xref: /freebsd/sys/arm/broadcom/bcm2835/bcm2835_spi.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
5  * Copyright (c) 2013 Luiz Otavio O Souza <loos@freebsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/rman.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/sysctl.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <machine/intr.h>
47 
48 #include <dev/ofw/ofw_bus.h>
49 #include <dev/ofw/ofw_bus_subr.h>
50 
51 #include <dev/spibus/spi.h>
52 #include <dev/spibus/spibusvar.h>
53 
54 #include <arm/broadcom/bcm2835/bcm2835_spireg.h>
55 #include <arm/broadcom/bcm2835/bcm2835_spivar.h>
56 
57 #include "spibus_if.h"
58 
59 static struct ofw_compat_data compat_data[] = {
60 	{"broadcom,bcm2835-spi",	1},
61 	{"brcm,bcm2835-spi",		1},
62 	{NULL,				0}
63 };
64 
65 static void bcm_spi_intr(void *);
66 
67 #ifdef	BCM_SPI_DEBUG
68 static void
69 bcm_spi_printr(device_t dev)
70 {
71 	struct bcm_spi_softc *sc;
72 	uint32_t reg;
73 
74 	sc = device_get_softc(dev);
75 	reg = BCM_SPI_READ(sc, SPI_CS);
76 	device_printf(dev, "CS=%b\n", reg,
77 	    "\20\1CS0\2CS1\3CPHA\4CPOL\7CSPOL"
78 	    "\10TA\11DMAEN\12INTD\13INTR\14ADCS\15REN\16LEN"
79 	    "\21DONE\22RXD\23TXD\24RXR\25RXF\26CSPOL0\27CSPOL1"
80 	    "\30CSPOL2\31DMA_LEN\32LEN_LONG");
81 	reg = BCM_SPI_READ(sc, SPI_CLK) & SPI_CLK_MASK;
82 	if (reg % 2)
83 		reg--;
84 	if (reg == 0)
85 		reg = 65536;
86 	device_printf(dev, "CLK=%uMhz/%d=%luhz\n",
87 	    SPI_CORE_CLK / 1000000, reg, SPI_CORE_CLK / reg);
88 	reg = BCM_SPI_READ(sc, SPI_DLEN) & SPI_DLEN_MASK;
89 	device_printf(dev, "DLEN=%d\n", reg);
90 	reg = BCM_SPI_READ(sc, SPI_LTOH) & SPI_LTOH_MASK;
91 	device_printf(dev, "LTOH=%d\n", reg);
92 	reg = BCM_SPI_READ(sc, SPI_DC);
93 	device_printf(dev, "DC=RPANIC=%#x RDREQ=%#x TPANIC=%#x TDREQ=%#x\n",
94 	    (reg & SPI_DC_RPANIC_MASK) >> SPI_DC_RPANIC_SHIFT,
95 	    (reg & SPI_DC_RDREQ_MASK) >> SPI_DC_RDREQ_SHIFT,
96 	    (reg & SPI_DC_TPANIC_MASK) >> SPI_DC_TPANIC_SHIFT,
97 	    (reg & SPI_DC_TDREQ_MASK) >> SPI_DC_TDREQ_SHIFT);
98 }
99 #endif
100 
101 static void
102 bcm_spi_modifyreg(struct bcm_spi_softc *sc, uint32_t off, uint32_t mask,
103 	uint32_t value)
104 {
105 	uint32_t reg;
106 
107 	mtx_assert(&sc->sc_mtx, MA_OWNED);
108 	reg = BCM_SPI_READ(sc, off);
109 	reg &= ~mask;
110 	reg |= value;
111 	BCM_SPI_WRITE(sc, off, reg);
112 }
113 
114 static int
115 bcm_spi_clock_proc(SYSCTL_HANDLER_ARGS)
116 {
117 	struct bcm_spi_softc *sc;
118 	uint32_t clk;
119 	int error;
120 
121 	sc = (struct bcm_spi_softc *)arg1;
122 
123 	BCM_SPI_LOCK(sc);
124 	clk = BCM_SPI_READ(sc, SPI_CLK);
125 	BCM_SPI_UNLOCK(sc);
126 	clk &= 0xffff;
127 	if (clk == 0)
128 		clk = 65536;
129 	clk = SPI_CORE_CLK / clk;
130 
131 	error = sysctl_handle_int(oidp, &clk, sizeof(clk), req);
132 	if (error != 0 || req->newptr == NULL)
133 		return (error);
134 
135 	clk = SPI_CORE_CLK / clk;
136 	if (clk <= 1)
137 		clk = 2;
138 	else if (clk % 2)
139 		clk--;
140 	if (clk > 0xffff)
141 		clk = 0;
142 	BCM_SPI_LOCK(sc);
143 	BCM_SPI_WRITE(sc, SPI_CLK, clk);
144 	BCM_SPI_UNLOCK(sc);
145 
146 	return (0);
147 }
148 
149 static int
150 bcm_spi_cs_bit_proc(SYSCTL_HANDLER_ARGS, uint32_t bit)
151 {
152 	struct bcm_spi_softc *sc;
153 	uint32_t reg;
154 	int error;
155 
156 	sc = (struct bcm_spi_softc *)arg1;
157 	BCM_SPI_LOCK(sc);
158 	reg = BCM_SPI_READ(sc, SPI_CS);
159 	BCM_SPI_UNLOCK(sc);
160 	reg = (reg & bit) ? 1 : 0;
161 
162 	error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
163 	if (error != 0 || req->newptr == NULL)
164 		return (error);
165 
166 	if (reg)
167 		reg = bit;
168 	BCM_SPI_LOCK(sc);
169 	bcm_spi_modifyreg(sc, SPI_CS, bit, reg);
170 	BCM_SPI_UNLOCK(sc);
171 
172 	return (0);
173 }
174 
175 static int
176 bcm_spi_cpol_proc(SYSCTL_HANDLER_ARGS)
