xref: /freebsd/sys/arm/broadcom/bcm2835/bcm2835_spi.c (revision cc698b490001646c7174d14af6500400be9bd4ff)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
5  * Copyright (c) 2013 Luiz Otavio O Souza <loos@freebsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/rman.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/sysctl.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <machine/intr.h>
47 
48 #include <dev/ofw/ofw_bus.h>
49 #include <dev/ofw/ofw_bus_subr.h>
50 
51 #include <dev/spibus/spi.h>
52 #include <dev/spibus/spibusvar.h>
53 
54 #include <arm/broadcom/bcm2835/bcm2835_spireg.h>
55 #include <arm/broadcom/bcm2835/bcm2835_spivar.h>
56 
57 #include "spibus_if.h"
58 
59 static struct ofw_compat_data compat_data[] = {
60 	{"broadcom,bcm2835-spi",	1},
61 	{"brcm,bcm2835-spi",		1},
62 	{NULL,				0}
63 };
64 
65 static void bcm_spi_intr(void *);
66 
67 #ifdef	BCM_SPI_DEBUG
68 static void
69 bcm_spi_printr(device_t dev)
70 {
71 	struct bcm_spi_softc *sc;
72 	uint32_t reg;
73 
74 	sc = device_get_softc(dev);
75 	reg = BCM_SPI_READ(sc, SPI_CS);
76 	device_printf(dev, "CS=%b\n", reg,
77 	    "\20\1CS0\2CS1\3CPHA\4CPOL\7CSPOL"
78 	    "\10TA\11DMAEN\12INTD\13INTR\14ADCS\15REN\16LEN"
79 	    "\21DONE\22RXD\23TXD\24RXR\25RXF\26CSPOL0\27CSPOL1"
80 	    "\30CSPOL2\31DMA_LEN\32LEN_LONG");
81 	reg = BCM_SPI_READ(sc, SPI_CLK) & SPI_CLK_MASK;
82 	if (reg % 2)
83 		reg--;
84 	if (reg == 0)
85 		reg = 65536;
86 	device_printf(dev, "CLK=%uMhz/%d=%luhz\n",
87 	    SPI_CORE_CLK / 1000000, reg, SPI_CORE_CLK / reg);
88 	reg = BCM_SPI_READ(sc, SPI_DLEN) & SPI_DLEN_MASK;
89 	device_printf(dev, "DLEN=%d\n", reg);
90 	reg = BCM_SPI_READ(sc, SPI_LTOH) & SPI_LTOH_MASK;
91 	device_printf(dev, "LTOH=%d\n", reg);
92 	reg = BCM_SPI_READ(sc, SPI_DC);
93 	device_printf(dev, "DC=RPANIC=%#x RDREQ=%#x TPANIC=%#x TDREQ=%#x\n",
94 	    (reg & SPI_DC_RPANIC_MASK) >> SPI_DC_RPANIC_SHIFT,
95 	    (reg & SPI_DC_RDREQ_MASK) >> SPI_DC_RDREQ_SHIFT,
96 	    (reg & SPI_DC_TPANIC_MASK) >> SPI_DC_TPANIC_SHIFT,
97 	    (reg & SPI_DC_TDREQ_MASK) >> SPI_DC_TDREQ_SHIFT);
98 }
99 #endif
100 
101 static void
102 bcm_spi_modifyreg(struct bcm_spi_softc *sc, uint32_t off, uint32_t mask,
103 	uint32_t value)
104 {
105 	uint32_t reg;
106 
107 	mtx_assert(&sc->sc_mtx, MA_OWNED);
108 	reg = BCM_SPI_READ(sc, off);
109 	reg &= ~mask;
110 	reg |= value;
111 	BCM_SPI_WRITE(sc, off, reg);
112 }
113 
114 static int
115 bcm_spi_clock_proc(SYSCTL_HANDLER_ARGS)
116 {
117 	struct bcm_spi_softc *sc;
118 	uint32_t clk;
119 	int error;
120 
121 	sc = (struct bcm_spi_softc *)arg1;
122 
123 	BCM_SPI_LOCK(sc);
124 	clk = BCM_SPI_READ(sc, SPI_CLK);
125 	BCM_SPI_UNLOCK(sc);
126 	clk &= 0xffff;
127 	if (clk == 0)
128 		clk = 65536;
129 	clk = SPI_CORE_CLK / clk;
130 
131 	error = sysctl_handle_int(oidp, &clk, sizeof(clk), req);
132 	if (error != 0 || req->newptr == NULL)
133 		return (error);
134 
135 	return (0);
136 }
137 
138 static int
139 bcm_spi_cs_bit_proc(SYSCTL_HANDLER_ARGS, uint32_t bit)
140 {
141 	struct bcm_spi_softc *sc;
142 	uint32_t reg;
143 	int error;
144 
145 	sc = (struct bcm_spi_softc *)arg1;
