xref: /freebsd/sys/arm/freescale/imx/imx6_ssi.c (revision f6a3b357e9be4c6423c85eff9a847163a0d307c8)
1 /*-
2  * Copyright (c) 2015 Ruslan Bukin <br@bsdpad.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * i.MX6 Synchronous Serial Interface (SSI)
29  *
30  * Chapter 61, i.MX 6Dual/6Quad Applications Processor Reference Manual,
31  * Rev. 1, 04/2013
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/kernel.h>
41 #include <sys/module.h>
42 #include <sys/malloc.h>
43 #include <sys/rman.h>
44 #include <sys/timeet.h>
45 #include <sys/timetc.h>
46 
47 #include <dev/sound/pcm/sound.h>
48 #include <dev/sound/chip.h>
49 #include <mixer_if.h>
50 
51 #include <dev/ofw/openfirm.h>
52 #include <dev/ofw/ofw_bus.h>
53 #include <dev/ofw/ofw_bus_subr.h>
54 
55 #include <machine/bus.h>
56 #include <machine/cpu.h>
57 #include <machine/intr.h>
58 
59 #include <arm/freescale/imx/imx6_sdma.h>
60 #include <arm/freescale/imx/imx6_anatopvar.h>
61 #include <arm/freescale/imx/imx_ccmvar.h>
62 
63 #define	READ4(_sc, _reg)	\
64 	bus_space_read_4(_sc->bst, _sc->bsh, _reg)
65 #define	WRITE4(_sc, _reg, _val)	\
66 	bus_space_write_4(_sc->bst, _sc->bsh, _reg, _val)
67 
68 #define	SSI_NCHANNELS	1
69 #define	DMAS_TOTAL	8
70 
71 /* i.MX6 SSI registers */
72 
73 #define	SSI_STX0	0x00 /* Transmit Data Register n */
74 #define	SSI_STX1	0x04 /* Transmit Data Register n */
75 #define	SSI_SRX0	0x08 /* Receive Data Register n */
76 #define	SSI_SRX1	0x0C /* Receive Data Register n */
77 #define	SSI_SCR		0x10 /* Control Register */
78 #define	 SCR_I2S_MODE_S	5    /* I2S Mode Select. */
79 #define	 SCR_I2S_MODE_M	0x3
80 #define	 SCR_SYN	(1 << 4)
81 #define	 SCR_NET       	(1 << 3)  /* Network mode */
82 #define	 SCR_RE		(1 << 2)  /* Receive Enable. */
83 #define	 SCR_TE		(1 << 1)  /* Transmit Enable. */
84 #define	 SCR_SSIEN	(1 << 0)  /* SSI Enable */
85 #define	SSI_SISR	0x14      /* Interrupt Status Register */
86 #define	SSI_SIER	0x18      /* Interrupt Enable Register */
87 #define	 SIER_RDMAE	(1 << 22) /* Receive DMA Enable. */
88 #define	 SIER_RIE	(1 << 21) /* Receive Interrupt Enable. */
89 #define	 SIER_TDMAE	(1 << 20) /* Transmit DMA Enable. */
90 #define	 SIER_TIE	(1 << 19) /* Transmit Interrupt Enable. */
91 #define	 SIER_TDE0IE	(1 << 12) /* Transmit Data Register Empty 0. */
92 #define	 SIER_TUE0IE	(1 << 8)  /* Transmitter Underrun Error 0. */
93 #define	 SIER_TFE0IE	(1 << 0)  /* Transmit FIFO Empty 0 IE. */
94 #define	SSI_STCR	0x1C	  /* Transmit Configuration Register */
95 #define	 STCR_TXBIT0	(1 << 9)  /* Transmit Bit 0 shift MSB/LSB */
96 #define	 STCR_TFEN1	(1 << 8)  /* Transmit FIFO Enable 1. */
97 #define	 STCR_TFEN0	(1 << 7)  /* Transmit FIFO Enable 0. */
98 #define	 STCR_TFDIR	(1 << 6)  /* Transmit Frame Direction. */
99 #define	 STCR_TXDIR	(1 << 5)  /* Transmit Clock Direction. */
100 #define	 STCR_TSHFD	(1 << 4)  /* Transmit Shift Direction. */
101 #define	 STCR_TSCKP	(1 << 3)  /* Transmit Clock Polarity. */