177 {
178 
179 	return (bcm_spi_cs_bit_proc(oidp, arg1, arg2, req, SPI_CS_CPOL));
180 }
181 
182 static int
183 bcm_spi_cpha_proc(SYSCTL_HANDLER_ARGS)
184 {
185 
186 	return (bcm_spi_cs_bit_proc(oidp, arg1, arg2, req, SPI_CS_CPHA));
187 }
188 
189 static int
190 bcm_spi_cspol0_proc(SYSCTL_HANDLER_ARGS)
191 {
192 
193 	return (bcm_spi_cs_bit_proc(oidp, arg1, arg2, req, SPI_CS_CSPOL0));
194 }
195 
196 static int
197 bcm_spi_cspol1_proc(SYSCTL_HANDLER_ARGS)
198 {
199 
200 	return (bcm_spi_cs_bit_proc(oidp, arg1, arg2, req, SPI_CS_CSPOL1));
201 }
202 
203 static void
204 bcm_spi_sysctl_init(struct bcm_spi_softc *sc)
205 {
206 	struct sysctl_ctx_list *ctx;
207 	struct sysctl_oid *tree_node;
208 	struct sysctl_oid_list *tree;
209 
210 	/*
211 	 * Add system sysctl tree/handlers.
212 	 */
213 	ctx = device_get_sysctl_ctx(sc->sc_dev);
214 	tree_node = device_get_sysctl_tree(sc->sc_dev);
215 	tree = SYSCTL_CHILDREN(tree_node);
216 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clock",
217 	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
218 	    bcm_spi_clock_proc, "IU", "SPI BUS clock frequency");
219 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "cpol",
220 	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
221 	    bcm_spi_cpol_proc, "IU", "SPI BUS clock polarity");
222 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "cpha",
223 	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
224 	    bcm_spi_cpha_proc, "IU", "SPI BUS clock phase");
225 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "cspol0",
226 	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
227 	    bcm_spi_cspol0_proc, "IU", "SPI BUS chip select 0 polarity");
228 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "cspol1",
229 	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
230 	    bcm_spi_cspol1_proc, "IU", "SPI BUS chip select 1 polarity");
231 }
232 
233 static int
234 bcm_spi_probe(device_t dev)
235 {
236 
237 	if (!ofw_bus_status_okay(dev))
238 		return (ENXIO);
239 
240 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
241 		return (ENXIO);
242 
243 	device_set_desc(dev, "BCM2708/2835 SPI controller");
244 
245 	return (BUS_PROBE_DEFAULT);
246 }
247 
248 static int
249 bcm_spi_attach(device_t dev)
250 {
251 	struct bcm_spi_softc *sc;
252 	int rid;
253 
254 	if (device_get_unit(dev) != 0) {
255 		device_printf(dev, "only one SPI controller supported\n");
256 		return (ENXIO);
257 	}
258 
259 	sc = device_get_softc(dev);
260 	sc->sc_dev = dev;
261 
262 	rid = 0;
263 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
264 	    RF_ACTIVE);
265 	if (!sc->sc_mem_res) {
266 		device_printf(dev, "cannot allocate memory window\n");
267 		return (ENXIO);
268 	}
269 
270 	sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
271 	sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
272 
273 	rid = 0;
274 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
275 	    RF_ACTIVE);
276 	if (!sc->sc_irq_res) {
277 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
278 		device_printf(dev, "cannot allocate interrupt\n");
279 		return (ENXIO);
280 	}
281 
282 	/* Hook up our interrupt handler. */
283 	if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
284 	    NULL, bcm_spi_intr, sc, &sc->sc_intrhand)) {
285 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
286 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
287 		device_printf(dev, "cannot setup the interrupt handler\n");
288 		return (ENXIO);
289 	}
290 
291 	mtx_init(&sc->sc_mtx, "bcm_spi", NULL, MTX_DEF);
292 
293 	/* Add sysctl nodes. */
294 	bcm_spi_sysctl_init(sc);
295 
296 #ifdef	BCM_SPI_DEBUG
297 	bcm_spi_printr(dev);
298 #endif
299 
300 	/*
301 	 * Enable the SPI controller.  Clear the rx and tx FIFO.
