xref: /freebsd/sys/arm/freescale/imx/imx6_ssi.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * Copyright (c) 2015 Ruslan Bukin <br@bsdpad.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * i.MX6 Synchronous Serial Interface (SSI)
29  *
30  * Chapter 61, i.MX 6Dual/6Quad Applications Processor Reference Manual,
31  * Rev. 1, 04/2013
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/kernel.h>
41 #include <sys/module.h>
42 #include <sys/malloc.h>
43 #include <sys/rman.h>
44 #include <sys/timeet.h>
45 #include <sys/timetc.h>
46 
47 #include <dev/sound/pcm/sound.h>
48 #include <dev/sound/chip.h>
49 #include <mixer_if.h>
50 
51 #include <dev/ofw/openfirm.h>
52 #include <dev/ofw/ofw_bus.h>
53 #include <dev/ofw/ofw_bus_subr.h>
54 
55 #include <machine/bus.h>
56 #include <machine/cpu.h>
57 #include <machine/intr.h>
58 
59 #include <arm/freescale/imx/imx6_sdma.h>
60 #include <arm/freescale/imx/imx6_anatopvar.h>
61 #include <arm/freescale/imx/imx_ccmvar.h>
62 
63 #define	READ4(_sc, _reg)	\
64 	bus_space_read_4(_sc->bst, _sc->bsh, _reg)
65 #define	WRITE4(_sc, _reg, _val)	\
66 	bus_space_write_4(_sc->bst, _sc->bsh, _reg, _val)
67 
68 #define	SSI_NCHANNELS	1
69 #define	DMAS_TOTAL	8
70 
71 /* i.MX6 SSI registers */
72 
73 #define	SSI_STX0	0x00 /* Transmit Data Register n */
74 #define	SSI_STX1	0x04 /* Transmit Data Register n */
75 #define	SSI_SRX0	0x08 /* Receive Data Register n */
76 #define	SSI_SRX1	0x0C /* Receive Data Register n */
77 #define	SSI_SCR		0x10 /* Control Register */
78 #define	 SCR_I2S_MODE_S	5    /* I2S Mode Select. */
79 #define	 SCR_I2S_MODE_M	0x3
80 #define	 SCR_SYN	(1 << 4)
81 #define	 SCR_NET       	(1 << 3)  /* Network mode */
82 #define	 SCR_RE		(1 << 2)  /* Receive Enable. */
83 #define	 SCR_TE		(1 << 1)  /* Transmit Enable. */
84 #define	 SCR_SSIEN	(1 << 0)  /* SSI Enable */
85 #define	SSI_SISR	0x14      /* Interrupt Status Register */
86 #define	SSI_SIER	0x18      /* Interrupt Enable Register */
87 #define	 SIER_RDMAE	(1 << 22) /* Receive DMA Enable. */
88 #define	 SIER_RIE	(1 << 21) /* Receive Interrupt Enable. */
89 #define	 SIER_TDMAE	(1 << 20) /* Transmit DMA Enable. */
90 #define	 SIER_TIE	(1 << 19) /* Transmit Interrupt Enable. */
91 #define	 SIER_TDE0IE	(1 << 12) /* Transmit Data Register Empty 0. */
92 #define	 SIER_TUE0IE	(1 << 8)  /* Transmitter Underrun Error 0. */
93 #define	 SIER_TFE0IE	(1 << 0)  /* Transmit FIFO Empty 0 IE. */
94 #define	SSI_STCR	0x1C	  /* Transmit Configuration Register */
95 #define	 STCR_TXBIT0	(1 << 9)  /* Transmit Bit 0 shift MSB/LSB */
96 #define	 STCR_TFEN1	(1 << 8)  /* Transmit FIFO Enable 1. */
97 #define	 STCR_TFEN0	(1 << 7)  /* Transmit FIFO Enable 0. */
98 #define	 STCR_TFDIR	(1 << 6)  /* Transmit Frame Direction. */
99 #define	 STCR_TXDIR	(1 << 5)  /* Transmit Clock Direction. */
100 #define	 STCR_TSHFD	(1 << 4)  /* Transmit Shift Direction. */
101 #define	 STCR_TSCKP	(1 << 3)  /* Transmit Clock Polarity. */