146 	BCM_SPI_LOCK(sc);
147 	reg = BCM_SPI_READ(sc, SPI_CS);
148 	BCM_SPI_UNLOCK(sc);
149 	reg = (reg & bit) ? 1 : 0;
150 
151 	error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
152 	if (error != 0 || req->newptr == NULL)
153 		return (error);
154 
155 	return (0);
156 }
157 
158 static int
159 bcm_spi_cpol_proc(SYSCTL_HANDLER_ARGS)
160 {
161 
162 	return (bcm_spi_cs_bit_proc(oidp, arg1, arg2, req, SPI_CS_CPOL));
163 }
164 
165 static int
166 bcm_spi_cpha_proc(SYSCTL_HANDLER_ARGS)
167 {
168 
169 	return (bcm_spi_cs_bit_proc(oidp, arg1, arg2, req, SPI_CS_CPHA));
170 }
171 
172 static int
173 bcm_spi_cspol0_proc(SYSCTL_HANDLER_ARGS)
174 {
175 
176 	return (bcm_spi_cs_bit_proc(oidp, arg1, arg2, req, SPI_CS_CSPOL0));
177 }
178 
179 static int
180 bcm_spi_cspol1_proc(SYSCTL_HANDLER_ARGS)
181 {
182 
183 	return (bcm_spi_cs_bit_proc(oidp, arg1, arg2, req, SPI_CS_CSPOL1));
184 }
185 
186 static int
187 bcm_spi_cspol2_proc(SYSCTL_HANDLER_ARGS)
188 {
189 
190 	return (bcm_spi_cs_bit_proc(oidp, arg1, arg2, req, SPI_CS_CSPOL2));
191 }
192 
193 static void
194 bcm_spi_sysctl_init(struct bcm_spi_softc *sc)
195 {
196 	struct sysctl_ctx_list *ctx;
197 	struct sysctl_oid *tree_node;
198 	struct sysctl_oid_list *tree;
199 
200 	/*
201 	 * Add system sysctl tree/handlers.
202 	 */
203 	ctx = device_get_sysctl_ctx(sc->sc_dev);
204 	tree_node = device_get_sysctl_tree(sc->sc_dev);
205 	tree = SYSCTL_CHILDREN(tree_node);
206 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clock",
207 	    CTLFLAG_RD | CTLTYPE_UINT, sc, sizeof(*sc),
208 	    bcm_spi_clock_proc, "IU", "SPI BUS clock frequency");
209 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "cpol",
210 	    CTLFLAG_RD | CTLTYPE_UINT, sc, sizeof(*sc),
211 	    bcm_spi_cpol_proc, "IU", "SPI BUS clock polarity");
212 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "cpha",
213 	    CTLFLAG_RD | CTLTYPE_UINT, sc, sizeof(*sc),
214 	    bcm_spi_cpha_proc, "IU", "SPI BUS clock phase");
215 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "cspol0",
216 	    CTLFLAG_RD | CTLTYPE_UINT, sc, sizeof(*sc),
217 	    bcm_spi_cspol0_proc, "IU", "SPI BUS chip select 0 polarity");
218 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "cspol1",
219 	    CTLFLAG_RD | CTLTYPE_UINT, sc, sizeof(*sc),
220 	    bcm_spi_cspol1_proc, "IU", "SPI BUS chip select 1 polarity");
221 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "cspol2",
222 	    CTLFLAG_RD | CTLTYPE_UINT, sc, sizeof(*sc),
223 	    bcm_spi_cspol2_proc, "IU", "SPI BUS chip select 2 polarity");
224 }
225 
226 static int
227 bcm_spi_probe(device_t dev)
228 {
229 
230 	if (!ofw_bus_status_okay(dev))
231 		return (ENXIO);
232 
233 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
234 		return (ENXIO);
235 
236 	device_set_desc(dev, "BCM2708/2835 SPI controller");
237 
238 	return (BUS_PROBE_DEFAULT);
239 }
240 
241 static int
242 bcm_spi_attach(device_t dev)
243 {
244 	struct bcm_spi_softc *sc;
245 	int rid;
246 
247 	if (device_get_unit(dev) != 0) {
248 		device_printf(dev, "only one SPI controller supported\n");
