1 /*- 2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org> 3 * Copyright (c) 2014 Steven Lawrance <stl@koffein.net> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * Analog PLL and power regulator driver for Freescale i.MX6 family of SoCs. 33 * Also, temperature montoring and cpu frequency control. It was Freescale who 34 * kitchen-sinked this device, not us. :) 35 * 36 * We don't really do anything with analog PLLs, but the registers for 37 * controlling them belong to the same block as the power regulator registers. 38 * Since the newbus hierarchy makes it hard for anyone other than us to get at 39 * them, we just export a couple public functions to allow the imx6 CCM clock 40 * driver to read and write those registers. 41 * 42 * We also don't do anything about power regulation yet, but when the need 43 * arises, this would be the place for that code to live. 44 * 45 * I have no idea where the "anatop" name comes from. It's in the standard DTS 46 * source describing i.MX6 SoCs, and in the linux and u-boot code which comes 47 * from Freescale, but it's not in the SoC manual. 48 * 49 * Note that temperature values throughout this code are handled in two types of 50 * units. Items with '_cnt' in the name use the hardware temperature count 51 * units (higher counts are lower temperatures). Items with '_val' in the name 52 * are deci-Celcius, which are converted to/from deci-Kelvins in the sysctl 53 * handlers (dK is the standard unit for temperature in sysctl). 54 */ 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/callout.h> 59 #include <sys/kernel.h> 60 #include <sys/limits.h> 61 #include <sys/sysctl.h> 62 #include <sys/module.h> 63 #include <sys/bus.h> 64 #include <sys/rman.h> 65 66 #include <dev/ofw/ofw_bus.h> 67 #include <dev/ofw/ofw_bus_subr.h> 68 69 #include <machine/bus.h> 70 71 #include <arm/arm/mpcore_timervar.h> 72 #include <arm/freescale/fsl_ocotpreg.h> 73 #include <arm/freescale/fsl_ocotpvar.h> 74 #include <arm/freescale/imx/imx_ccmvar.h> 75 #include <arm/freescale/imx/imx6_anatopreg.h> 76 #include <arm/freescale/imx/imx6_anatopvar.h> 77 78 static SYSCTL_NODE(_hw, OID_AUTO, imx6, CTLFLAG_RW, NULL, "i.MX6 container"); 79 80 static struct resource_spec imx6_anatop_spec[] = { 81 { SYS_RES_MEMORY, 0, RF_ACTIVE }, 82 { SYS_RES_IRQ, 0, RF_ACTIVE }, 83 { -1, 0 } 84 }; 85 #define MEMRES 0 86 #define IRQRES 1 87 88 struct imx6_anatop_softc { 89 device_t dev; 90 struct resource *res[2]; 91 struct intr_config_hook 92 intr_setup_hook; 93 uint32_t cpu_curmhz; 94 uint32_t cpu_curmv; 95 uint32_t cpu_minmhz; 96 uint32_t cpu_minmv; 97 uint32_t cpu_maxmhz; 98 uint32_t cpu_maxmv; 99 uint32_t cpu_maxmhz_hw; 100 boolean_t cpu_overclock_enable; 101 boolean_t cpu_init_done; 102 uint32_t refosc_mhz; 103 void *temp_intrhand; 104 uint32_t temp_high_val; 105 uint32_t temp_high_cnt; 106 uint32_t temp_last_cnt; 107 uint32_t temp_room_cnt; 108 struct callout temp_throttle_callout; 109 sbintime_t temp_throttle_delay; 110 uint32_t temp_throttle_reset_cnt; 111 uint32_t temp_throttle_trigger_cnt; 112 uint32_t temp_throttle_val; 113 }; 114 115 static struct imx6_anatop_softc *imx6_anatop_sc; 116 117 /* 118 * Table of "operating points". 119 * These are combinations of frequency and voltage blessed by Freescale. 120 * While the datasheet says the ARM voltage can be as low as 925mV at 121 * 396MHz, it also says that the ARM and SOC voltages can't differ by 122 * more than 200mV, and the minimum SOC voltage is 1150mV, so that 123 * dictates the 950mV entry in this table. 