102 #define	 STCR_TFSI	(1 << 2)  /* Transmit Frame Sync Invert. */
103 #define	 STCR_TFSL	(1 << 1)  /* Transmit Frame Sync Length. */
104 #define	 STCR_TEFS	(1 << 0)  /* Transmit Early Frame Sync. */
105 #define	SSI_SRCR	0x20      /* Receive Configuration Register */
106 #define	SSI_STCCR	0x24      /* Transmit Clock Control Register */
107 #define	 STCCR_DIV2	(1 << 18) /* Divide By 2. */
108 #define	 STCCR_PSR	(1 << 17) /* Divide clock by 8. */
109 #define	 WL3_WL0_S	13
110 #define	 WL3_WL0_M	0xf
111 #define	 DC4_DC0_S	8
112 #define	 DC4_DC0_M	0x1f
113 #define	 PM7_PM0_S	0
114 #define	 PM7_PM0_M	0xff
115 #define	SSI_SRCCR	0x28	/* Receive Clock Control Register */
116 #define	SSI_SFCSR	0x2C	/* FIFO Control/Status Register */
117 #define	 SFCSR_RFWM1_S	20	/* Receive FIFO Empty WaterMark 1 */
118 #define	 SFCSR_RFWM1_M	0xf
119 #define	 SFCSR_TFWM1_S	16	/* Transmit FIFO Empty WaterMark 1 */
120 #define	 SFCSR_TFWM1_M	0xf
121 #define	 SFCSR_RFWM0_S	4	/* Receive FIFO Empty WaterMark 0 */
122 #define	 SFCSR_RFWM0_M	0xf
123 #define	 SFCSR_TFWM0_S	0	/* Transmit FIFO Empty WaterMark 0 */
124 #define	 SFCSR_TFWM0_M	0xf
125 #define	SSI_SACNT	0x38	/* AC97 Control Register */
126 #define	SSI_SACADD	0x3C	/* AC97 Command Address Register */
127 #define	SSI_SACDAT	0x40	/* AC97 Command Data Register */
128 #define	SSI_SATAG	0x44	/* AC97 Tag Register */
129 #define	SSI_STMSK	0x48	/* Transmit Time Slot Mask Register */
130 #define	SSI_SRMSK	0x4C	/* Receive Time Slot Mask Register */
131 #define	SSI_SACCST	0x50	/* AC97 Channel Status Register */
132 #define	SSI_SACCEN	0x54	/* AC97 Channel Enable Register */
133 #define	SSI_SACCDIS	0x58	/* AC97 Channel Disable Register */
134 
135 static MALLOC_DEFINE(M_SSI, "ssi", "ssi audio");
136 
137 uint32_t ssi_dma_intr(void *arg, int chn);
138 
139 struct ssi_rate {
140 	uint32_t speed;
141 	uint32_t mfi; /* PLL4 Multiplication Factor Integer */
142 	uint32_t mfn; /* PLL4 Multiplication Factor Numerator */
143 	uint32_t mfd; /* PLL4 Multiplication Factor Denominator */
144 	/* More dividers to configure can be added here */
145 };
146 
147 static struct ssi_rate rate_map[] = {
148 	{ 192000, 49, 152, 1000 }, /* PLL4 49.152 Mhz */
149 	/* TODO: add more frequences */
150 	{ 0, 0 },
151 };
152 
153 /*
154  *  i.MX6 example bit clock formula
155  *
156  *  BCLK = 2 channels * 192000 hz * 24 bit = 9216000 hz =
157  *     (24000000 * (49 + 152/1000.0) / 4 / 4 / 2 / 2 / 2 / 1 / 1)
158  *             ^     ^     ^      ^    ^   ^   ^   ^   ^   ^   ^
159  *             |     |     |      |    |   |   |   |   |   |   |
160  *  Fref ------/     |     |      |    |   |   |   |   |   |   |
161  *  PLL4 div select -/     |      |    |   |   |   |   |   |   |
162  *  PLL4 num --------------/      |    |   |   |   |   |   |   |
163  *  PLL4 denom -------------------/    |   |   |   |   |   |   |
164  *  PLL4 post div ---------------------/   |   |   |   |   |   |
165  *  CCM ssi pre div (CCM_CS1CDR) ----------/   |   |   |   |   |