249 		return (ENXIO);
250 	}
251 
252 	sc = device_get_softc(dev);
253 	sc->sc_dev = dev;
254 
255 	rid = 0;
256 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
257 	    RF_ACTIVE);
258 	if (!sc->sc_mem_res) {
259 		device_printf(dev, "cannot allocate memory window\n");
260 		return (ENXIO);
261 	}
262 
263 	sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
264 	sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
265 
266 	rid = 0;
267 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
268 	    RF_ACTIVE);
269 	if (!sc->sc_irq_res) {
270 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
271 		device_printf(dev, "cannot allocate interrupt\n");
272 		return (ENXIO);
273 	}
274 
275 	/* Hook up our interrupt handler. */
276 	if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
277 	    NULL, bcm_spi_intr, sc, &sc->sc_intrhand)) {
278 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
279 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
280 		device_printf(dev, "cannot setup the interrupt handler\n");
281 		return (ENXIO);
282 	}
283 
284 	mtx_init(&sc->sc_mtx, "bcm_spi", NULL, MTX_DEF);
285 
286 	/* Add sysctl nodes. */
287 	bcm_spi_sysctl_init(sc);
288 
289 #ifdef	BCM_SPI_DEBUG
290 	bcm_spi_printr(dev);
291 #endif
292 
293 	/*
294 	 * Enable the SPI controller.  Clear the rx and tx FIFO.
295 	 * Defaults to SPI mode 0.
296 	 */
297 	BCM_SPI_WRITE(sc, SPI_CS, SPI_CS_CLEAR_RXFIFO | SPI_CS_CLEAR_TXFIFO);
298 
299 #ifdef	BCM_SPI_DEBUG
300 	bcm_spi_printr(dev);
301 #endif
302 
303 	device_add_child(dev, "spibus", -1);
304 
305 	return (bus_generic_attach(dev));
306 }
307 
308 static int
309 bcm_spi_detach(device_t dev)
310 {
311 	struct bcm_spi_softc *sc;
312 
313 	bus_generic_detach(dev);
314 
315 	sc = device_get_softc(dev);
316 	mtx_destroy(&sc->sc_mtx);
317 	if (sc->sc_intrhand)
318 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
319 	if (sc->sc_irq_res)
320 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
321 	if (sc->sc_mem_res)
322 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
323 
324 	return (0);
325 }
326 
327 static void
328 bcm_spi_fill_fifo(struct bcm_spi_softc *sc)
329 {
330 	struct spi_command *cmd;
331 	uint32_t cs, written;
332 	uint8_t *data;
333 
334 	cmd = sc->sc_cmd;
335 	cs = BCM_SPI_READ(sc, SPI_CS) & (SPI_CS_TA | SPI_CS_TXD);
336 	while (sc->sc_written < sc->sc_len &&
337 	    cs == (SPI_CS_TA | SPI_CS_TXD)) {
338 		data = (uint8_t *)cmd->tx_cmd;
339 		written = sc->sc_written++;
340 		if (written >= cmd->tx_cmd_sz) {
341 			data = (uint8_t *)cmd->tx_data;
342 			written -= cmd->tx_cmd_sz;
343 		}
344 		BCM_SPI_WRITE(sc, SPI_FIFO, data[written]);
345 		cs = BCM_SPI_READ(sc, SPI_CS) & (SPI_CS_TA | SPI_CS_TXD);
346 	}
347 }
348 
349 static void
350 bcm_spi_drain_fifo(struct bcm_spi_softc *sc)
351 {
352 	struct spi_command *cmd;
353 	uint32_t cs, read;
354 	uint8_t *data;
355 
356 	cmd = sc->sc_cmd;
357 	cs = BCM_SPI_READ(sc, SPI_CS) & SPI_CS_RXD;
358 	while (sc->sc_read < sc->sc_len && cs == SPI_CS_RXD) {
359 		data = (uint8_t *)cmd->rx_cmd;
360 		read = sc->sc_read++;