124 */ 125 static struct oppt { 126 uint32_t mhz; 127 uint32_t mv; 128 } imx6_oppt_table[] = { 129 { 396, 950}, 130 { 792, 1150}, 131 { 852, 1225}, 132 { 996, 1225}, 133 {1200, 1275}, 134 }; 135 136 /* 137 * Table of CPU max frequencies. This is used to translate the max frequency 138 * value (0-3) from the ocotp CFG3 register into a mhz value that can be looked 139 * up in the operating points table. 140 */ 141 static uint32_t imx6_ocotp_mhz_tab[] = {792, 852, 996, 1200}; 142 143 #define TZ_ZEROC 2732 /* deci-Kelvin <-> deci-Celcius offset. */ 144 145 uint32_t 146 imx6_anatop_read_4(bus_size_t offset) 147 { 148 149 KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_read_4 sc NULL")); 150 151 return (bus_read_4(imx6_anatop_sc->res[MEMRES], offset)); 152 } 153 154 void 155 imx6_anatop_write_4(bus_size_t offset, uint32_t value) 156 { 157 158 KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_write_4 sc NULL")); 159 160 bus_write_4(imx6_anatop_sc->res[MEMRES], offset, value); 161 } 162 163 static void 164 vdd_set(struct imx6_anatop_softc *sc, int mv) 165 { 166 int newtarg, newtargSoc, oldtarg; 167 uint32_t delay, pmureg; 168 static boolean_t init_done = false; 169 170 /* 171 * The datasheet says VDD_PU and VDD_SOC must be equal, and VDD_ARM 172 * can't be more than 50mV above or 200mV below them. We keep them the 173 * same except in the case of the lowest operating point, which is 174 * handled as a special case below. 175 */ 176 177 pmureg = imx6_anatop_read_4(IMX6_ANALOG_PMU_REG_CORE); 178 oldtarg = pmureg & IMX6_ANALOG_PMU_REG0_TARG_MASK; 179 180 /* Convert mV to target value. Clamp target to valid range. */ 181 if (mv < 725) 182 newtarg = 0x00; 183 else if (mv > 1450) 184 newtarg = 0x1F; 185 else 186 newtarg = (mv - 700) / 25; 187 188 /* 189 * The SOC voltage can't go below 1150mV, and thus because of the 200mV 190 * rule, the ARM voltage can't go below 950mV. The 950 is encoded in 191 * our oppt table, here we handle the SOC 1150 rule as a special case. 192 * (1150-700/25=18). 193 */ 194 newtargSoc = (newtarg < 18) ? 18 : newtarg; 195 196 /* 197 * The first time through the 3 voltages might not be equal so use a 198 * long conservative delay. After that we need to delay 3uS for every 199 * 25mV step upward; we actually delay 6uS because empirically, it works 200 * and the 3uS per step recommended by the docs doesn't (3uS fails when 201 * going from 400->1200, but works for smaller changes). 202 */ 203 if (init_done) { 204 if (newtarg == oldtarg) 205 return; 206 else if (newtarg > oldtarg) 207 delay = (newtarg - oldtarg) * 6; 208 else 209 delay = 0; 210 } else { 211 delay = (700 / 25) * 6; 212 init_done = true; 213 } 214 215 /* 216 * Make the change and wait for it to take effect. 217 */ 218 pmureg &= ~(IMX6_ANALOG_PMU_REG0_TARG_MASK | 219 IMX6_ANALOG_PMU_REG1_TARG_MASK | 220 IMX6_ANALOG_PMU_REG2_TARG_MASK); 221 222 pmureg |= newtarg << IMX6_ANALOG_PMU_REG0_TARG_SHIFT; 223 pmureg |= newtarg << IMX6_ANALOG_PMU_REG1_TARG_SHIFT; 224 pmureg |= newtargSoc << IMX6_ANALOG_PMU_REG2_TARG_SHIFT; 225 226 imx6_anatop_write_4(IMX6_ANALOG_PMU_REG_CORE, pmureg); 227 DELAY(delay); 228 sc->cpu_curmv = newtarg * 25 + 700; 229 } 230 231 static inline uint32_t 232 cpufreq_mhz_from_div(struct imx6_anatop_softc *sc, uint32_t corediv, 233 uint32_t plldiv) 234 { 235 236 return ((sc->refosc_mhz * (plldiv / 2)) / (corediv + 1)); 237 } 238 239 static inline void 240 cpufreq_mhz_to_div(struct imx6_anatop_softc *sc, uint32_t cpu_mhz, 241 uint32_t *corediv, uint32_t *plldiv) 242 { 243 244 *corediv = (cpu_mhz < 650) ? 