166  *  CCM ssi post div (CCM_CS1CDR) -------------/   |   |   |   |
167  *  SSI PM7_PM0_S ---------------------------------/   |   |   |
168  *  SSI Fixed divider ---------------------------------/   |   |
169  *  SSI DIV2 ----------------------------------------------/   |
170  *  SSI PSR (prescaler /1 or /8) ------------------------------/
171  *
172  *  MCLK (Master clock) depends on DAC, usually BCLK * 4
173  */
174 
175 struct sc_info {
176 	struct resource		*res[2];
177 	bus_space_tag_t		bst;
178 	bus_space_handle_t	bsh;
179 	device_t		dev;
180 	struct mtx		*lock;
181 	void			*ih;
182 	int			pos;
183 	int			dma_size;
184 	bus_dma_tag_t		dma_tag;
185 	bus_dmamap_t		dma_map;
186 	bus_addr_t		buf_base_phys;
187 	uint32_t		*buf_base;
188 	struct sdma_conf	*conf;
189 	struct ssi_rate		*sr;
190 	struct sdma_softc	*sdma_sc;
191 	uint32_t		sdma_ev_rx;
192 	uint32_t		sdma_ev_tx;
193 	int			sdma_channel;
194 };
195 
196 /* Channel registers */
197 struct sc_chinfo {
198 	struct snd_dbuf		*buffer;
199 	struct pcm_channel	*channel;
200 	struct sc_pcminfo	*parent;
201 
202 	/* Channel information */
203 	uint32_t	dir;
204 	uint32_t	format;
205 
206 	/* Flags */
207 	uint32_t	run;
208 };
209 
210 /* PCM device private data */
211 struct sc_pcminfo {
212 	device_t		dev;
213 	uint32_t		(*ih)(struct sc_pcminfo *scp);
214 	uint32_t		chnum;
215 	struct sc_chinfo	chan[SSI_NCHANNELS];
216 	struct sc_info		*sc;
217 };
218 
219 static struct resource_spec ssi_spec[] = {
220 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
221 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
222 	{ -1, 0 }
223 };
224 
225 static int setup_dma(struct sc_pcminfo *scp);
226 static void setup_ssi(struct sc_info *);
227 static void ssi_configure_clock(struct sc_info *);
228 
229 /*
230  * Mixer interface.
231  */
232 
233 static int
234 ssimixer_init(struct snd_mixer *m)
235 {
236 	struct sc_pcminfo *scp;
237 	struct sc_info *sc;
238 	int mask;
239 
240 	scp = mix_getdevinfo(m);
241 	sc = scp->sc;
242 
243 	if (sc == NULL)
244 		return -1;
245 
246 	mask = SOUND_MASK_PCM;
247 	mask |= SOUND_MASK_VOLUME;
248 
249 	snd_mtxlock(sc->lock);
250 	pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
251 	mix_setdevs(m, mask);
252 	snd_mtxunlock(sc->lock);
253 
254 	return (0);
255 }
256 
257 static int
258 ssimixer_set(struct snd_mixer *m, unsigned dev,
259     unsigned left, unsigned right)
260 {
261 	struct sc_pcminfo *scp;
262 
263 	scp = mix_getdevinfo(m);
264 
265 	/* Here we can configure hardware volume on our DAC */
266 
267 #if 1
268 	device_printf(scp->dev, "ssimixer_set() %d %d\n",
269 	    left, right);
270 #endif
271 
272 	return (0);
273 }
274 
275 static kobj_method_t ssimixer_methods[] = {
276 	KOBJMETHOD(mixer_init,      ssimixer_init),
277 	KOBJMETHOD(mixer_set,       ssimixer_set),
278 	KOBJMETHOD_END
279 };
280 MIXER_DECLARE(ssimixer);
281 
282 /*
283  * Channel interface.
