xref: /freebsd/sys/arm/freescale/imx/imx6_anatop.c (revision ec273ebf3b6aed5fba8c56b6ece5ad8693a48ea7)
1 /*-
2  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3  * Copyright (c) 2014 Steven Lawrance <stl@koffein.net>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * Analog PLL and power regulator driver for Freescale i.MX6 family of SoCs.
33  * Also, temperature montoring and cpu frequency control.  It was Freescale who
34  * kitchen-sinked this device, not us. :)
35  *
36  * We don't really do anything with analog PLLs, but the registers for
37  * controlling them belong to the same block as the power regulator registers.
38  * Since the newbus hierarchy makes it hard for anyone other than us to get at
39  * them, we just export a couple public functions to allow the imx6 CCM clock
40  * driver to read and write those registers.
41  *
42  * We also don't do anything about power regulation yet, but when the need
43  * arises, this would be the place for that code to live.
44  *
45  * I have no idea where the "anatop" name comes from.  It's in the standard DTS
46  * source describing i.MX6 SoCs, and in the linux and u-boot code which comes
47  * from Freescale, but it's not in the SoC manual.
48  *
49  * Note that temperature values throughout this code are handled in two types of
50  * units.  Items with '_cnt' in the name use the hardware temperature count
51  * units (higher counts are lower temperatures).  Items with '_val' in the name
52  * are deci-Celcius, which are converted to/from deci-Kelvins in the sysctl
53  * handlers (dK is the standard unit for temperature in sysctl).
54  */
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/callout.h>
59 #include <sys/kernel.h>
60 #include <sys/limits.h>
61 #include <sys/sysctl.h>
62 #include <sys/module.h>
63 #include <sys/bus.h>
64 #include <sys/rman.h>
65 
66 #include <dev/ofw/ofw_bus.h>
67 #include <dev/ofw/ofw_bus_subr.h>
68 
69 #include <machine/bus.h>
70 #include <machine/fdt.h>
71 
72 #include <arm/arm/mpcore_timervar.h>
73 #include <arm/freescale/fsl_ocotpreg.h>
74 #include <arm/freescale/fsl_ocotpvar.h>
75 #include <arm/freescale/imx/imx6_anatopreg.h>
76 #include <arm/freescale/imx/imx6_anatopvar.h>
77 
78 static SYSCTL_NODE(_hw, OID_AUTO, imx6, CTLFLAG_RW, NULL, "i.MX6 container");
79 
80 static struct resource_spec imx6_anatop_spec[] = {
81 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
82 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
83 	{ -1, 0 }
84 };
85 #define	MEMRES	0
86 #define	IRQRES	1
87 
88 struct imx6_anatop_softc {
89 	device_t	dev;
90 	struct resource	*res[2];
91 	struct intr_config_hook
92 			intr_setup_hook;
93 	uint32_t	cpu_curmhz;
94 	uint32_t	cpu_curmv;
95 	uint32_t	cpu_minmhz;
96 	uint32_t	cpu_minmv;
97 	uint32_t	cpu_maxmhz;
98 	uint32_t	cpu_maxmv;
99 	uint32_t	cpu_maxmhz_hw;
100 	boolean_t	cpu_overclock_enable;
101 	boolean_t	cpu_init_done;
102 	uint32_t	refosc_mhz;
103 	void		*temp_intrhand;
104 	uint32_t	temp_high_val;
105 	uint32_t	temp_high_cnt;
106 	uint32_t	temp_last_cnt;
107 	uint32_t	temp_room_cnt;
108 	struct callout	temp_throttle_callout;
109 	sbintime_t	temp_throttle_delay;
110 	uint32_t	temp_throttle_reset_cnt;
111 	uint32_t	temp_throttle_trigger_cnt;
112 	uint32_t	temp_throttle_val;
113 };
114 
115 static struct imx6_anatop_softc *imx6_anatop_sc;
116 
117 /*
118  * Table of "operating points".
119  * These are combinations of frequency and voltage blessed by Freescale.