1 : 0; 245 *plldiv = ((*corediv + 1) * cpu_mhz) / (sc->refosc_mhz / 2); 246 } 247 248 static inline uint32_t 249 cpufreq_actual_mhz(struct imx6_anatop_softc *sc, uint32_t cpu_mhz) 250 { 251 uint32_t corediv, plldiv; 252 253 cpufreq_mhz_to_div(sc, cpu_mhz, &corediv, &plldiv); 254 return (cpufreq_mhz_from_div(sc, corediv, plldiv)); 255 } 256 257 static struct oppt * 258 cpufreq_nearest_oppt(struct imx6_anatop_softc *sc, uint32_t cpu_newmhz) 259 { 260 int d, diff, i, nearest; 261 262 if (cpu_newmhz > sc->cpu_maxmhz_hw && !sc->cpu_overclock_enable) 263 cpu_newmhz = sc->cpu_maxmhz_hw; 264 265 diff = INT_MAX; 266 nearest = 0; 267 for (i = 0; i < nitems(imx6_oppt_table); ++i) { 268 d = abs((int)cpu_newmhz - (int)imx6_oppt_table[i].mhz); 269 if (diff > d) { 270 diff = d; 271 nearest = i; 272 } 273 } 274 return (&imx6_oppt_table[nearest]); 275 } 276 277 static void 278 cpufreq_set_clock(struct imx6_anatop_softc * sc, struct oppt *op) 279 { 280 uint32_t corediv, plldiv, timeout, wrk32; 281 282 /* If increasing the frequency, we must first increase the voltage. */ 283 if (op->mhz > sc->cpu_curmhz) { 284 vdd_set(sc, op->mv); 285 } 286 287 /* 288 * I can't find a documented procedure for changing the ARM PLL divisor, 289 * but some trial and error came up with this: 290 * - Set the bypass clock source to REF_CLK_24M (source #0). 291 * - Set the PLL into bypass mode; cpu should now be running at 24mhz. 292 * - Change the divisor. 293 * - Wait for the LOCK bit to come on; it takes ~50 loop iterations. 294 * - Turn off bypass mode; cpu should now be running at the new speed. 295 */ 296 cpufreq_mhz_to_div(sc, op->mhz, &corediv, &plldiv); 297 imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR, 298 IMX6_ANALOG_CCM_PLL_ARM_CLK_SRC_MASK); 299 imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_SET, 300 IMX6_ANALOG_CCM_PLL_ARM_BYPASS); 301 302 wrk32 = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM); 303 wrk32 &= ~IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK; 304 wrk32 |= plldiv; 305 imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM, wrk32); 306 307 timeout = 10000; 308 while ((imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) & 309 IMX6_ANALOG_CCM_PLL_ARM_LOCK) == 0) 310 if (--timeout == 0) 311 panic("imx6_set_cpu_clock(): PLL never locked"); 312 313 imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR, 314 IMX6_ANALOG_CCM_PLL_ARM_BYPASS); 315 imx_ccm_set_cacrr(corediv); 316 317 /* If lowering the frequency, it is now safe to lower the voltage. */ 318 if (op->mhz < sc->cpu_curmhz) 319 vdd_set(sc, op->mv); 320 sc->cpu_curmhz = op->mhz; 321 322 /* Tell the mpcore timer that its frequency has changed. */ 323 arm_tmr_change_frequency( 324 cpufreq_actual_mhz(sc, sc->cpu_curmhz) * 1000000 / 2); 325 } 326 327 static int 328 cpufreq_sysctl_minmhz(SYSCTL_HANDLER_ARGS) 329 { 330 struct imx6_anatop_softc *sc; 331 struct oppt * op; 332 uint32_t temp; 333 int err; 334 335 sc = arg1; 336 337 temp = sc->cpu_minmhz; 338 err = sysctl_handle_int(oidp, &temp, 0, req); 339 if (err != 0 || req->newptr == NULL) 340 return (err); 341 342 op = cpufreq_nearest_oppt(sc, temp); 343 if (op->mhz > sc->cpu_maxmhz) 344 return (ERANGE); 345 else if (op->mhz == sc->cpu_minmhz) 346 return (0); 347 348 /* 349 * Value changed, update softc. If the new min is higher than the 350 * current speed, raise the current speed to match. 