284  */
285 
286 static void *
287 ssichan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
288     struct pcm_channel *c, int dir)
289 {
290 	struct sc_pcminfo *scp;
291 	struct sc_chinfo *ch;
292 	struct sc_info *sc;
293 
294 	scp = (struct sc_pcminfo *)devinfo;
295 	sc = scp->sc;
296 
297 	snd_mtxlock(sc->lock);
298 	ch = &scp->chan[0];
299 	ch->dir = dir;
300 	ch->run = 0;
301 	ch->buffer = b;
302 	ch->channel = c;
303 	ch->parent = scp;
304 	snd_mtxunlock(sc->lock);
305 
306 	if (sndbuf_setup(ch->buffer, sc->buf_base, sc->dma_size) != 0) {
307 		device_printf(scp->dev, "Can't setup sndbuf.\n");
308 		return NULL;
309 	}
310 
311 	return ch;
312 }
313 
314 static int
315 ssichan_free(kobj_t obj, void *data)
316 {
317 	struct sc_chinfo *ch = data;
318 	struct sc_pcminfo *scp = ch->parent;
319 	struct sc_info *sc = scp->sc;
320 
321 #if 0
322 	device_printf(scp->dev, "ssichan_free()\n");
323 #endif
324 
325 	snd_mtxlock(sc->lock);
326 	/* TODO: free channel buffer */
327 	snd_mtxunlock(sc->lock);
328 
329 	return (0);
330 }
331 
332 static int
333 ssichan_setformat(kobj_t obj, void *data, uint32_t format)
334 {
335 	struct sc_chinfo *ch = data;
336 
337 	ch->format = format;
338 
339 	return (0);
340 }
341 
342 static uint32_t
343 ssichan_setspeed(kobj_t obj, void *data, uint32_t speed)
344 {
345 	struct sc_pcminfo *scp;
346 	struct sc_chinfo *ch;
347 	struct ssi_rate *sr;
348 	struct sc_info *sc;
349 	int threshold;
350 	int i;
351 
352 	ch = data;
353 	scp = ch->parent;
354 	sc = scp->sc;
355 
356 	sr = NULL;
357 
358 	/* First look for equal frequency. */
359 	for (i = 0; rate_map[i].speed != 0; i++) {
360 		if (rate_map[i].speed == speed)
361 			sr = &rate_map[i];
362 	}
363 
364 	/* If no match, just find nearest. */
365 	if (sr == NULL) {
366 		for (i = 0; rate_map[i].speed != 0; i++) {
367 			sr = &rate_map[i];
368 			threshold = sr->speed + ((rate_map[i + 1].speed != 0) ?