120  */
121 static struct oppt {
122 	uint32_t	mhz;
123 	uint32_t	mv;
124 } imx6_oppt_table[] = {
125 /*      { 396,	 925},  XXX: need functional ccm code for this speed */
126 	{ 792,	1150},
127 	{ 852,	1225},
128 	{ 996,	1225},
129 	{1200,	1275},
130 };
131 
132 /*
133  * Table of CPU max frequencies.  This is used to translate the max frequency
134  * value (0-3) from the ocotp CFG3 register into a mhz value that can be looked
135  * up in the operating points table.
136  */
137 static uint32_t imx6_ocotp_mhz_tab[] = {792, 852, 996, 1200};
138 
139 #define	TZ_ZEROC	2732	/* deci-Kelvin <-> deci-Celcius offset. */
140 
141 uint32_t
142 imx6_anatop_read_4(bus_size_t offset)
143 {
144 
145 	KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_read_4 sc NULL"));
146 
147 	return (bus_read_4(imx6_anatop_sc->res[MEMRES], offset));
148 }
149 
150 void
151 imx6_anatop_write_4(bus_size_t offset, uint32_t value)
152 {
153 
154 	KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_write_4 sc NULL"));
155 
156 	bus_write_4(imx6_anatop_sc->res[MEMRES], offset, value);
157 }
158 
159 static void
160 vdd_set(struct imx6_anatop_softc *sc, int mv)
161 {
162 	int newtarg, oldtarg;
163 	uint32_t delay, pmureg;
164 	static boolean_t init_done = false;
165 
166 	/*
167 	 * The datasheet says VDD_PU and VDD_SOC must be equal, and VDD_ARM
168 	 * can't be more than 50mV above or 200mV below them.  For now to keep
169 	 * things simple we set all three to the same value.
170 	 */
171 
172 	pmureg = imx6_anatop_read_4(IMX6_ANALOG_PMU_REG_CORE);
173 	oldtarg = pmureg & IMX6_ANALOG_PMU_REG0_TARG_MASK;
174 
175 	/* Convert mV to target value.  Clamp target to valid range. */
176 	if (mv < 725)
177 		newtarg = 0x00;
178 	else if (mv > 1450)
179 		newtarg = 0x1F;
180 	else
181 		newtarg = (mv - 700) / 25;
182 
183 	/*
184 	 * The first time through the 3 voltages might not be equal so use a
185 	 * long conservative delay.  After that we need to delay 3uS for every
186 	 * 25mV step upward.  No need to delay at all when lowering.
187 	 */
188 	if (init_done) {
189 		if (newtarg == oldtarg)
190 			return;
191 		else if (newtarg > oldtarg)
192 			delay = (newtarg - oldtarg) * 3;
193 		else
194 			delay = 0;
195 	} else {
196 		delay = 700 / 25 * 3;
197 		init_done = true;
198 	}
199 
200 	/*
201 	 * Make the change and wait for it to take effect.
202 	 */
203 	pmureg &= ~(IMX6_ANALOG_PMU_REG0_TARG_MASK |
204 	    IMX6_ANALOG_PMU_REG1_TARG_MASK |
205 	    IMX6_ANALOG_PMU_REG2_TARG_MASK);
206 
207 	pmureg |= newtarg << IMX6_ANALOG_PMU_REG0_TARG_SHIFT;
208 	pmureg |= newtarg << IMX6_ANALOG_PMU_REG1_TARG_SHIFT;
209 	pmureg |= newtarg << IMX6_ANALOG_PMU_REG2_TARG_SHIFT;
210 
211 	imx6_anatop_write_4(IMX6_ANALOG_PMU_REG_CORE, pmureg);
212 	DELAY(delay);
213 	sc->cpu_curmv = newtarg * 25 + 700;
214 }
215 
216 static inline uint32_t
217 cpufreq_mhz_from_div(struct imx6_anatop_softc *sc, uint32_t div)
218 {
219 
220 	return (sc->refosc_mhz * (div / 2));
221 }
222 
223 static inline uint32_t
224 cpufreq_mhz_to_div(struct imx6_anatop_softc *sc, uint32_t cpu_mhz)
225 {
226 
227 	return (cpu_mhz / (sc->refosc_mhz / 2));
228 }
229 
230 static inline uint32_t
231 cpufreq_actual_mhz(struct imx6_anatop_softc *sc, uint32_t cpu_mhz)