102 #define	 STCR_TFSI	(1 << 2)  /* Transmit Frame Sync Invert. */
103 #define	 STCR_TFSL	(1 << 1)  /* Transmit Frame Sync Length. */
104 #define	 STCR_TEFS	(1 << 0)  /* Transmit Early Frame Sync. */
105 #define	SSI_SRCR	0x20      /* Receive Configuration Register */
106 #define	SSI_STCCR	0x24      /* Transmit Clock Control Register */
107 #define	 STCCR_DIV2	(1 << 18) /* Divide By 2. */
108 #define	 STCCR_PSR	(1 << 17) /* Divide clock by 8. */
109 #define	 WL3_WL0_S	13
110 #define	 WL3_WL0_M	0xf
111 #define	 DC4_DC0_S	8
112 #define	 DC4_DC0_M	0x1f
113 #define	 PM7_PM0_S	0
114 #define	 PM7_PM0_M	0xff
115 #define	SSI_SRCCR	0x28	/* Receive Clock Control Register */
116 #define	SSI_SFCSR	0x2C	/* FIFO Control/Status Register */
117 #define	 SFCSR_RFWM1_S	20	/* Receive FIFO Empty WaterMark 1 */
118 #define	 SFCSR_RFWM1_M	0xf
119 #define	 SFCSR_TFWM1_S	16	/* Transmit FIFO Empty WaterMark 1 */
120 #define	 SFCSR_TFWM1_M	0xf
121 #define	 SFCSR_RFWM0_S	4	/* Receive FIFO Empty WaterMark 0 */
122 #define	 SFCSR_RFWM0_M	0xf
123 #define	 SFCSR_TFWM0_S	0	/* Transmit FIFO Empty WaterMark 0 */
124 #define	 SFCSR_TFWM0_M	0xf
125 #define	SSI_SACNT	0x38	/* AC97 Control Register */
126 #define	SSI_SACADD	0x3C	/* AC97 Command Address Register */
127 #define	SSI_SACDAT	0x40	/* AC97 Command Data Register */
128 #define	SSI_SATAG	0x44	/* AC97 Tag Register */
129 #define	SSI_STMSK	0x48	/* Transmit Time Slot Mask Register */
130 #define	SSI_SRMSK	0x4C	/* Receive Time Slot Mask Register */
131 #define	SSI_SACCST	0x50	/* AC97 Channel Status Register */
132 #define	SSI_SACCEN	0x54	/* AC97 Channel Enable Register */
133 #define	SSI_SACCDIS	0x58	/* AC97 Channel Disable Register */
134 
135 static MALLOC_DEFINE(M_SSI, "ssi", "ssi audio");
136 
137 uint32_t ssi_dma_intr(void *arg, int chn);
138 
139 struct ssi_rate {
140 	uint32_t speed;
141 	uint32_t mfi; /* PLL4 Multiplication Factor Integer */
142 	uint32_t mfn; /* PLL4 Multiplication Factor Numerator */
143 	uint32_t mfd; /* PLL4 Multiplication Factor Denominator */
144 	/* More dividers to configure can be added here */
145 };
146 
147 static struct ssi_rate rate_map[] = {
148 	{ 192000, 49, 152, 1000 }, /* PLL4 49.152 Mhz */
149 	/* TODO: add more frequences */
150 	{ 0, 0 },
151 };
152 
153 /*
154  *  i.MX6 example bit clock formula
155  *
156  *  BCLK = 2 channels * 192000 hz * 24 bit = 9216000 hz =
157  *     (24000000 * (49 + 152/1000.0) / 4 / 4 / 2 / 2 / 2 / 1 / 1)
158  *             ^     ^     ^      ^    ^   ^   ^   ^   ^   ^   ^
159  *             |     |     |      |    |   |   |   |   |   |   |
160  *  Fref ------/     |     |      |    |   |   |   |   |   |   |
161  *  PLL4 div select -/     |      |    |   |   |   |   |   |   |
162  *  PLL4 num --------------/      |    |   |   |   |   |   |   |
163  *  PLL4 denom -------------------/    |   |   |   |   |   |   |
164  *  PLL4 post div ---------------------/   |   |   |   |   |   |
165  *  CCM ssi pre div (CCM_CS1CDR) ----------/   |   |   |   |   |