361 		if (read >= cmd->rx_cmd_sz) {
362 			data = (uint8_t *)cmd->rx_data;
363 			read -= cmd->rx_cmd_sz;
364 		}
365 		data[read] = BCM_SPI_READ(sc, SPI_FIFO) & 0xff;
366 		cs = BCM_SPI_READ(sc, SPI_CS) & SPI_CS_RXD;
367 	}
368 }
369 
370 static void
371 bcm_spi_intr(void *arg)
372 {
373 	struct bcm_spi_softc *sc;
374 
375 	sc = (struct bcm_spi_softc *)arg;
376 	BCM_SPI_LOCK(sc);
377 
378 	/* Filter stray interrupts. */
379 	if ((sc->sc_flags & BCM_SPI_BUSY) == 0) {
380 		BCM_SPI_UNLOCK(sc);
381 		return;
382 	}
383 
384 	/* TX - Fill up the FIFO. */
385 	bcm_spi_fill_fifo(sc);
386 
387 	/* RX - Drain the FIFO. */
388 	bcm_spi_drain_fifo(sc);
389 
390 	/* Check for end of transfer. */
391 	if (sc->sc_written == sc->sc_len && sc->sc_read == sc->sc_len) {
392 		/* Disable interrupts and the SPI engine. */
393 		bcm_spi_modifyreg(sc, SPI_CS,
394 		    SPI_CS_TA | SPI_CS_INTR | SPI_CS_INTD, 0);
395 		wakeup(sc->sc_dev);
396 	}
397 
398 	BCM_SPI_UNLOCK(sc);
399 }
400 
401 static int
402 bcm_spi_transfer(device_t dev, device_t child, struct spi_command *cmd)
403 {
404 	struct bcm_spi_softc *sc;
405 	uint32_t cs, mode, clock;
406 	int err;
407 
408 	sc = device_get_softc(dev);
409 
410 	KASSERT(cmd->tx_cmd_sz == cmd->rx_cmd_sz,
411 	    ("TX/RX command sizes should be equal"));
412 	KASSERT(cmd->tx_data_sz == cmd->rx_data_sz,
413 	    ("TX/RX data sizes should be equal"));
414 
415 	/* Get the bus speed, mode, and chip select for this child. */
416 
417 	spibus_get_cs(child, &cs);
418 	if ((cs & (~SPIBUS_CS_HIGH)) > 2) {
419 		device_printf(dev,
420 		    "Invalid chip select %u requested by %s\n", cs,
421 		    device_get_nameunit(child));
422 		return (EINVAL);
423 	}
424 
425 	spibus_get_clock(child, &clock);
426 	if (clock == 0) {
427 		device_printf(dev,
428 		    "Invalid clock %uHz requested by %s\n", clock,
429 		    device_get_nameunit(child));
430 		return (EINVAL);
431 	}
432 
433 	spibus_get_mode(child, &mode);
434 	if (mode > 3) {
435 		device_printf(dev,
436 		    "Invalid mode %u requested by %s\n", mode,
437 		    device_get_nameunit(child));
438 		return (EINVAL);
439 	}
440 
441 	/* If the controller is in use wait until it is available. */
442 	BCM_SPI_LOCK(sc);
443 	while (sc->sc_flags & BCM_SPI_BUSY)
444 		mtx_sleep(dev, &sc->sc_mtx, 0, "bcm_spi", 0);
445 
446 	/* Now we have control over SPI controller. */
447 	sc->sc_flags = BCM_SPI_BUSY;
448 
449 	/* Clear the FIFO. */
450 	bcm_spi_modifyreg(sc, SPI_CS,
451 	    SPI_CS_CLEAR_RXFIFO | SPI_CS_CLEAR_TXFIFO,
452 	    SPI_CS_CLEAR_RXFIFO | SPI_CS_CLEAR_TXFIFO);
453 
454 	/* Save a pointer to the SPI command. */
455 	sc->sc_cmd = cmd;
456 	sc->sc_read = 0;
457 	sc->sc_written = 0;
458 	sc->sc_len = cmd->tx_cmd_sz + cmd->tx_data_sz;
459 
460 #ifdef	BCM2835_SPI_USE_CS_HIGH /* TODO: for when behavior is correct */
461 	/*
462 	 * Assign CS polarity first, while the CS indicates 'inactive'.
463 	 * This will need to set the correct polarity bit based on the 'cs', and
464 	 * the polarity bit will remain in this state, even after the transaction
465 	 * is complete.