232 {
233 
234 	return (cpufreq_mhz_from_div(sc, cpufreq_mhz_to_div(sc, cpu_mhz)));
235 }
236 
237 static struct oppt *
238 cpufreq_nearest_oppt(struct imx6_anatop_softc *sc, uint32_t cpu_newmhz)
239 {
240 	int d, diff, i, nearest;
241 
242 	if (cpu_newmhz > sc->cpu_maxmhz_hw && !sc->cpu_overclock_enable)
243 		cpu_newmhz = sc->cpu_maxmhz_hw;
244 
245 	diff = INT_MAX;
246 	nearest = 0;
247 	for (i = 0; i < nitems(imx6_oppt_table); ++i) {
248 		d = abs((int)cpu_newmhz - (int)imx6_oppt_table[i].mhz);
249 		if (diff > d) {
250 			diff = d;
251 			nearest = i;
252 		}
253 	}
254 	return (&imx6_oppt_table[nearest]);
255 }
256 
257 static void
258 cpufreq_set_clock(struct imx6_anatop_softc * sc, struct oppt *op)
259 {
260 	uint32_t timeout, wrk32;
261 
262 	/* If increasing the frequency, we must first increase the voltage. */
263 	if (op->mhz > sc->cpu_curmhz) {
264 		vdd_set(sc, op->mv);
265 	}
266 
267 	/*
268 	 * I can't find a documented procedure for changing the ARM PLL divisor,
269 	 * but some trial and error came up with this:
270 	 *  - Set the bypass clock source to REF_CLK_24M (source #0).
271 	 *  - Set the PLL into bypass mode; cpu should now be running at 24mhz.
272 	 *  - Change the divisor.
273 	 *  - Wait for the LOCK bit to come on; it takes ~50 loop iterations.
274 	 *  - Turn off bypass mode; cpu should now be running at the new speed.
275 	 */
276 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
277 	    IMX6_ANALOG_CCM_PLL_ARM_CLK_SRC_MASK);
278 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_SET,
279 	    IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
280 
281 	wrk32 = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM);
282 	wrk32 &= ~IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
283 	wrk32 |= cpufreq_mhz_to_div(sc, op->mhz);
284 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM, wrk32);
285 
286 	timeout = 10000;
287 	while ((imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
288 	    IMX6_ANALOG_CCM_PLL_ARM_LOCK) == 0)
289 		if (--timeout == 0)
290 			panic("imx6_set_cpu_clock(): PLL never locked");
291 
292 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
293 	    IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
294 
295 	/* If lowering the frequency, it is now safe to lower the voltage. */
296 	if (op->mhz < sc->cpu_curmhz)
297 		vdd_set(sc, op->mv);
298 	sc->cpu_curmhz = op->mhz;
299 
300 	/* Tell the mpcore timer that its frequency has changed. */
301         arm_tmr_change_frequency(
302 	    cpufreq_actual_mhz(sc, sc->cpu_curmhz) * 1000000 / 2);
303 }
304 
305 static int
306 cpufreq_sysctl_minmhz(SYSCTL_HANDLER_ARGS)
307 {
308 	struct imx6_anatop_softc *sc;
309 	struct oppt * op;
310 	uint32_t temp;
311 	int err;
312 
313 	sc = arg1;
314 
315 	temp = sc->cpu_minmhz;
316 	err = sysctl_handle_int(oidp, &temp, 0, req);
317 	if (err != 0 || req->newptr == NULL)
318 		return (err);
319 
320 	op = cpufreq_nearest_oppt(sc, temp);
321 	if (op->mhz > sc->cpu_maxmhz)
322 		return (ERANGE);
323 	else if (op->mhz == sc->cpu_minmhz)
324 		return (0);
325 
326 	/*
327 	 * Value changed, update softc.  If the new min is higher than the
328 	 * current speed, raise the current speed to match.