302 	 * Defaults to SPI mode 0.
303 	 */
304 	BCM_SPI_WRITE(sc, SPI_CS, SPI_CS_CLEAR_RXFIFO | SPI_CS_CLEAR_TXFIFO);
305 
306 	/* Set the SPI clock to 500Khz. */
307 	BCM_SPI_WRITE(sc, SPI_CLK, SPI_CORE_CLK / 500000);
308 
309 #ifdef	BCM_SPI_DEBUG
310 	bcm_spi_printr(dev);
311 #endif
312 
313 	device_add_child(dev, "spibus", -1);
314 
315 	return (bus_generic_attach(dev));
316 }
317 
318 static int
319 bcm_spi_detach(device_t dev)
320 {
321 	struct bcm_spi_softc *sc;
322 
323 	bus_generic_detach(dev);
324 
325 	sc = device_get_softc(dev);
326 	mtx_destroy(&sc->sc_mtx);
327 	if (sc->sc_intrhand)
328 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
329 	if (sc->sc_irq_res)
330 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
331 	if (sc->sc_mem_res)
332 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
333 
334 	return (0);
335 }
336 
337 static void
338 bcm_spi_fill_fifo(struct bcm_spi_softc *sc)
339 {
340 	struct spi_command *cmd;
341 	uint32_t cs, written;
342 	uint8_t *data;
343 
344 	cmd = sc->sc_cmd;
345 	cs = BCM_SPI_READ(sc, SPI_CS) & (SPI_CS_TA | SPI_CS_TXD);
346 	while (sc->sc_written < sc->sc_len &&
347 	    cs == (SPI_CS_TA | SPI_CS_TXD)) {
348 		data = (uint8_t *)cmd->tx_cmd;
349 		written = sc->sc_written++;
350 		if (written >= cmd->tx_cmd_sz) {
351 			data = (uint8_t *)cmd->tx_data;
352 			written -= cmd->tx_cmd_sz;
353 		}
354 		BCM_SPI_WRITE(sc, SPI_FIFO, data[written]);
355 		cs = BCM_SPI_READ(sc, SPI_CS) & (SPI_CS_TA | SPI_CS_TXD);
356 	}
357 }
358 
359 static void
360 bcm_spi_drain_fifo(struct bcm_spi_softc *sc)
361 {
362 	struct spi_command *cmd;
363 	uint32_t cs, read;
364 	uint8_t *data;
365 
366 	cmd = sc->sc_cmd;
367 	cs = BCM_SPI_READ(sc, SPI_CS) & SPI_CS_RXD;
368 	while (sc->sc_read < sc->sc_len && cs == SPI_CS_RXD) {
369 		data = (uint8_t *)cmd->rx_cmd;
370 		read = sc->sc_read++;
371 		if (read >= cmd->rx_cmd_sz) {
372 			data = (uint8_t *)cmd->rx_data;
373 			read -= cmd->rx_cmd_sz;
374 		}
375 		data[read] = BCM_SPI_READ(sc, SPI_FIFO) & 0xff;
376 		cs = BCM_SPI_READ(sc, SPI_CS) & SPI_CS_RXD;
377 	}
378 }
379 
380 static void
381 bcm_spi_intr(void *arg)
382 {
383 	struct bcm_spi_softc *sc;
384 
385 	sc = (struct bcm_spi_softc *)arg;
386 	BCM_SPI_LOCK(sc);
387 
388 	/* Filter stray interrupts. */
389 	if ((sc->sc_flags & BCM_SPI_BUSY) == 0) {
390 		BCM_SPI_UNLOCK(sc);
391 		return;
392 	}
393 
394 	/* TX - Fill up the FIFO. */
395 	bcm_spi_fill_fifo(sc);
396 
397 	/* RX - Drain the FIFO. */
398 	bcm_spi_drain_fifo(sc);
399 
400 	/* Check for end of transfer. */
401 	if (sc->sc_written == sc->sc_len && sc->sc_read == sc->sc_len) {
402 		/* Disable interrupts and the SPI engine. */
403 		bcm_spi_modifyreg(sc, SPI_CS,
404 		    SPI_CS_TA | SPI_CS_INTR | SPI_CS_INTD, 0);
405 		wakeup(sc->sc_dev);
406 	}
407 
408 	BCM_SPI_UNLOCK(sc);
409 }
410 
411 static int
412 bcm_spi_transfer(device_t dev, device_t child, struct spi_command *cmd)
413 {
414 	struct bcm_spi_softc *sc;
415 	uint32_t cs;
416 	int err;
417 