369 			    ((rate_map[i + 1].speed - sr->speed) >> 1) : 0);
370 			if (speed < threshold)
371 				break;
372 		}
373 	}
374 
375 	sc->sr = sr;
376 
377 	ssi_configure_clock(sc);
378 
379 	return (sr->speed);
380 }
381 
382 static void
383 ssi_configure_clock(struct sc_info *sc)
384 {
385 	struct ssi_rate *sr;
386 
387 	sr = sc->sr;
388 
389 	pll4_configure_output(sr->mfi, sr->mfn, sr->mfd);
390 
391 	/* Configure other dividers here, if any */
392 }
393 
394 static uint32_t
395 ssichan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
396 {
397 	struct sc_chinfo *ch = data;
398 	struct sc_pcminfo *scp = ch->parent;
399 	struct sc_info *sc = scp->sc;
400 
401 	sndbuf_resize(ch->buffer, sc->dma_size / blocksize, blocksize);
402 
403 	setup_dma(scp);
404 
405 	return (sndbuf_getblksz(ch->buffer));
406 }
407 
408 uint32_t
409 ssi_dma_intr(void *arg, int chn)
410 {
411 	struct sc_pcminfo *scp;
412 	struct sdma_conf *conf;
413 	struct sc_chinfo *ch;
414 	struct sc_info *sc;
415 	int bufsize;
416 
417 	scp = arg;
418 	ch = &scp->chan[0];
419 	sc = scp->sc;
420 	conf = sc->conf;
421 
422 	bufsize = sndbuf_getsize(ch->buffer);
423 
424 	sc->pos += conf->period;
425 	if (sc->pos >= bufsize)
426 		sc->pos -= bufsize;
427 
428 	if (ch->run)
429 		chn_intr(ch->channel);
430 
431 	return (0);
432 }
433 
434 static int
435 find_sdma_controller(struct sc_info *sc)
436 {
437 	struct sdma_softc *sdma_sc;
438 	phandle_t node, sdma_node;
439 	device_t sdma_dev;
440 	pcell_t dts_value[DMAS_TOTAL];
441 	int len;
442 
443 	if ((node = ofw_bus_get_node(sc->dev)) == -1)
444 		return (ENXIO);
445 
446 	if ((len = OF_getproplen(node, "dmas")) <= 0)
447 		return (ENXIO);
448 
449 	if (len != sizeof(dts_value)) {
450 		device_printf(sc->dev,
451 		    "\"dmas\" property length is invalid: %d (expected %d)",
452 		    len, sizeof(dts_value));
453 		return (ENXIO);
454 	}
455 
456 	OF_getencprop(node, "dmas", dts_value, sizeof(dts_value));
457 
458 	sc->sdma_ev_rx = dts_value[1];
459 	sc->sdma_ev_tx = dts_value[5];
460 
461 	sdma_node = OF_node_from_xref(dts_value[0]);
462 
463 	sdma_sc = NULL;
464 
465 	sdma_dev = devclass_get_device(devclass_find("sdma"), 0);
466 	if (sdma_dev)
467 		sdma_sc = device_get_softc(sdma_dev);
468 
469 	if (sdma_sc == NULL) {
470 		device_printf(sc->dev, "No sDMA found. Can't operate\n");
471 		return (ENXIO);
472 	}
473 
474 	sc->sdma_sc = sdma_sc;
475 
476 	return (0);
477 };
478 
479 static int
480 setup_dma(struct sc_pcminfo *scp)
481 {
482 	struct sdma_conf *conf;
483 	struct sc_chinfo *ch;
484 	struct sc_info *sc;
485 	int fmt;
486 
487 	ch = &scp->chan[0];
488 	sc = scp->sc;
489 	conf = sc->conf;
490 
491 	conf->ih = ssi_dma_intr;
492 	conf->ih_user = scp;
493 	conf->saddr = sc->buf_base_phys;
494 	conf->daddr = rman_get_start(sc->res[0]) + SSI_STX0;
495 	conf->event = sc->sdma_ev_tx; /* SDMA TX event */
496 	conf->period = sndbuf_getblksz(ch->buffer);
497 	conf->num_bd = sndbuf_getblkcnt(ch->buffer);
498 
499 	/*
500 	 * Word Length
501 	 * Can be 32, 24, 16 or 8 for sDMA.
502 	 *
503 	 * SSI supports 24 at max.