351 */ 352 sc->cpu_minmhz = op->mhz; 353 if (sc->cpu_minmhz > sc->cpu_curmhz) { 354 cpufreq_set_clock(sc, op); 355 } 356 return (err); 357 } 358 359 static int 360 cpufreq_sysctl_maxmhz(SYSCTL_HANDLER_ARGS) 361 { 362 struct imx6_anatop_softc *sc; 363 struct oppt * op; 364 uint32_t temp; 365 int err; 366 367 sc = arg1; 368 369 temp = sc->cpu_maxmhz; 370 err = sysctl_handle_int(oidp, &temp, 0, req); 371 if (err != 0 || req->newptr == NULL) 372 return (err); 373 374 op = cpufreq_nearest_oppt(sc, temp); 375 if (op->mhz < sc->cpu_minmhz) 376 return (ERANGE); 377 else if (op->mhz == sc->cpu_maxmhz) 378 return (0); 379 380 /* 381 * Value changed, update softc and hardware. The hardware update is 382 * unconditional. We always try to run at max speed, so any change of 383 * the max means we need to change the current speed too, regardless of 384 * whether it is higher or lower than the old max. 385 */ 386 sc->cpu_maxmhz = op->mhz; 387 cpufreq_set_clock(sc, op); 388 389 return (err); 390 } 391 392 static void 393 cpufreq_initialize(struct imx6_anatop_softc *sc) 394 { 395 uint32_t cfg3speed; 396 struct oppt * op; 397 398 SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), 399 OID_AUTO, "cpu_mhz", CTLFLAG_RD, &sc->cpu_curmhz, 0, 400 "CPU frequency"); 401 402 SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), 403 OID_AUTO, "cpu_minmhz", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH, 404 sc, 0, cpufreq_sysctl_minmhz, "IU", "Minimum CPU frequency"); 405 406 SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), 407 OID_AUTO, "cpu_maxmhz", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH, 408 sc, 0, cpufreq_sysctl_maxmhz, "IU", "Maximum CPU frequency"); 409 410 SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), 411 OID_AUTO, "cpu_maxmhz_hw", CTLFLAG_RD, &sc->cpu_maxmhz_hw, 0, 412 "Maximum CPU frequency allowed by hardware"); 413 414 SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), 415 OID_AUTO, "cpu_overclock_enable", CTLFLAG_RWTUN, 416 &sc->cpu_overclock_enable, 0, 417 "Allow setting CPU frequency higher than cpu_maxmhz_hw"); 418 419 /* 420 * XXX 24mhz shouldn't be hard-coded, should get this from imx6_ccm 421 * (even though in the real world it will always be 24mhz). Oh wait a 422 * sec, I never wrote imx6_ccm. 423 */ 424 sc->refosc_mhz = 24; 425 426 /* 427 * Get the maximum speed this cpu can be set to. The values in the 428 * OCOTP CFG3 register are not documented in the reference manual. 429 * The following info was in an archived email found via web search: 430 * - 2b'11: 1200000000Hz; 431 * - 2b'10: 996000000Hz; 432 * - 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz. 433 * - 2b'00: 792000000Hz; 434 * The default hardware max speed can be overridden by a tunable. 435 */ 436 cfg3speed = (fsl_ocotp_read_4(FSL_OCOTP_CFG3) & 437 FSL_OCOTP_CFG3_SPEED_MASK) >> FSL_OCOTP_CFG3_SPEED_SHIFT; 438 sc->cpu_maxmhz_hw = imx6_ocotp_mhz_tab[cfg3speed]; 439 sc->cpu_maxmhz = sc->cpu_maxmhz_hw; 440 441 TUNABLE_INT_FETCH("hw.imx6.cpu_minmhz", &sc->cpu_minmhz); 442 op = cpufreq_nearest_oppt(sc, sc->cpu_minmhz); 443 sc->cpu_minmhz = op->mhz; 444 sc->cpu_minmv = op->mv; 445 446 TUNABLE_INT_FETCH("hw.imx6.cpu_maxmhz", &sc->cpu_maxmhz); 447 op = cpufreq_nearest_oppt(sc, sc->cpu_maxmhz); 448 sc->cpu_maxmhz = op->mhz; 449 sc->cpu_maxmv = op->mv; 450 451 /* 452 * Set the CPU to maximum speed. 453 * 454 * We won't have thermal throttling until interrupts are enabled, but we 455 * want to run at full speed through all the device init stuff. This 456 * basically assumes that a single core can't overheat before interrupts 457 * are enabled; empirical testing shows that to be a safe assumption. 