166  *  CCM ssi post div (CCM_CS1CDR) -------------/   |   |   |   |
167  *  SSI PM7_PM0_S ---------------------------------/   |   |   |
168  *  SSI Fixed divider ---------------------------------/   |   |
169  *  SSI DIV2 ----------------------------------------------/   |
170  *  SSI PSR (prescaler /1 or /8) ------------------------------/
171  *
172  *  MCLK (Master clock) depends on DAC, usually BCLK * 4
173  */
174 
175 struct sc_info {
176 	struct resource		*res[2];
177 	bus_space_tag_t		bst;
178 	bus_space_handle_t	bsh;
179 	device_t		dev;
180 	struct mtx		*lock;
181 	void			*ih;
182 	int			pos;
183 	int			dma_size;
184 	bus_dma_tag_t		dma_tag;
185 	bus_dmamap_t		dma_map;
186 	bus_addr_t		buf_base_phys;
187 	uint32_t		*buf_base;
188 	struct sdma_conf	*conf;
189 	struct ssi_rate		*sr;
190 	struct sdma_softc	*sdma_sc;
191 	uint32_t		sdma_ev_rx;
192 	uint32_t		sdma_ev_tx;
193 	int			sdma_channel;
194 };
195 
196 /* Channel registers */
197 struct sc_chinfo {
198 	struct snd_dbuf		*buffer;
199 	struct pcm_channel	*channel;
200 	struct sc_pcminfo	*parent;
201 
202 	/* Channel information */
203 	uint32_t	dir;
204 	uint32_t	format;
205 
206 	/* Flags */
207 	uint32_t	run;
208 };
209 
210 /* PCM device private data */
211 struct sc_pcminfo {
212 	device_t		dev;
213 	uint32_t		(*ih)(struct sc_pcminfo *scp);
214 	uint32_t		chnum;
215 	struct sc_chinfo	chan[SSI_NCHANNELS];
216 	struct sc_info		*sc;
217 };
218 
219 static struct resource_spec ssi_spec[] = {
220 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
221 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
222 	{ -1, 0 }
223 };
224 
225 static int setup_dma(struct sc_pcminfo *scp);
226 static void setup_ssi(struct sc_info *);
227 static void ssi_configure_clock(struct sc_info *);
228 
229 /*
230  * Mixer interface.
231  */
232 
233 static int
234 ssimixer_init(struct snd_mixer *m)
235 {
236 	struct sc_pcminfo *scp;
237 	struct sc_info *sc;
238 	int mask;
239 
240 	scp = mix_getdevinfo(m);
241 	sc = scp->sc;
242 
243 	if (sc == NULL)
244 		return -1;
245 
246 	mask = SOUND_MASK_PCM;
247 	mask |= SOUND_MASK_VOLUME;
248 
249 	snd_mtxlock(sc->lock);
250 	pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
251 	mix_setdevs(m, mask);
252 	snd_mtxunlock(sc->lock);
253 
254 	return (0);
255 }
256 
257 static int
258 ssimixer_set(struct snd_mixer *m, unsigned dev,
259     unsigned left, unsigned right)
260 {
261 	struct sc_pcminfo *scp;
262 
263 	scp = mix_getdevinfo(m);
264 
265 	/* Here we can configure hardware volume on our DAC */
266 
267 #if 1
268 	device_printf(scp->dev, "ssimixer_set() %d %d\n",
269 	    left, right);
270 #endif
271 
272 	return (0);
273 }
274 
275 static kobj_method_t ssimixer_methods[] = {
276 	KOBJMETHOD(mixer_init,      ssimixer_init),
277 	KOBJMETHOD(mixer_set,       ssimixer_set),
278 	KOBJMETHOD_END
279 };
280 MIXER_DECLARE(ssimixer);
281 
282 
283 /*
284  * Channel interface.