504 	 */
505 
506 	fmt = sndbuf_getfmt(ch->buffer);
507 
508 	if (fmt & AFMT_16BIT) {
509 		conf->word_length = 16;
510 		conf->command = CMD_2BYTES;
511 	} else if (fmt & AFMT_24BIT) {
512 		conf->word_length = 24;
513 		conf->command = CMD_3BYTES;
514 	} else {
515 		device_printf(sc->dev, "Unknown format\n");
516 		return (-1);
517 	}
518 
519 	return (0);
520 }
521 
522 static int
523 ssi_start(struct sc_pcminfo *scp)
524 {
525 	struct sc_info *sc;
526 	int reg;
527 
528 	sc = scp->sc;
529 
530 	if (sdma_configure(sc->sdma_channel, sc->conf) != 0) {
531 		device_printf(sc->dev, "Can't configure sDMA\n");
532 		return (-1);
533 	}
534 
535 	/* Enable DMA interrupt */
536 	reg = (SIER_TDMAE);
537 	WRITE4(sc, SSI_SIER, reg);
538 
539 	sdma_start(sc->sdma_channel);
540 
541 	return (0);
542 }
543 
544 static int
545 ssi_stop(struct sc_pcminfo *scp)
546 {
547 	struct sc_info *sc;
548 	int reg;
549 
550 	sc = scp->sc;
551 
552 	reg = READ4(sc, SSI_SIER);
553 	reg &= ~(SIER_TDMAE);
554 	WRITE4(sc, SSI_SIER, reg);
555 
556 	sdma_stop(sc->sdma_channel);
557 
558 	bzero(sc->buf_base, sc->dma_size);
559 
560 	return (0);
561 }
562 
563 static int
564 ssichan_trigger(kobj_t obj, void *data, int go)
565 {
566 	struct sc_pcminfo *scp;
567 	struct sc_chinfo *ch;
568 	struct sc_info *sc;
569 
570 	ch = data;
571 	scp = ch->parent;
572 	sc = scp->sc;
573 
574 	snd_mtxlock(sc->lock);
575 
576 	switch (go) {
577 	case PCMTRIG_START:
578 #if 0
579 		device_printf(scp->dev, "trigger start\n");
580 #endif
581 		ch->run = 1;
582 
583 		ssi_start(scp);
584 
585 		break;
586 
587 	case PCMTRIG_STOP:
588 	case PCMTRIG_ABORT:
589 #if 0
590 		device_printf(scp->dev, "trigger stop or abort\n");
591 #endif
592 		ch->run = 0;
593 
594 		ssi_stop(scp);
595 
596 		break;
597 	}
598 
599 	snd_mtxunlock(sc->lock);
600 
601 	return (0);
602 }
603 
604 static uint32_t
605 ssichan_getptr(kobj_t obj, void *data)
606 {
607 	struct sc_pcminfo *scp;
608 	struct sc_chinfo *ch;
609 	struct sc_info *sc;
610 
611 	ch = data;
612 	scp = ch->parent;
613 	sc = scp->sc;
614 
615 	return (sc->pos);
616 }
617 
618 static uint32_t ssi_pfmt[] = {
619 	SND_FORMAT(AFMT_S24_LE, 2, 0),
620 	0
621 };
622 
623 static struct pcmchan_caps ssi_pcaps = {44100, 192000, ssi_pfmt, 0};
624 
625 static struct pcmchan_caps *
626 ssichan_getcaps(kobj_t obj, void *data)
627 {
628 
629 	return (&ssi_pcaps);
630 }
631 
632 static kobj_method_t ssichan_methods[] = {
633 	KOBJMETHOD(channel_init,         ssichan_init),
634 	KOBJMETHOD(channel_free,         ssichan_free),
635 	KOBJMETHOD(channel_setformat,    ssichan_setformat),
636 	KOBJMETHOD(channel_setspeed,     ssichan_setspeed),
637 	KOBJMETHOD(channel_setblocksize, ssichan_setblocksize),
638 	KOBJMETHOD(channel_trigger,      ssichan_trigger),
639 	KOBJMETHOD(channel_getptr,       ssichan_getptr),
640 	KOBJMETHOD(channel_getcaps,      ssichan_getcaps),
641 	KOBJMETHOD_END
642 };
643 CHANNEL_DECLARE(ssichan);
644 
645 static int
646 ssi_probe(device_t dev)
647 {
648 
649 	if (!ofw_bus_status_okay(dev))
650 		return (ENXIO);
651 
652 	if (!ofw_bus_is_compatible(dev, "fsl,imx6q-ssi"))
653 		return (ENXIO);