458 */ 459 cpufreq_set_clock(sc, op); 460 } 461 462 static inline uint32_t 463 temp_from_count(struct imx6_anatop_softc *sc, uint32_t count) 464 { 465 466 return (((sc->temp_high_val - (count - sc->temp_high_cnt) * 467 (sc->temp_high_val - 250) / 468 (sc->temp_room_cnt - sc->temp_high_cnt)))); 469 } 470 471 static inline uint32_t 472 temp_to_count(struct imx6_anatop_softc *sc, uint32_t temp) 473 { 474 475 return ((sc->temp_room_cnt - sc->temp_high_cnt) * 476 (sc->temp_high_val - temp) / (sc->temp_high_val - 250) + 477 sc->temp_high_cnt); 478 } 479 480 static void 481 temp_update_count(struct imx6_anatop_softc *sc) 482 { 483 uint32_t val; 484 485 val = imx6_anatop_read_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0); 486 if (!(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_VALID)) 487 return; 488 sc->temp_last_cnt = 489 (val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_MASK) >> 490 IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_SHIFT; 491 } 492 493 static int 494 temp_sysctl_handler(SYSCTL_HANDLER_ARGS) 495 { 496 struct imx6_anatop_softc *sc = arg1; 497 uint32_t t; 498 499 temp_update_count(sc); 500 501 t = temp_from_count(sc, sc->temp_last_cnt) + TZ_ZEROC; 502 503 return (sysctl_handle_int(oidp, &t, 0, req)); 504 } 505 506 static int 507 temp_throttle_sysctl_handler(SYSCTL_HANDLER_ARGS) 508 { 509 struct imx6_anatop_softc *sc = arg1; 510 int err; 511 uint32_t temp; 512 513 temp = sc->temp_throttle_val + TZ_ZEROC; 514 err = sysctl_handle_int(oidp, &temp, 0, req); 515 if (temp < TZ_ZEROC) 516 return (ERANGE); 517 temp -= TZ_ZEROC; 518 if (err != 0 || req->newptr == NULL || temp == sc->temp_throttle_val) 519 return (err); 520 521 /* Value changed, update counts in softc and hardware. */ 522 sc->temp_throttle_val = temp; 523 sc->temp_throttle_trigger_cnt = temp_to_count(sc, sc->temp_throttle_val); 524 sc->temp_throttle_reset_cnt = temp_to_count(sc, sc->temp_throttle_val - 100); 525 imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_CLR, 526 IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_MASK); 527 imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_SET, 528 (sc->temp_throttle_trigger_cnt << 529 IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT)); 530 return (err); 531 } 532 533 static void 534 tempmon_gofast(struct imx6_anatop_softc *sc) 535 { 536 537 if (sc->cpu_curmhz < sc->cpu_maxmhz) { 538 cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_maxmhz)); 539 } 540 } 541 542 static void 543 tempmon_goslow(struct imx6_anatop_softc *sc) 544 { 545 546 if (sc->cpu_curmhz > sc->cpu_minmhz) { 547 cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_minmhz)); 548 } 549 } 550 551 static int 552 tempmon_intr(void *arg) 553 { 554 struct imx6_anatop_softc *sc = arg; 555 556 /* 557 * XXX Note that this code doesn't currently run (for some mysterious 558 * reason we just never get an interrupt), so the real monitoring is 559 * done by tempmon_throttle_check(). 560 */ 561 tempmon_goslow(sc); 562 /* XXX Schedule callout to speed back up eventually. */ 563 return (FILTER_HANDLED); 564 } 565 566 static void 567 tempmon_throttle_check(void *arg) 568 { 569 struct imx6_anatop_softc *sc = arg; 570 571 /* Lower counts are higher temperatures. */ 572 if (sc->temp_last_cnt < sc->temp_throttle_trigger_cnt) 573 tempmon_goslow(sc); 574 else if (sc->temp_last_cnt > (sc->temp_throttle_reset_cnt)) 575 tempmon_gofast(sc); 576 577 callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay, 578 0, tempmon_throttle_check, sc, 0); 