285  */
286 
287 static void *
288 ssichan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
289     struct pcm_channel *c, int dir)
290 {
291 	struct sc_pcminfo *scp;
292 	struct sc_chinfo *ch;
293 	struct sc_info *sc;
294 
295 	scp = (struct sc_pcminfo *)devinfo;
296 	sc = scp->sc;
297 
298 	snd_mtxlock(sc->lock);
299 	ch = &scp->chan[0];
300 	ch->dir = dir;
301 	ch->run = 0;
302 	ch->buffer = b;
303 	ch->channel = c;
304 	ch->parent = scp;
305 	snd_mtxunlock(sc->lock);
306 
307 	if (sndbuf_setup(ch->buffer, sc->buf_base, sc->dma_size) != 0) {
308 		device_printf(scp->dev, "Can't setup sndbuf.\n");
309 		return NULL;
310 	}
311 
312 	return ch;
313 }
314 
315 static int
316 ssichan_free(kobj_t obj, void *data)
317 {
318 	struct sc_chinfo *ch = data;
319 	struct sc_pcminfo *scp = ch->parent;
320 	struct sc_info *sc = scp->sc;
321 
322 #if 0
323 	device_printf(scp->dev, "ssichan_free()\n");
324 #endif
325 
326 	snd_mtxlock(sc->lock);
327 	/* TODO: free channel buffer */
328 	snd_mtxunlock(sc->lock);
329 
330 	return (0);
331 }
332 
333 static int
334 ssichan_setformat(kobj_t obj, void *data, uint32_t format)
335 {
336 	struct sc_chinfo *ch = data;
337 
338 	ch->format = format;
339 
340 	return (0);
341 }
342 
343 static uint32_t
344 ssichan_setspeed(kobj_t obj, void *data, uint32_t speed)
345 {
346 	struct sc_pcminfo *scp;
347 	struct sc_chinfo *ch;
348 	struct ssi_rate *sr;
349 	struct sc_info *sc;
350 	int threshold;
351 	int i;
352 
353 	ch = data;
354 	scp = ch->parent;
355 	sc = scp->sc;
356 
357 	sr = NULL;
358 
359 	/* First look for equal frequency. */
360 	for (i = 0; rate_map[i].speed != 0; i++) {
361 		if (rate_map[i].speed == speed)
362 			sr = &rate_map[i];
363 	}
364 
365 	/* If no match, just find nearest. */
366 	if (sr == NULL) {
367 		for (i = 0; rate_map[i].speed != 0; i++) {
368 			sr = &rate_map[i];
369 			threshold = sr->speed + ((rate_map[i + 1].speed != 0) ?