654 
655 	device_set_desc(dev, "i.MX6 Synchronous Serial Interface (SSI)");
656 	return (BUS_PROBE_DEFAULT);
657 }
658 
659 static void
660 ssi_intr(void *arg)
661 {
662 	struct sc_pcminfo *scp;
663 	struct sc_chinfo *ch;
664 	struct sc_info *sc;
665 
666 	scp = arg;
667 	sc = scp->sc;
668 	ch = &scp->chan[0];
669 
670 	/* We don't use SSI interrupt */
671 #if 0
672 	device_printf(sc->dev, "SSI Intr 0x%08x\n",
673 	    READ4(sc, SSI_SISR));
674 #endif
675 }
676 
677 static void
678 setup_ssi(struct sc_info *sc)
679 {
680 	int reg;
681 
682 	reg = READ4(sc, SSI_STCCR);
683 	reg &= ~(WL3_WL0_M << WL3_WL0_S);
684 	reg |= (0xb << WL3_WL0_S); /* 24 bit */
685 	reg &= ~(DC4_DC0_M << DC4_DC0_S);
686 	reg |= (1 << DC4_DC0_S); /* 2 words per frame */
687 	reg &= ~(STCCR_DIV2); /* Divide by 1 */
688 	reg &= ~(STCCR_PSR); /* Divide by 1 */
689 	reg &= ~(PM7_PM0_M << PM7_PM0_S);
690 	reg |= (1 << PM7_PM0_S); /* Divide by 2 */
691 	WRITE4(sc, SSI_STCCR, reg);
692 
693 	reg = READ4(sc, SSI_SFCSR);
694 	reg &= ~(SFCSR_TFWM0_M << SFCSR_TFWM0_S);
695 	reg |= (8 << SFCSR_TFWM0_S); /* empty slots */
696 	WRITE4(sc, SSI_SFCSR, reg);
697 
698 	reg = READ4(sc, SSI_STCR);
699 	reg |= (STCR_TFEN0);
700 	reg &= ~(STCR_TFEN1);
701 	reg &= ~(STCR_TSHFD); /* MSB */
702 	reg |= (STCR_TXBIT0);
703 	reg |= (STCR_TXDIR | STCR_TFDIR);
704 	reg |= (STCR_TSCKP); /* falling edge */
705 	reg |= (STCR_TFSI);
706 	reg &= ~(STCR_TFSI); /* active high frame sync */
707 	reg &= ~(STCR_TFSL);
708 	reg |= STCR_TEFS;
709 	WRITE4(sc, SSI_STCR, reg);
710 
711 	reg = READ4(sc, SSI_SCR);
712 	reg &= ~(SCR_I2S_MODE_M << SCR_I2S_MODE_S); /* Not master */
713 	reg |= (SCR_SSIEN | SCR_TE);
714 	reg |= (SCR_NET);
715 	reg |= (SCR_SYN);
716 	WRITE4(sc, SSI_SCR, reg);
717 }
718 
719 static void
720 ssi_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
721 {
722 	bus_addr_t *addr;
723 
724 	if (err)
725 		return;
726 
727 	addr = (bus_addr_t*)arg;
728 	*addr = segs[0].ds_addr;
729 }
730 
731 static int
732 ssi_attach(device_t dev)
733 {
734 	char status[SND_STATUSLEN];
735 	struct sc_pcminfo *scp;
736 	struct sc_info *sc;
737 	int err;
738 
739 	sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
740 	sc->dev = dev;
741 	sc->sr = &rate_map[0];
742 	sc->pos = 0;
743 	sc->conf = malloc(sizeof(struct sdma_conf), M_DEVBUF, M_WAITOK | M_ZERO);
744 
745 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "ssi softc");
746 	if (sc->lock == NULL) {
747 		device_printf(dev, "Can't create mtx\n");
748 		return (ENXIO);
749 	}
750 
751 	if (bus_alloc_resources(dev, ssi_spec, sc->res)) {
752 		device_printf(dev, "could not allocate resources\n");
753 		return (ENXIO);
754 	}
755 
756 	/* Memory interface */
757 	sc->bst = rman_get_bustag(sc->res[0]);
758 	sc->bsh = rman_get_bushandle(sc->res[0]);
759 
760 	/* SDMA */
761 	if (find_sdma_controller(sc)) {
762 		device_printf(dev, "could not find active SDMA\n");
763 		return (ENXIO);
764 	}
765 
766 	/* Setup PCM */
767 	scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_NOWAIT | M_ZERO);
768 	scp->sc = sc;
769 	scp->dev = dev;
770 
771 	/*
772 	 * Maximum possible DMA buffer.
