CR bits when we start the counter.
213 	 */
214 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
215 	while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
216 		continue;
217 
218 	/* Set a prescaler value that gets us near the target frequency. */
219 	if (basefreq < TARGET_FREQUENCY) {
220 		prescale = 0;
221 		sc->clkfreq = basefreq;
222 	} else {
223 		prescale = basefreq / TARGET_FREQUENCY;
224 		sc->clkfreq = basefreq / prescale;
225 		prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
226 	}
227 	WRITE4(sc, IMX_GPT_PR, prescale);
228 
229 	/* Clear the status register. */
230 	WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
231 
232 	/* Start the counter. */
233 	WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
234 
235 	if (bootverbose)
236 		device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
237 		    sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
238 
239 	/* Setup the timer interrupt. */
240 	err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
241 	    NULL, sc, &sc->sc_ih);
242 	if (err != 0) {
243 		bus_release_resources(dev, imx_gpt_spec, sc->res);
244 		device_printf(dev, "Unable to setup the clock irq handler, "
245 		    "err = %d\n", err);
246 		return (ENXIO);
247 	}
248 
249 	/*
250 	 * Measure how many clock ticks it takes to setup a one-shot event (it's
251 	 * longer than you might think, due to wait states in accessing gpt
252 	 * registers).  Scale up the result by a factor of 1.5 to be safe,
253 	 * and use that to set the minimum eventtimer period we can schedule. In
254 	 * the real world, the value works out to about 750ns on imx5 hardware.
255 	 */
256 	t1 = READ4(sc, IMX_GPT_CNT);
257 	WRITE4(sc, IMX_GPT_OCR3, 0);
258 	t2 = READ4(sc, IMX_GPT_CNT);
259 	setup_ticks = ((t2 - t1 + 1) * 3) / 2;
260 
261 	/* Register as an eventtimer. */
262 	sc->et.et_name = "iMXGPT";
263 	sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
264 	sc->et.et_quality = 800;
265 	sc->et.et_frequency = sc->clkfreq;
266 	sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq;
267 	sc->et.et_max_period = ((uint64_t)0xfffffffe  << 32) / sc->clkfreq;
268 	sc->et.et_start = imx_gpt_timer_start;
269 	sc->et.et_stop = imx_gpt_timer_stop;
270 	sc->et.et_priv = sc;
271 	et_register(&sc->et);
272 
273 	/* Register as a timecounter. */
274 	imx_gpt_timecounter.tc_frequency = sc->clkfreq;
275 	imx_gpt_timecounter.tc_priv = sc;
276 	tc_init(&imx_gpt_timecounter);
277 
278 	/* If this is the first unit, store the softc for use in DELAY. */
279 	if (device_get_unit(dev) == 0) {
280 		arm_set_delay(imx_gpt_do_delay, sc);
281 	}
282 
283 	return (0);
284 }
285 
286 static int
287 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
288 {
289 	struct imx_gpt_softc *sc;
290 	uint32_t ticks;
291 
292 	sc = (struct imx_gpt_softc *)et->et_priv;
293 
294 	if (period != 0) {
295 		sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
296 		/* Set expected value */
297 		WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
298 		/* Enable compare register 2 Interrupt */
299 		sc->ir_reg |= GPT_IR_OF2;
300 		WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
301 		return (0);
302 	} else if (first != 0) {
303 		/* Enable compare register 3 interrupt if not already on. */
304 		if ((sc->ir_reg & GPT_IR_OF3) == 0) {
305 			sc->ir_reg |= GPT_IR_OF3;
306 			WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
307 		}
308 		ticks = ((uint32_t)et->et_frequency * first) >> 32;
309 		/* Do not disturb, otherwise event will be lost */
310 		spinlock_enter();
311 		/* Set expected value */
312 		WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
313 		/* Now everybody can relax */
314 		spinlock_exit();
315 		return (0);
316 	}
317 
318 	return (EINVAL);
319 }
320 
321 static int
322 imx_gpt_timer_stop(struct eventtimer *et)
323 {
324 	struct imx_gpt_softc *sc;
325 
326 	sc = (struct imx_gpt_softc *)et->et_priv;
327 
328 	/* Disable interrupts and clear any pending status. */
329 	sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3);
330 	WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
331 	WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3);
332 	sc->sc_period = 0;
333 
334 	return (0);
335 }
336 
337 static int
338 imx_gpt_intr(void *arg)
339 {
340 	struct imx_gpt_softc *sc;
341 	uint32_t status;
342 
343 	sc = (struct imx_gpt_softc *)arg;
344 
345 	status = READ4(sc, IMX_GPT_SR);
346 
347 	/*
348 	* Clear interrupt status before invoking event callbacks.  The callback
349 	* often sets up a new one-shot timer event and if the interval is short
350 	* enough it can fire before we get out of this function.  If we cleared
351 	* at the bottom we'd miss the interrupt and hang until the clock wraps.
352 	*/
353 	WRITE4(sc, IMX_GPT_SR, status);
354 
355 	/* Handle one-shot timer events. */
356 	if (status & GPT_IR_OF3) {
357 		if (sc->et.et_active) {
358 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
359 		}
360 	}
361 
362 	/* Handle periodic timer events. */
363 	if (status & GPT_IR_OF2) {
364 		if (sc->et.et_active)
365 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
366 		if (sc->sc_period != 0)
367 			WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
368 			    sc->sc_period);
369 	}
370 
371 	return (FILTER_HANDLED);
372 }
373 
374 static u_int
375 imx_gpt_get_timecount(struct timecounter *tc)
376 {
377 	struct imx_gpt_softc *sc;
378 
379 	sc = tc->tc_priv;
380 	return (READ4(sc, IMX_GPT_CNT));
381 }
382 
383 static device_method_t imx_gpt_methods[] = {
384 	DEVMETHOD(device_probe,		imx_gpt_probe),
385 	DEVMETHOD(device_attach,	imx_gpt_attach),
386 
387 	DEVMETHOD_END
388 };
389 
390 static driver_t imx_gpt_driver = {
391 	"imx_gpt",
392 	imx_gpt_methods,
393 	sizeof(struct imx_gpt_softc),
394 };
395 
396 static devclass_t imx_gpt_devclass;
397 
398 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, imx_gpt_devclass, 0,
399     0, BUS_PASS_TIMER);
400 
401 static void
402 imx_gpt_do_delay(int usec, void *arg)
403 {
404 	struct imx_gpt_softc *sc = arg;
405 	uint64_t curcnt, endcnt, startcnt, ticks;
406 
407 	/*
408 	 * Calculate the tick count with 64-bit values so that it works for any
409 	 * clock frequency.  Loop until the hardware count reaches start+ticks.
410 	 * If the 32-bit hardware count rolls over while we're looping, just
411 	 * manually do a carry into the high bits after each read; don't worry
412 	 * that doing this on each loop iteration is inefficient -- we're trying
413 	 * to waste time here.
414 	 */
415 	ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000;
416 	curcnt = startcnt = READ4(sc, IMX_GPT_CNT);
417 	endcnt = startcnt + ticks;
418 	while (curcnt < endcnt) {
419 		curcnt = READ4(sc, IMX_GPT_CNT);
420 		if (curcnt < startcnt)
421 			curcnt += 1ULL << 32;
422 	}
423 }
424