370 			    ((rate_map[i + 1].speed - sr->speed) >> 1) : 0);
371 			if (speed < threshold)
372 				break;
373 		}
374 	}
375 
376 	sc->sr = sr;
377 
378 	ssi_configure_clock(sc);
379 
380 	return (sr->speed);
381 }
382 
383 static void
384 ssi_configure_clock(struct sc_info *sc)
385 {
386 	struct ssi_rate *sr;
387 
388 	sr = sc->sr;
389 
390 	pll4_configure_output(sr->mfi, sr->mfn, sr->mfd);
391 
392 	/* Configure other dividers here, if any */
393 }
394 
395 static uint32_t
396 ssichan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
397 {
398 	struct sc_chinfo *ch = data;
399 	struct sc_pcminfo *scp = ch->parent;
400 	struct sc_info *sc = scp->sc;
401 
402 	sndbuf_resize(ch->buffer, sc->dma_size / blocksize, blocksize);
403 
404 	setup_dma(scp);
405 
406 	return (sndbuf_getblksz(ch->buffer));
407 }
408 
409 uint32_t
410 ssi_dma_intr(void *arg, int chn)
411 {
412 	struct sc_pcminfo *scp;
413 	struct sdma_conf *conf;
414 	struct sc_chinfo *ch;
415 	struct sc_info *sc;
416 	int bufsize;
417 
418 	scp = arg;
419 	ch = &scp->chan[0];
420 	sc = scp->sc;
421 	conf = sc->conf;
422 
423 	bufsize = sndbuf_getsize(ch->buffer);
424 
425 	sc->pos += conf->period;
426 	if (sc->pos >= bufsize)
427 		sc->pos -= bufsize;
428 
429 	if (ch->run)
430 		chn_intr(ch->channel);
431 
432 	return (0);
433 }
434 
435 static int
436 find_sdma_controller(struct sc_info *sc)
437 {
438 	struct sdma_softc *sdma_sc;
439 	phandle_t node, sdma_node;
440 	device_t sdma_dev;
441 	pcell_t dts_value[DMAS_TOTAL];
442 	int len;
443 
444 	if ((node = ofw_bus_get_node(sc->dev)) == -1)
445 		return (ENXIO);
446 
447 	if ((len = OF_getproplen(node, "dmas")) <= 0)
448 		return (ENXIO);
449 
450 	if (len != sizeof(dts_value)) {
451 		device_printf(sc->dev,
452 		    "\"dmas\" property length is invalid: %d (expected %d)",
453 		    len, sizeof(dts_value));
454 		return (ENXIO);
455 	}
456 
457 	OF_getencprop(node, "dmas", dts_value, sizeof(dts_value));
458 
459 	sc->sdma_ev_rx = dts_value[1];
460 	sc->sdma_ev_tx = dts_value[5];
461 
462 	sdma_node = OF_node_from_xref(dts_value[0]);
463 
464 	sdma_sc = NULL;
465 
466 	sdma_dev = devclass_get_device(devclass_find("sdma"), 0);
467 	if (sdma_dev)
468 		sdma_sc = device_get_softc(sdma_dev);
469 
470 	if (sdma_sc == NULL) {
471 		device_printf(sc->dev, "No sDMA found. Can't operate\n");
472 		return (ENXIO);
473 	}
474 
475 	sc->sdma_sc = sdma_sc;
476 
477 	return (0);
478 };
479 
480 static int
481 setup_dma(struct sc_pcminfo *scp)
482 {
483 	struct sdma_conf *conf;
484 	struct sc_chinfo *ch;
485 	struct sc_info *sc;
486 	int fmt;
487 
488 	ch = &scp->chan[0];
489 	sc = scp->sc;
490 	conf = sc->conf;
491 
492 	conf->ih = ssi_dma_intr;
493 	conf->ih_user = scp;
494 	conf->saddr = sc->buf_base_phys;
495 	conf->daddr = rman_get_start(sc->res[0]) + SSI_STX0;
496 	conf->event = sc->sdma_ev_tx; /* SDMA TX event */
497 	conf->period = sndbuf_getblksz(ch->buffer);
498 	conf->num_bd = sndbuf_getblkcnt(ch->buffer);
499 
500 	/*
501 	 * Word Length
502 	 * Can be 32, 24, 16 or 8 for sDMA.
503 	 *
504 	 * SSI supports 24 at max.