773 	 * Will be used partially to match 24 bit word.
774 	 */
775 	sc->dma_size = 131072;
776 
777 	/*
778 	 * Must use dma_size boundary as modulo feature required.
779 	 * Modulo feature allows setup circular buffer.
780 	 */
781 
782 	err = bus_dma_tag_create(
783 	    bus_get_dma_tag(sc->dev),
784 	    4, sc->dma_size,		/* alignment, boundary */
785 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
786 	    BUS_SPACE_MAXADDR,		/* highaddr */
787 	    NULL, NULL,			/* filter, filterarg */
788 	    sc->dma_size, 1,		/* maxsize, nsegments */
789 	    sc->dma_size, 0,		/* maxsegsize, flags */
790 	    NULL, NULL,			/* lockfunc, lockarg */
791 	    &sc->dma_tag);
792 
793 	err = bus_dmamem_alloc(sc->dma_tag, (void **)&sc->buf_base,
794 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->dma_map);
795 	if (err) {
796 		device_printf(dev, "cannot allocate framebuffer\n");
797 		return (ENXIO);
798 	}
799 
800 	err = bus_dmamap_load(sc->dma_tag, sc->dma_map, sc->buf_base,
801 	    sc->dma_size, ssi_dmamap_cb, &sc->buf_base_phys, BUS_DMA_NOWAIT);
802 	if (err) {
803 		device_printf(dev, "cannot load DMA map\n");
804 		return (ENXIO);
805 	}
806 
807 	bzero(sc->buf_base, sc->dma_size);
808 
809 	/* Setup interrupt handler */
810 	err = bus_setup_intr(dev, sc->res[1], INTR_MPSAFE | INTR_TYPE_AV,
811 	    NULL, ssi_intr, scp, &sc->ih);
812 	if (err) {
813 		device_printf(dev, "Unable to alloc interrupt resource.\n");
814 		return (ENXIO);
815 	}
816 
817 	pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);
818 
819 	err = pcm_register(dev, scp, 1, 0);
820 	if (err) {
821 		device_printf(dev, "Can't register pcm.\n");
822 		return (ENXIO);
823 	}
824 
825 	scp->chnum = 0;
826 	pcm_addchan(dev, PCMDIR_PLAY, &ssichan_class, scp);
827 	scp->chnum++;
828 
829 	snprintf(status, SND_STATUSLEN, "at simplebus");
830 	pcm_setstatus(dev, status);
831 
832 	mixer_init(dev, &ssimixer_class, scp);
833 	setup_ssi(sc);
834 
835 	imx_ccm_ssi_configure(dev);
836 
837 	sc->sdma_channel = sdma_alloc();
838 	if (sc->sdma_channel < 0) {
839 		device_printf(sc->dev, "Can't get sDMA channel\n");
840 		return (1);
841 	}
842 
843 	return (0);
844 }
845 
846 static device_method_t ssi_pcm_methods[] = {
847 	DEVMETHOD(device_probe,		ssi_probe),
848 	DEVMETHOD(device_attach,	ssi_attach),
849 	{ 0, 0 }
850 };
851 
852 static driver_t ssi_pcm_driver = {
853 	"pcm",
854 	ssi_pcm_methods,
855 	PCM_SOFTC_SIZE,
856 };
857 
858 DRIVER_MODULE(ssi, simplebus, ssi_pcm_driver, pcm_devclass, 0, 0);
859 MODULE_DEPEND(ssi, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
860 MODULE_DEPEND(ssi, sdma, 0, 0, 0);
861 MODULE_VERSION(ssi, 1);
862