329 	 */
330 	sc->cpu_minmhz = op->mhz;
331 	if (sc->cpu_minmhz > sc->cpu_curmhz) {
332 		cpufreq_set_clock(sc, op);
333 	}
334 	return (err);
335 }
336 
337 static int
338 cpufreq_sysctl_maxmhz(SYSCTL_HANDLER_ARGS)
339 {
340 	struct imx6_anatop_softc *sc;
341 	struct oppt * op;
342 	uint32_t temp;
343 	int err;
344 
345 	sc = arg1;
346 
347 	temp = sc->cpu_maxmhz;
348 	err = sysctl_handle_int(oidp, &temp, 0, req);
349 	if (err != 0 || req->newptr == NULL)
350 		return (err);
351 
352 	op = cpufreq_nearest_oppt(sc, temp);
353 	if (op->mhz < sc->cpu_minmhz)
354 		return (ERANGE);
355 	else if (op->mhz == sc->cpu_maxmhz)
356 		return (0);
357 
358 	/*
359 	 *  Value changed, update softc and hardware.  The hardware update is
360 	 *  unconditional.  We always try to run at max speed, so any change of
361 	 *  the max means we need to change the current speed too, regardless of
362 	 *  whether it is higher or lower than the old max.
363 	 */
364 	sc->cpu_maxmhz = op->mhz;
365 	cpufreq_set_clock(sc, op);
366 
367 	return (err);
368 }
369 
370 static void
371 cpufreq_initialize(struct imx6_anatop_softc *sc)
372 {
373 	uint32_t cfg3speed;
374 	struct oppt * op;
375 
376 	SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
377 	    OID_AUTO, "cpu_mhz", CTLFLAG_RD, &sc->cpu_curmhz, 0,
378 	    "CPU frequency");
379 
380 	SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
381 	    OID_AUTO, "cpu_minmhz", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
382 	    sc, 0, cpufreq_sysctl_minmhz, "IU", "Minimum CPU frequency");
383 
384 	SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
385 	    OID_AUTO, "cpu_maxmhz", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
386 	    sc, 0, cpufreq_sysctl_maxmhz, "IU", "Maximum CPU frequency");
387 
388 	SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
389 	    OID_AUTO, "cpu_maxmhz_hw", CTLFLAG_RD, &sc->cpu_maxmhz_hw, 0,
390 	    "Maximum CPU frequency allowed by hardware");
391 
392 	SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
393 	    OID_AUTO, "cpu_overclock_enable", CTLFLAG_RWTUN,
394 	    &sc->cpu_overclock_enable, 0,
395 	    "Allow setting CPU frequency higher than cpu_maxmhz_hw");
396 
397 	/*
398 	 * XXX 24mhz shouldn't be hard-coded, should get this from imx6_ccm
399 	 * (even though in the real world it will always be 24mhz).  Oh wait a
400 	 * sec, I never wrote imx6_ccm.
401 	 */
402 	sc->refosc_mhz = 24;
403 
404 	/*
405 	 * Get the maximum speed this cpu can be set to.  The values in the
406 	 * OCOTP CFG3 register are not documented in the reference manual.
407 	 * The following info was in an archived email found via web search:
408 	 *   - 2b'11: 1200000000Hz;
409 	 *   - 2b'10: 996000000Hz;
410 	 *   - 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
411 	 *   - 2b'00: 792000000Hz;
412 	 * The default hardware max speed can be overridden by a tunable.
413 	 */
414 	cfg3speed = (fsl_ocotp_read_4(FSL_OCOTP_CFG3) &
415 	    FSL_OCOTP_CFG3_SPEED_MASK) >> FSL_OCOTP_CFG3_SPEED_SHIFT;
416 	sc->cpu_maxmhz_hw = imx6_ocotp_mhz_tab[cfg3speed];
417 	sc->cpu_maxmhz = sc->cpu_maxmhz_hw;
418 
419 	TUNABLE_INT_FETCH("hw.imx6.cpu_minmhz", &sc->cpu_minmhz);
420 	op = cpufreq_nearest_oppt(sc, sc->cpu_minmhz);
421 	sc->cpu_minmhz = op->mhz;
422 	sc->cpu_minmv = op->mv;
423 
424 	TUNABLE_INT_FETCH("hw.imx6.cpu_maxmhz", &sc->cpu_maxmhz);
425 	op = cpufreq_nearest_oppt(sc, sc->cpu_maxmhz);
426 	sc->cpu_maxmhz = op->mhz;
427 	sc->cpu_maxmv = op->mv;
428 
429 	/*
430 	 * Set the CPU to maximum speed.
431 	 *
432 	 * We won't have thermal throttling until interrupts are enabled, but we
433 	 * want to run at full speed through all the device init stuff.  This
434 	 * basically assumes that a single core can't overheat before interrupts
435 	 * are enabled; empirical testing shows that to be a safe assumption.