505 	 */
506 
507 	fmt = sndbuf_getfmt(ch->buffer);
508 
509 	if (fmt & AFMT_16BIT) {
510 		conf->word_length = 16;
511 		conf->command = CMD_2BYTES;
512 	} else if (fmt & AFMT_24BIT) {
513 		conf->word_length = 24;
514 		conf->command = CMD_3BYTES;
515 	} else {
516 		device_printf(sc->dev, "Unknown format\n");
517 		return (-1);
518 	}
519 
520 	return (0);
521 }
522 
523 static int
524 ssi_start(struct sc_pcminfo *scp)
525 {
526 	struct sc_info *sc;
527 	int reg;
528 
529 	sc = scp->sc;
530 
531 	if (sdma_configure(sc->sdma_channel, sc->conf) != 0) {
532 		device_printf(sc->dev, "Can't configure sDMA\n");
533 		return (-1);
534 	}
535 
536 	/* Enable DMA interrupt */
537 	reg = (SIER_TDMAE);
538 	WRITE4(sc, SSI_SIER, reg);
539 
540 	sdma_start(sc->sdma_channel);
541 
542 	return (0);
543 }
544 
545 static int
546 ssi_stop(struct sc_pcminfo *scp)
547 {
548 	struct sc_info *sc;
549 	int reg;
550 
551 	sc = scp->sc;
552 
553 	reg = READ4(sc, SSI_SIER);
554 	reg &= ~(SIER_TDMAE);
555 	WRITE4(sc, SSI_SIER, reg);
556 
557 	sdma_stop(sc->sdma_channel);
558 
559 	bzero(sc->buf_base, sc->dma_size);
560 
561 	return (0);
562 }
563 
564 static int
565 ssichan_trigger(kobj_t obj, void *data, int go)
566 {
567 	struct sc_pcminfo *scp;
568 	struct sc_chinfo *ch;
569 	struct sc_info *sc;
570 
571 	ch = data;
572 	scp = ch->parent;
573 	sc = scp->sc;
574 
575 	snd_mtxlock(sc->lock);
576 
577 	switch (go) {
578 	case PCMTRIG_START:
579 #if 0
580 		device_printf(scp->dev, "trigger start\n");
581 #endif
582 		ch->run = 1;
583 
584 		ssi_start(scp);
585 
586 		break;
587 
588 	case PCMTRIG_STOP:
589 	case PCMTRIG_ABORT:
590 #if 0
591 		device_printf(scp->dev, "trigger stop or abort\n");
592 #endif
593 		ch->run = 0;
594 
595 		ssi_stop(scp);
596 
597 		break;
598 	}
599 
600 	snd_mtxunlock(sc->lock);
601 
602 	return (0);
603 }
604 
605 static uint32_t
606 ssichan_getptr(kobj_t obj, void *data)
607 {
608 	struct sc_pcminfo *scp;
609 	struct sc_chinfo *ch;
610 	struct sc_info *sc;
611 
612 	ch = data;
613 	scp = ch->parent;
614 	sc = scp->sc;
615 
616 	return (sc->pos);
617 }
618 
619 static uint32_t ssi_pfmt[] = {
620 	SND_FORMAT(AFMT_S24_LE, 2, 0),
621 	0
622 };
623 
624 static struct pcmchan_caps ssi_pcaps = {44100, 192000, ssi_pfmt, 0};
625 
626 static struct pcmchan_caps *
627 ssichan_getcaps(kobj_t obj, void *data)
628 {
629 
630 	return (&ssi_pcaps);
631 }
632 
633 static kobj_method_t ssichan_methods[] = {
634 	KOBJMETHOD(channel_init,         ssichan_init),
635 	KOBJMETHOD(channel_free,         ssichan_free),
636 	KOBJMETHOD(channel_setformat,    ssichan_setformat),
637 	KOBJMETHOD(channel_setspeed,     ssichan_setspeed),
638 	KOBJMETHOD(channel_setblocksize, ssichan_setblocksize),
639 	KOBJMETHOD(channel_trigger,      ssichan_trigger),
640 	KOBJMETHOD(channel_getptr,       ssichan_getptr),
641 	KOBJMETHOD(channel_getcaps,      ssichan_getcaps),
642 	KOBJMETHOD_END
643 };
644 CHANNEL_DECLARE(ssichan);
645 
646 static int
647 ssi_probe(device_t dev)
648 {
649 
650 	if (!ofw_bus_status_okay(dev))
651 		return (ENXIO);
652 
653 	if (!ofw_bus_is_compatible(dev, "fsl,imx6q-ssi"))
654 		return (ENXIO);