579 580 } 581 582 static void 583 initialize_tempmon(struct imx6_anatop_softc *sc) 584 { 585 uint32_t cal; 586 587 /* 588 * Fetch calibration data: a sensor count at room temperature (25C), 589 * a sensor count at a high temperature, and that temperature 590 */ 591 cal = fsl_ocotp_read_4(FSL_OCOTP_ANA1); 592 sc->temp_room_cnt = (cal & 0xFFF00000) >> 20; 593 sc->temp_high_cnt = (cal & 0x000FFF00) >> 8; 594 sc->temp_high_val = (cal & 0x000000FF) * 10; 595 596 /* 597 * Throttle to a lower cpu freq at 10C below the "hot" temperature, and 598 * reset back to max cpu freq at 5C below the trigger. 599 */ 600 sc->temp_throttle_val = sc->temp_high_val - 100; 601 sc->temp_throttle_trigger_cnt = 602 temp_to_count(sc, sc->temp_throttle_val); 603 sc->temp_throttle_reset_cnt = 604 temp_to_count(sc, sc->temp_throttle_val - 50); 605 606 /* 607 * Set the sensor to sample automatically at 16Hz (32.768KHz/0x800), set 608 * the throttle count, and begin making measurements. 609 */ 610 imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE1, 0x0800); 611 imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0, 612 (sc->temp_throttle_trigger_cnt << 613 IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT) | 614 IMX6_ANALOG_TEMPMON_TEMPSENSE0_MEASURE); 615 616 /* 617 * XXX Note that the alarm-interrupt feature isn't working yet, so 618 * we'll use a callout handler to check at 10Hz. Make sure we have an 619 * initial temperature reading before starting up the callouts so we 620 * don't get a bogus reading of zero. 621 */ 622 while (sc->temp_last_cnt == 0) 623 temp_update_count(sc); 624 sc->temp_throttle_delay = 100 * SBT_1MS; 625 callout_init(&sc->temp_throttle_callout, 0); 626 callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay, 627 0, tempmon_throttle_check, sc, 0); 628 629 SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), 630 OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, sc, 0, 631 temp_sysctl_handler, "IK", "Current die temperature"); 632 SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), 633 OID_AUTO, "throttle_temperature", CTLTYPE_INT | CTLFLAG_RW, sc, 634 0, temp_throttle_sysctl_handler, "IK", 635 "Throttle CPU when exceeding this temperature"); 636 } 637 638 static void 639 intr_setup(void *arg) 640 { 641 struct imx6_anatop_softc *sc; 642 643 sc = arg; 644 bus_setup_intr(sc->dev, sc->res[IRQRES], INTR_TYPE_MISC | INTR_MPSAFE, 645 tempmon_intr, NULL, sc, &sc->temp_intrhand); 646 config_intrhook_disestablish(&sc->intr_setup_hook); 647 } 648 649 static void 650 imx6_anatop_new_pass(device_t dev) 651 { 652 struct imx6_anatop_softc *sc; 653 const int cpu_init_pass = BUS_PASS_CPU + BUS_PASS_ORDER_MIDDLE; 654 655 /* 656 * We attach during BUS_PASS_BUS (because some day we will be a 657 * simplebus that has regulator devices as children), but some of our 658 * init work cannot be done until BUS_PASS_CPU (we rely on other devices 659 * that attach on the CPU pass). 660 */ 661 sc = device_get_softc(dev); 662 if (!sc->cpu_init_done && bus_current_pass >= cpu_init_pass) { 663 sc->cpu_init_done = true; 664 cpufreq_initialize(sc); 665 initialize_tempmon(sc); 666 if (bootverbose) { 667 device_printf(sc->dev, "CPU %uMHz @ %umV\n", 668 sc->cpu_curmhz, sc->cpu_curmv); 669 } 670 } 671 bus_generic_new_pass(dev); 672 } 673 674 static int 675 imx6_anatop_detach(device_t dev) 676 { 677 678 /* This device can never detach. */ 679 return (EBUSY); 680 } 681 682 static int 683 imx6_anatop_attach(device_t dev) 684 { 685 struct imx6_anatop_softc *sc; 686 int err; 687 688 