436 	 */
437 	cpufreq_set_clock(sc, op);
438 }
439 
440 static inline uint32_t
441 temp_from_count(struct imx6_anatop_softc *sc, uint32_t count)
442 {
443 
444 	return (((sc->temp_high_val - (count - sc->temp_high_cnt) *
445 	    (sc->temp_high_val - 250) /
446 	    (sc->temp_room_cnt - sc->temp_high_cnt))));
447 }
448 
449 static inline uint32_t
450 temp_to_count(struct imx6_anatop_softc *sc, uint32_t temp)
451 {
452 
453 	return ((sc->temp_room_cnt - sc->temp_high_cnt) *
454 	    (sc->temp_high_val - temp) / (sc->temp_high_val - 250) +
455 	    sc->temp_high_cnt);
456 }
457 
458 static void
459 temp_update_count(struct imx6_anatop_softc *sc)
460 {
461 	uint32_t val;
462 
463 	val = imx6_anatop_read_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0);
464 	if (!(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_VALID))
465 		return;
466 	sc->temp_last_cnt =
467 	    (val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_MASK) >>
468 	    IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_SHIFT;
469 }
470 
471 static int
472 temp_sysctl_handler(SYSCTL_HANDLER_ARGS)
473 {
474 	struct imx6_anatop_softc *sc = arg1;
475 	uint32_t t;
476 
477 	temp_update_count(sc);
478 
479 	t = temp_from_count(sc, sc->temp_last_cnt) + TZ_ZEROC;
480 
481 	return (sysctl_handle_int(oidp, &t, 0, req));
482 }
483 
484 static int
485 temp_throttle_sysctl_handler(SYSCTL_HANDLER_ARGS)
486 {
487 	struct imx6_anatop_softc *sc = arg1;
488 	int err;
489 	uint32_t temp;
490 
491 	temp = sc->temp_throttle_val + TZ_ZEROC;
492 	err = sysctl_handle_int(oidp, &temp, 0, req);
493 	if (temp < TZ_ZEROC)
494 		return (ERANGE);
495 	temp -= TZ_ZEROC;
496 	if (err != 0 || req->newptr == NULL || temp == sc->temp_throttle_val)
497 		return (err);
498 
499 	/* Value changed, update counts in softc and hardware. */
500 	sc->temp_throttle_val = temp;
501 	sc->temp_throttle_trigger_cnt = temp_to_count(sc, sc->temp_throttle_val);
502 	sc->temp_throttle_reset_cnt = temp_to_count(sc, sc->temp_throttle_val - 100);
503 	imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_CLR,
504 	    IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_MASK);
505 	imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_SET,
506 	    (sc->temp_throttle_trigger_cnt <<
507 	     IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT));
508 	return (err);
509 }
510 
511 static void
512 tempmon_gofast(struct imx6_anatop_softc *sc)
513 {
514 
515 	if (sc->cpu_curmhz < sc->cpu_maxmhz) {
516 		cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_maxmhz));
517 	}
518 }
519 
520 static void
521 tempmon_goslow(struct imx6_anatop_softc *sc)
522 {
523 
524 	if (sc->cpu_curmhz > sc->cpu_minmhz) {
525 		cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_minmhz));
526 	}
527 }
528 
529 static int
530 tempmon_intr(void *arg)
531 {
532 	struct imx6_anatop_softc *sc = arg;
533 
534 	/*
535 	 * XXX Note that this code doesn't currently run (for some mysterious
536 	 * reason we just never get an interrupt), so the real monitoring is
537 	 * done by tempmon_throttle_check().