655 
656 	device_set_desc(dev, "i.MX6 Synchronous Serial Interface (SSI)");
657 	return (BUS_PROBE_DEFAULT);
658 }
659 
660 static void
661 ssi_intr(void *arg)
662 {
663 	struct sc_pcminfo *scp;
664 	struct sc_chinfo *ch;
665 	struct sc_info *sc;
666 
667 	scp = arg;
668 	sc = scp->sc;
669 	ch = &scp->chan[0];
670 
671 	/* We don't use SSI interrupt */
672 #if 0
673 	device_printf(sc->dev, "SSI Intr 0x%08x\n",
674 	    READ4(sc, SSI_SISR));
675 #endif
676 }
677 
678 static void
679 setup_ssi(struct sc_info *sc)
680 {
681 	int reg;
682 
683 	reg = READ4(sc, SSI_STCCR);
684 	reg &= ~(WL3_WL0_M << WL3_WL0_S);
685 	reg |= (0xb << WL3_WL0_S); /* 24 bit */
686 	reg &= ~(DC4_DC0_M << DC4_DC0_S);
687 	reg |= (1 << DC4_DC0_S); /* 2 words per frame */
688 	reg &= ~(STCCR_DIV2); /* Divide by 1 */
689 	reg &= ~(STCCR_PSR); /* Divide by 1 */
690 	reg &= ~(PM7_PM0_M << PM7_PM0_S);
691 	reg |= (1 << PM7_PM0_S); /* Divide by 2 */
692 	WRITE4(sc, SSI_STCCR, reg);
693 
694 	reg = READ4(sc, SSI_SFCSR);
695 	reg &= ~(SFCSR_TFWM0_M << SFCSR_TFWM0_S);
696 	reg |= (8 << SFCSR_TFWM0_S); /* empty slots */
697 	WRITE4(sc, SSI_SFCSR, reg);
698 
699 	reg = READ4(sc, SSI_STCR);
700 	reg |= (STCR_TFEN0);
701 	reg &= ~(STCR_TFEN1);
702 	reg &= ~(STCR_TSHFD); /* MSB */
703 	reg |= (STCR_TXBIT0);
704 	reg |= (STCR_TXDIR | STCR_TFDIR);
705 	reg |= (STCR_TSCKP); /* falling edge */
706 	reg |= (STCR_TFSI);
707 	reg &= ~(STCR_TFSI); /* active high frame sync */
708 	reg &= ~(STCR_TFSL);
709 	reg |= STCR_TEFS;
710 	WRITE4(sc, SSI_STCR, reg);
711 
712 	reg = READ4(sc, SSI_SCR);
713 	reg &= ~(SCR_I2S_MODE_M << SCR_I2S_MODE_S); /* Not master */
714 	reg |= (SCR_SSIEN | SCR_TE);
715 	reg |= (SCR_NET);
716 	reg |= (SCR_SYN);
717 	WRITE4(sc, SSI_SCR, reg);
718 }
719 
720 static void
721 ssi_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
722 {
723 	bus_addr_t *addr;
724 
725 	if (err)
726 		return;
727 
728 	addr = (bus_addr_t*)arg;
729 	*addr = segs[0].ds_addr;
730 }
731 
732 static int
733 ssi_attach(device_t dev)
734 {
735 	char status[SND_STATUSLEN];
736 	struct sc_pcminfo *scp;
737 	struct sc_info *sc;
738 	int err;
739 
740 	sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
741 	sc->dev = dev;
742 	sc->sr = &rate_map[0];
743 	sc->pos = 0;
744 	sc->conf = malloc(sizeof(struct sdma_conf), M_DEVBUF, M_WAITOK | M_ZERO);
745 
746 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "ssi softc");
747 	if (sc->lock == NULL) {
748 		device_printf(dev, "Can't create mtx\n");
749 		return (ENXIO);
750 	}
751 
752 	if (bus_alloc_resources(dev, ssi_spec, sc->res)) {
753 		device_printf(dev, "could not allocate resources\n");
754 		return (ENXIO);
755 	}
756 
757 	/* Memory interface */
758 	sc->bst = rman_get_bustag(sc->res[0]);
759 	sc->bsh = rman_get_bushandle(sc->res[0]);
760 
761 	/* SDMA */
762 	if (find_sdma_controller(sc)) {
763 		device_printf(dev, "could not find active SDMA\n");
764 		return (ENXIO);
765 	}
766 
767 	/* Setup PCM */
768 	scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_NOWAIT | M_ZERO);
769 	scp->sc = sc;
770 	scp->dev = dev;
771 
772 	/*
773 	 * Maximum possible DMA buffer.