466 	 */
467 	if((cs & ~SPIBUS_CS_HIGH) == 0) {
468 		bcm_spi_modifyreg(sc, SPI_CS,
469 		    SPI_CS_CSPOL0,
470 		    ((cs & (SPIBUS_CS_HIGH)) ? SPI_CS_CSPOL0 : 0));
471 	}
472 	else if((cs & ~SPIBUS_CS_HIGH) == 1) {
473 		bcm_spi_modifyreg(sc, SPI_CS,
474 		    SPI_CS_CSPOL1,
475 		    ((cs & (SPIBUS_CS_HIGH)) ? SPI_CS_CSPOL1 : 0));
476 	}
477 	else if((cs & ~SPIBUS_CS_HIGH) == 2) {
478 		bcm_spi_modifyreg(sc, SPI_CS,
479 		    SPI_CS_CSPOL2,
480 		    ((cs & (SPIBUS_CS_HIGH)) ? SPI_CS_CSPOL2 : 0));
481 	}
482 #endif
483 
484 	/*
485 	 * Set the mode in 'SPI_CS' (clock phase and polarity bits).
486 	 * This must happen before CS output pin is active.
487 	 * Otherwise, you might glitch and drop the first bit.
488 	 */
489 	bcm_spi_modifyreg(sc, SPI_CS,
490 	    SPI_CS_CPOL | SPI_CS_CPHA,
491 	    ((mode & SPIBUS_MODE_CPHA) ? SPI_CS_CPHA : 0) |
492 	    ((mode & SPIBUS_MODE_CPOL) ? SPI_CS_CPOL : 0));
493 
494 	/*
495 	 * Set the clock divider in 'SPI_CLK - see 'bcm_spi_clock_proc()'.
496 	 */
497 
498 	/* calculate 'clock' as a divider value from freq */
499 	clock = SPI_CORE_CLK / clock;
500 	if (clock <= 1)
501 		clock = 2;
502 	else if (clock % 2)
503 		clock--;
504 	if (clock > 0xffff)
505 		clock = 0;
506 
507 	BCM_SPI_WRITE(sc, SPI_CLK, clock);
508 
509 	/*
510 	 * Set the CS for this transaction, enable interrupts and announce
511 	 * we're ready to tx.  This will kick off the first interrupt.
512 	 */
513 	bcm_spi_modifyreg(sc, SPI_CS,
514 	    SPI_CS_MASK | SPI_CS_TA | SPI_CS_INTR | SPI_CS_INTD,
515 	    (cs & (~SPIBUS_CS_HIGH)) | /* cs is the lower 2 bits of the reg */
516 	    SPI_CS_TA | SPI_CS_INTR | SPI_CS_INTD);
517 
518 	/* Wait for the transaction to complete. */
519 	err = mtx_sleep(dev, &sc->sc_mtx, 0, "bcm_spi", hz * 2);
520 
521 	/* Make sure the SPI engine and interrupts are disabled. */
522 	bcm_spi_modifyreg(sc, SPI_CS, SPI_CS_TA | SPI_CS_INTR | SPI_CS_INTD, 0);
523 
524 	/* Release the controller and wakeup the next thread waiting for it. */
525 	sc->sc_flags = 0;
526 	wakeup_one(dev);
527 	BCM_SPI_UNLOCK(sc);
528 
529 	/*
530 	 * Check for transfer timeout.  The SPI controller doesn't
531 	 * return errors.
532 	 */
533 	if (err == EWOULDBLOCK) {
534 		device_printf(sc->sc_dev, "SPI error (timeout)\n");
535 		err = EIO;
536 	}
537 
538 	return (err);
539 }
540 
541 static phandle_t
542 bcm_spi_get_node(device_t bus, device_t dev)
543 {
544 
545 	/* We only have one child, the SPI bus, which needs our own node. */
546 	return (ofw_bus_get_node(bus));
547 }
548 
549 static device_method_t bcm_spi_methods[] = {
550 	/* Device interface */
551 	DEVMETHOD(device_probe,		bcm_spi_probe),
552 	DEVMETHOD(device_attach,	bcm_spi_attach),
553 	DEVMETHOD(device_detach,	bcm_spi_detach),
554 
555 	/* SPI interface */
556 	DEVMETHOD(spibus_transfer,	bcm_spi_transfer),
557 
558 	/* ofw_bus interface */
559 	DEVMETHOD(ofw_bus_get_node,	bcm_spi_get_node),
560 
561 	DEVMETHOD_END
562 };
563 
564 static devclass_t bcm_spi_devclass;
565 
566 static driver_t bcm_spi_driver = {
567 	"spi",
568 	bcm_spi_methods,
569 	sizeof(struct bcm_spi_softc),
570 };
571 
572 DRIVER_MODULE(bcm2835_spi, simplebus, bcm_spi_driver, bcm_spi_devclass, 0, 0);
573