418 	sc = device_get_softc(dev);
419 
420 	KASSERT(cmd->tx_cmd_sz == cmd->rx_cmd_sz,
421 	    ("TX/RX command sizes should be equal"));
422 	KASSERT(cmd->tx_data_sz == cmd->rx_data_sz,
423 	    ("TX/RX data sizes should be equal"));
424 
425 	/* Get the proper chip select for this child. */
426 	spibus_get_cs(child, &cs);
427 
428 	cs &= ~SPIBUS_CS_HIGH;
429 
430 	if (cs > 2) {
431 		device_printf(dev,
432 		    "Invalid chip select %d requested by %s\n", cs,
433 		    device_get_nameunit(child));
434 		return (EINVAL);
435 	}
436 
437 	BCM_SPI_LOCK(sc);
438 
439 	/* If the controller is in use wait until it is available. */
440 	while (sc->sc_flags & BCM_SPI_BUSY)
441 		mtx_sleep(dev, &sc->sc_mtx, 0, "bcm_spi", 0);
442 
443 	/* Now we have control over SPI controller. */
444 	sc->sc_flags = BCM_SPI_BUSY;
445 
446 	/* Clear the FIFO. */
447 	bcm_spi_modifyreg(sc, SPI_CS,
448 	    SPI_CS_CLEAR_RXFIFO | SPI_CS_CLEAR_TXFIFO,
449 	    SPI_CS_CLEAR_RXFIFO | SPI_CS_CLEAR_TXFIFO);
450 
451 	/* Save a pointer to the SPI command. */
452 	sc->sc_cmd = cmd;
453 	sc->sc_read = 0;
454 	sc->sc_written = 0;
455 	sc->sc_len = cmd->tx_cmd_sz + cmd->tx_data_sz;
456 
457 	/*
458 	 * Set the CS for this transaction, enable interrupts and announce
459 	 * we're ready to tx.  This will kick off the first interrupt.
460 	 */
461 	bcm_spi_modifyreg(sc, SPI_CS,
462 	    SPI_CS_MASK | SPI_CS_TA | SPI_CS_INTR | SPI_CS_INTD,
463 	    cs | SPI_CS_TA | SPI_CS_INTR | SPI_CS_INTD);
464 
465 	/* Wait for the transaction to complete. */
466 	err = mtx_sleep(dev, &sc->sc_mtx, 0, "bcm_spi", hz * 2);
467 
468 	/* Make sure the SPI engine and interrupts are disabled. */
469 	bcm_spi_modifyreg(sc, SPI_CS, SPI_CS_TA | SPI_CS_INTR | SPI_CS_INTD, 0);
470 
471 	/* Release the controller and wakeup the next thread waiting for it. */
472 	sc->sc_flags = 0;
473 	wakeup_one(dev);
474 	BCM_SPI_UNLOCK(sc);
475 
476 	/*
477 	 * Check for transfer timeout.  The SPI controller doesn't
478 	 * return errors.
479 	 */
480 	if (err == EWOULDBLOCK) {
481 		device_printf(sc->sc_dev, "SPI error\n");
482 		err = EIO;
483 	}
484 
485 	return (err);
486 }
487 
488 static phandle_t
489 bcm_spi_get_node(device_t bus, device_t dev)
490 {
491 
492 	/* We only have one child, the SPI bus, which needs our own node. */
493 	return (ofw_bus_get_node(bus));
494 }
495 
496 static device_method_t bcm_spi_methods[] = {
497 	/* Device interface */
498 	DEVMETHOD(device_probe,		bcm_spi_probe),
499 	DEVMETHOD(device_attach,	bcm_spi_attach),
500 	DEVMETHOD(device_detach,	bcm_spi_detach),
501 
502 	/* SPI interface */
503 	DEVMETHOD(spibus_transfer,	bcm_spi_transfer),
504 
505 	/* ofw_bus interface */
506 	DEVMETHOD(ofw_bus_get_node,	bcm_spi_get_node),
507 
508 	DEVMETHOD_END
509 };
510 
511 static devclass_t bcm_spi_devclass;
512 
513 static driver_t bcm_spi_driver = {
514 	"spi",
515 	bcm_spi_methods,
516 	sizeof(struct bcm_spi_softc),
517 };
518 
519 DRIVER_MODULE(bcm2835_spi, simplebus, bcm_spi_driver, bcm_spi_devclass, 0, 0);
520