774 	 * Will be used partially to match 24 bit word.
775 	 */
776 	sc->dma_size = 131072;
777 
778 	/*
779 	 * Must use dma_size boundary as modulo feature required.
780 	 * Modulo feature allows setup circular buffer.
781 	 */
782 
783 	err = bus_dma_tag_create(
784 	    bus_get_dma_tag(sc->dev),
785 	    4, sc->dma_size,		/* alignment, boundary */
786 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
787 	    BUS_SPACE_MAXADDR,		/* highaddr */
788 	    NULL, NULL,			/* filter, filterarg */
789 	    sc->dma_size, 1,		/* maxsize, nsegments */
790 	    sc->dma_size, 0,		/* maxsegsize, flags */
791 	    NULL, NULL,			/* lockfunc, lockarg */
792 	    &sc->dma_tag);
793 
794 	err = bus_dmamem_alloc(sc->dma_tag, (void **)&sc->buf_base,
795 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->dma_map);
796 	if (err) {
797 		device_printf(dev, "cannot allocate framebuffer\n");
798 		return (ENXIO);
799 	}
800 
801 	err = bus_dmamap_load(sc->dma_tag, sc->dma_map, sc->buf_base,
802 	    sc->dma_size, ssi_dmamap_cb, &sc->buf_base_phys, BUS_DMA_NOWAIT);
803 	if (err) {
804 		device_printf(dev, "cannot load DMA map\n");
805 		return (ENXIO);
806 	}
807 
808 	bzero(sc->buf_base, sc->dma_size);
809 
810 	/* Setup interrupt handler */
811 	err = bus_setup_intr(dev, sc->res[1], INTR_MPSAFE | INTR_TYPE_AV,
812 	    NULL, ssi_intr, scp, &sc->ih);
813 	if (err) {
814 		device_printf(dev, "Unable to alloc interrupt resource.\n");
815 		return (ENXIO);
816 	}
817 
818 	pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);
819 
820 	err = pcm_register(dev, scp, 1, 0);
821 	if (err) {
822 		device_printf(dev, "Can't register pcm.\n");
823 		return (ENXIO);
824 	}
825 
826 	scp->chnum = 0;
827 	pcm_addchan(dev, PCMDIR_PLAY, &ssichan_class, scp);
828 	scp->chnum++;
829 
830 	snprintf(status, SND_STATUSLEN, "at simplebus");
831 	pcm_setstatus(dev, status);
832 
833 	mixer_init(dev, &ssimixer_class, scp);
834 	setup_ssi(sc);
835 
836 	imx_ccm_ssi_configure(dev);
837 
838 	sc->sdma_channel = sdma_alloc();
839 	if (sc->sdma_channel < 0) {
840 		device_printf(sc->dev, "Can't get sDMA channel\n");
841 		return (1);
842 	}
843 
844 	return (0);
845 }
846 
847 static device_method_t ssi_pcm_methods[] = {
848 	DEVMETHOD(device_probe,		ssi_probe),
849 	DEVMETHOD(device_attach,	ssi_attach),
850 	{ 0, 0 }
851 };
852 
853 static driver_t ssi_pcm_driver = {
854 	"pcm",
855 	ssi_pcm_methods,
856 	PCM_SOFTC_SIZE,
857 };
858 
859 DRIVER_MODULE(ssi, simplebus, ssi_pcm_driver, pcm_devclass, 0, 0);
860 MODULE_DEPEND(ssi, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
861 MODULE_DEPEND(ssi, sdma, 0, 0, 0);
862 MODULE_VERSION(ssi, 1);
863