sc = device_get_softc(dev); 689 sc->dev = dev; 690 691 /* Allocate bus_space resources. */ 692 if (bus_alloc_resources(dev, imx6_anatop_spec, sc->res)) { 693 device_printf(dev, "Cannot allocate resources\n"); 694 err = ENXIO; 695 goto out; 696 } 697 698 sc->intr_setup_hook.ich_func = intr_setup; 699 sc->intr_setup_hook.ich_arg = sc; 700 config_intrhook_establish(&sc->intr_setup_hook); 701 702 SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev), 703 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), 704 OID_AUTO, "cpu_voltage", CTLFLAG_RD, 705 &sc->cpu_curmv, 0, "Current CPU voltage in millivolts"); 706 707 imx6_anatop_sc = sc; 708 709 /* 710 * Other code seen on the net sets this SELFBIASOFF flag around the same 711 * time the temperature sensor is set up, although it's unclear how the 712 * two are related (if at all). 713 */ 714 imx6_anatop_write_4(IMX6_ANALOG_PMU_MISC0_SET, 715 IMX6_ANALOG_PMU_MISC0_SELFBIASOFF); 716 717 /* 718 * Some day, when we're ready to deal with the actual anatop regulators 719 * that are described in fdt data as children of this "bus", this would 720 * be the place to invoke a simplebus helper routine to instantiate the 721 * children from the fdt data. 722 */ 723 724 err = 0; 725 726 out: 727 728 if (err != 0) { 729 bus_release_resources(dev, imx6_anatop_spec, sc->res); 730 } 731 732 return (err); 733 } 734 735 uint32_t 736 pll4_configure_output(uint32_t mfi, uint32_t mfn, uint32_t mfd) 737 { 738 int reg; 739 740 /* 741 * Audio PLL (PLL4). 742 * PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM) 743 */ 744 745 reg = (IMX6_ANALOG_CCM_PLL_AUDIO_ENABLE); 746 reg &= ~(IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_MASK << \ 747 IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT); 748 reg |= (mfi << IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT); 749 imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO, reg); 750 imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_NUM, mfn); 751 imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_DENOM, mfd); 752 753 return (0); 754 } 755 756 static int 757 imx6_anatop_probe(device_t dev) 758 { 759 760 if (!ofw_bus_status_okay(dev)) 761 return (ENXIO); 762 763 if (ofw_bus_is_compatible(dev, "fsl,imx6q-anatop") == 0) 764 return (ENXIO); 765 766 device_set_desc(dev, "Freescale i.MX6 Analog PLLs and Power"); 767 768 return (BUS_PROBE_DEFAULT); 769 } 770 771 uint32_t 772 imx6_get_cpu_clock() 773 { 774 uint32_t corediv, plldiv; 775 776 corediv = imx_ccm_get_cacrr(); 777 plldiv = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) & 778 IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK; 779 return (cpufreq_mhz_from_div(imx6_anatop_sc, corediv, plldiv)); 780 } 781 782 static device_method_t imx6_anatop_methods[] = { 783 /* Device interface */ 784 DEVMETHOD(device_probe, imx6_anatop_probe), 785 DEVMETHOD(device_attach, imx6_anatop_attach), 786 DEVMETHOD(device_detach, imx6_anatop_detach), 787 788 /* Bus interface */ 789 DEVMETHOD(bus_new_pass, imx6_anatop_new_pass), 790 791 DEVMETHOD_END 792 }; 793 794 static driver_t imx6_anatop_driver = { 795 "imx6_anatop", 796 imx6_anatop_methods, 797 sizeof(struct imx6_anatop_softc) 798 }; 799 800 static devclass_t imx6_anatop_devclass; 801 802 EARLY_DRIVER_MODULE(imx6_anatop, simplebus, imx6_anatop_driver, 803 imx6_anatop_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE); 804 EARLY_DRIVER_MODULE(imx6_anatop, ofwbus, imx6_anatop_driver, 805 imx6_anatop_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE); 806 807