538 	 */
539 	tempmon_goslow(sc);
540 	/* XXX Schedule callout to speed back up eventually. */
541 	return (FILTER_HANDLED);
542 }
543 
544 static void
545 tempmon_throttle_check(void *arg)
546 {
547 	struct imx6_anatop_softc *sc = arg;
548 
549 	/* Lower counts are higher temperatures. */
550 	if (sc->temp_last_cnt < sc->temp_throttle_trigger_cnt)
551 		tempmon_goslow(sc);
552 	else if (sc->temp_last_cnt > (sc->temp_throttle_reset_cnt))
553 		tempmon_gofast(sc);
554 
555 	callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
556 		0, tempmon_throttle_check, sc, 0);
557 
558 }
559 
560 static void
561 initialize_tempmon(struct imx6_anatop_softc *sc)
562 {
563 	uint32_t cal;
564 
565 	/*
566 	 * Fetch calibration data: a sensor count at room temperature (25C),
567 	 * a sensor count at a high temperature, and that temperature
568 	 */
569 	cal = fsl_ocotp_read_4(FSL_OCOTP_ANA1);
570 	sc->temp_room_cnt = (cal & 0xFFF00000) >> 20;
571 	sc->temp_high_cnt = (cal & 0x000FFF00) >> 8;
572 	sc->temp_high_val = (cal & 0x000000FF) * 10;
573 
574 	/*
575 	 * Throttle to a lower cpu freq at 10C below the "hot" temperature, and
576 	 * reset back to max cpu freq at 5C below the trigger.
577 	 */
578 	sc->temp_throttle_val = sc->temp_high_val - 100;
579 	sc->temp_throttle_trigger_cnt =
580 	    temp_to_count(sc, sc->temp_throttle_val);
581 	sc->temp_throttle_reset_cnt =
582 	    temp_to_count(sc, sc->temp_throttle_val - 50);
583 
584 	/*
585 	 * Set the sensor to sample automatically at 16Hz (32.768KHz/0x800), set
586 	 * the throttle count, and begin making measurements.
587 	 */
588 	imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE1, 0x0800);
589 	imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0,
590 	    (sc->temp_throttle_trigger_cnt <<
591 	    IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT) |
592 	    IMX6_ANALOG_TEMPMON_TEMPSENSE0_MEASURE);
593 
594 	/*
595 	 * XXX Note that the alarm-interrupt feature isn't working yet, so
596 	 * we'll use a callout handler to check at 10Hz.  Make sure we have an
597 	 * initial temperature reading before starting up the callouts so we
598 	 * don't get a bogus reading of zero.
599 	 */
600 	while (sc->temp_last_cnt == 0)
601 		temp_update_count(sc);
602 	sc->temp_throttle_delay = 100 * SBT_1MS;
603 	callout_init(&sc->temp_throttle_callout, 0);
604 	callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
605 	    0, tempmon_throttle_check, sc, 0);
606 
607 	SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
608 	    OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, sc, 0,
609 	    temp_sysctl_handler, "IK", "Current die temperature");
610 	SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
611 	    OID_AUTO, "throttle_temperature", CTLTYPE_INT | CTLFLAG_RW, sc,
612 	    0, temp_throttle_sysctl_handler, "IK",
613 	    "Throttle CPU when exceeding this temperature");
614 }
615 
616 static void
617 intr_setup(void *arg)
618 {
619 	struct imx6_anatop_softc *sc;
620 
621 	sc = arg;
622 	bus_setup_intr(sc->dev, sc->res[IRQRES], INTR_TYPE_MISC | INTR_MPSAFE,
623 	    tempmon_intr, NULL, sc, &sc->temp_intrhand);
624 	config_intrhook_disestablish(&sc->intr_setup_hook);
625 }
626 
627 static void
628 imx6_anatop_new_pass(device_t dev)
629 {
630 	struct imx6_anatop_softc *sc;
631 	const int cpu_init_pass = BUS_PASS_CPU + BUS_PASS_ORDER_MIDDLE;
632 
633 	/*
634 	 * We attach during BUS_PASS_BUS (because some day we will be a
635 	 * simplebus that has regulator devices as children), but some of our
636 	 * init work cannot be done until BUS_PASS_CPU (we rely on other devices
637 	 * that attach on the CPU pass).
638 	 */
639 	sc = device_get_softc(dev);
640 	if (!sc->cpu_init_done && bus_current_pass >= cpu_init_pass) {
641 		sc->cpu_init_done = true;
642 		cpufreq_initialize(sc);
643 		initialize_tempmon(sc);
644 		if (bootverbose) {
645 			device_printf(sc->dev, "CPU %uMHz @ %umV\n",
646 			    sc->cpu_curmhz, sc->cpu_curmv);
647 		}
648 	}
649 	bus_generic_new_pass(dev);
650 }
651 
652 static int
653 imx6_anatop_detach(device_t dev)
654 {
655 
656 	/* This device can never detach. */
657 	return (EBUSY);
658 }
659 
660 static int
661 imx6_anatop_attach(device_t dev)
662 {
663 	struct imx6_anatop_softc *sc;
664 	int err;
665 
666 	sc = device_get_softc(dev);
667 	sc->dev = dev;
668 
669 	/* Allocate bus_space resources. */
670 	if (bus_alloc_resources(dev, imx6_anatop_spec, sc->res)) {
671 		device_printf(dev, "Cannot allocate resources\n");
672 		err = ENXIO;
673 		goto out;
674 	}
675 
676 	sc->intr_setup_hook.ich_func = intr_setup;
677 	sc->intr_setup_hook.ich_arg = sc;
678 	config_intrhook_establish(&sc->intr_setup_hook);
679 
680 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
681 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
682 	    OID_AUTO, "cpu_voltage", CTLFLAG_RD,
683 	    &sc->cpu_curmv, 0, "Current CPU voltage in millivolts");
684 
685 	imx6_anatop_sc = sc;
686 
687 	/*
688 	 * Other code seen on the net sets this SELFBIASOFF flag around the same
689 	 * time the temperature sensor is set up, although it's unclear how the
690 	 * two are related (if at all).
691 	 */
692 	imx6_anatop_write_4(IMX6_ANALOG_PMU_MISC0_SET,
693 	    IMX6_ANALOG_PMU_MISC0_SELFBIASOFF);
694 
695 	/*
696 	 * Some day, when we're ready to deal with the actual anatop regulators
697 	 * that are described in fdt data as children of this "bus", this would
698 	 * be the place to invoke a simplebus helper routine to instantiate the
699 	 * children from the fdt data.
700 	 */
701 
702 	err = 0;
703 
704 out:
705 
706 	if (err != 0) {
707 		bus_release_resources(dev, imx6_anatop_spec, sc->res);
708 	}
709 
710 	return (err);
711 }
712 
713 uint32_t
714 pll4_configure_output(uint32_t mfi, uint32_t mfn, uint32_t mfd)
715 {
716 	int reg;
717 
718 	/*
719 	 * Audio PLL (PLL4).
720 	 * PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM)
721 	 */
722 
723 	reg = (IMX6_ANALOG_CCM_PLL_AUDIO_ENABLE);
724 	reg &= ~(IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_MASK << \
725 		IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
726 	reg |= (mfi << IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
727 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO, reg);
728 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_NUM, mfn);
729 	imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_DENOM, mfd);
730 
731 	return (0);
732 }
733 
734 static int
735 imx6_anatop_probe(device_t dev)
736 {
737 
738 	if (!ofw_bus_status_okay(dev))
739 		return (ENXIO);
740 
741 	if (ofw_bus_is_compatible(dev, "fsl,imx6q-anatop") == 0)
742 		return (ENXIO);
743 
744 	device_set_desc(dev, "Freescale i.MX6 Analog PLLs and Power");
745 
746 	return (BUS_PROBE_DEFAULT);
747 }
748 
749 uint32_t
750 imx6_get_cpu_clock()
751 {
752 	uint32_t div;
753 
754 	div = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
755 	    IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
756 	return (cpufreq_mhz_from_div(imx6_anatop_sc, div));
757 }
758 
759 static device_method_t imx6_anatop_methods[] = {
760 	/* Device interface */
761 	DEVMETHOD(device_probe,  imx6_anatop_probe),
762 	DEVMETHOD(device_attach, imx6_anatop_attach),
763 	DEVMETHOD(device_detach, imx6_anatop_detach),
764 
765 	/* Bus interface */
766 	DEVMETHOD(bus_new_pass,  imx6_anatop_new_pass),
767 
768 	DEVMETHOD_END
769 };
770 
771 static driver_t imx6_anatop_driver = {
772 	"imx6_anatop",
773 	imx6_anatop_methods,
774 	sizeof(struct imx6_anatop_softc)
775 };
776 
777 static devclass_t imx6_anatop_devclass;
778 
779 EARLY_DRIVER_MODULE(imx6_anatop, simplebus, imx6_anatop_driver,
780     imx6_anatop_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
781 EARLY_DRIVER_MODULE(imx6_anatop, ofwbus, imx6_anatop_driver,
782     imx6_anatop_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
783 
784