xref: /freebsd/sys/arm/broadcom/bcm2835/bcm2835_bsc.c (revision ef36b3f75658d201edb495068db5e1be49593de5)
1 /*-
2  * Copyright (c) 2001 Tsubai Masanari.
3  * Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
4  * Copyright (c) 2013 Luiz Otavio O Souza <loos@freebsd.org>
5  * Copyright (c) 2017 Ian Lepore <ian@freebsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for bcm2835 i2c-compatible two-wire bus, named 'BSC' on this SoC.
35  *
36  * This controller can only perform complete transfers, it does not provide
37  * low-level control over sending start/repeat-start/stop sequences on the bus.
38  * In addition, bugs in the silicon make it somewhat difficult to perform a
39  * repeat-start, and limit the repeat-start to a read following a write on
40  * the same slave device.  (The i2c protocol allows a repeat start to change
41  * direction or not, and change slave address or not at any time.)
42  *
43  * The repeat-start bug and workaround are described in a problem report at
44  * https://github.com/raspberrypi/linux/issues/254 with the crucial part being
45  * in a comment block from a fragment of a GPU i2c driver, containing this:
46  *
47  * -----------------------------------------------------------------------------
48  * - See i2c.v: The I2C peripheral samples the values for rw_bit and xfer_count
49  * - in the IDLE state if start is set.
50  * -
51  * - We want to generate a ReSTART not a STOP at the end of the TX phase. In
52  * - order to do that we must ensure the state machine goes RACK1 -> RACK2 ->
53  * - SRSTRT1 (not RACK1 -> RACK2 -> SSTOP1).
54  * -
55  * - So, in the RACK2 state when (TX) xfer_count==0 we must therefore have
56  * - already set, ready to be sampled:
57  * -  READ ; rw_bit     <= I2CC bit 0 -- must be "read"
58  * -  ST;    start      <= I2CC bit 7 -- must be "Go" in order to not issue STOP
59  * -  DLEN;  xfer_count <= I2CDLEN    -- must be equal to our read amount
60  * -
61  * - The plan to do this is:
62  * -  1. Start the sub-address write, but don't let it finish
63  * -     (keep xfer_count > 0)
64  * -  2. Populate READ, DLEN and ST in preparation for ReSTART read sequence
65  * -  3. Let TX finish (write the rest of the data)
66  * -  4. Read back data as it arrives
67  * -----------------------------------------------------------------------------
68  *
69  * The transfer function below scans the list of messages passed to it, looking
70  * for a read following a write to the same slave.  When it finds that, it
71  * starts the write without prefilling the tx fifo, which holds xfer_count>0,
72  * then presets the direction, length, and start command for the following read,
73  * as described above.  Then the tx fifo is filled and the rest of the transfer
74  * proceeds as normal, with the controller automatically supplying a
75  * repeat-start on the bus when the write operation finishes.
76  *
77  * XXX I suspect the controller may be able to do a repeat-start on any
78  * write->read or write->write transition, even when the slave addresses differ.
79  * It's unclear whether the slave address can be prestaged along with the
80  * direction and length while the write xfer_count is being held at zero.  In
81  * fact, if it can't do this, then it couldn't be used to read EDID data.
82  */
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/kernel.h>
87 #include <sys/lock.h>
88 #include <sys/module.h>
89 #include <sys/mutex.h>
90 #include <sys/bus.h>
91 #include <machine/resource.h>
92 #include <machine/bus.h>
93 #include <sys/rman.h>
94 #include <sys/sysctl.h>
95 
96 #include <dev/iicbus/iicbus.h>
97 #include <dev/iicbus/iiconf.h>
98 #include <dev/ofw/ofw_bus.h>
99 #include <dev/ofw/ofw_bus_subr.h>
100 
101 #include <arm/broadcom/bcm2835/bcm2835_gpio.h>
102 #include <arm/broadcom/bcm2835/bcm2835_bscreg.h>
103 #include <arm/broadcom/bcm2835/bcm2835_bscvar.h>
104 
105 #include "iicbus_if.h"
106 
107 static struct ofw_compat_data compat_data[] = {
108 	{"broadcom,bcm2835-bsc",	1},
109 	{"brcm,bcm2708-i2c",		1},
110 	{"brcm,bcm2835-i2c",		1},
111 	{NULL,				0}
112 };
113 
114 #define DEVICE_DEBUGF(sc, lvl, fmt, args...) \
115     if ((lvl) <= (sc)->sc_debug) \
116         device_printf((sc)->sc_dev, fmt, ##args)
117 
118 #define DEBUGF(sc, lvl, fmt, args...) \
119     if ((lvl) <= (sc)->sc_debug) \
120         printf(fmt, ##args)
121 
122 static void bcm_bsc_intr(void *);
123 static int bcm_bsc_detach(device_t);
124 
125 static void
126 bcm_bsc_modifyreg(struct bcm_bsc_softc *sc, uint32_t off, uint32_t mask,
127 	uint32_t value)
128 {
129 	uint32_t reg;
130 
131 	mtx_assert(&sc->sc_mtx, MA_OWNED);
132 	reg = BCM_BSC_READ(sc, off);
133 	reg &= ~mask;
134 	reg |= value;
135 	BCM_BSC_WRITE(sc, off, reg);
136 }
137 
138 static int
139 bcm_bsc_clock_proc(SYSCTL_HANDLER_ARGS)
140 {
141 	struct bcm_bsc_softc *sc;
142 	uint32_t clk;
143 
144 	sc = (struct bcm_bsc_softc *)arg1;
145 	BCM_BSC_LOCK(sc);
146 	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
147 	BCM_BSC_UNLOCK(sc);
148 	clk &= 0xffff;
149 	if (clk == 0)
150 		clk = 32768;
151 	clk = BCM_BSC_CORE_CLK / clk;
152 
153 	return (sysctl_handle_int(oidp, &clk, 0, req));
154 }
155 
156 static int
157 bcm_bsc_clkt_proc(SYSCTL_HANDLER_ARGS)
158 {
159 	struct bcm_bsc_softc *sc;
160 	uint32_t clkt;
161 	int error;
162 
163 	sc = (struct bcm_bsc_softc *)arg1;
164 
165 	BCM_BSC_LOCK(sc);
166 	clkt = BCM_BSC_READ(sc, BCM_BSC_CLKT);
167 	BCM_BSC_UNLOCK(sc);
168 	clkt &= 0xffff;
169 	error = sysctl_handle_int(oidp, &clkt, sizeof(clkt), req);
170 	if (error != 0 || req->newptr == NULL)
171 		return (error);
172 
173 	BCM_BSC_LOCK(sc);
174 	BCM_BSC_WRITE(sc, BCM_BSC_CLKT, clkt & 0xffff);
175 	BCM_BSC_UNLOCK(sc);
176 
177 	return (0);
178 }
179 
180 static int
181 bcm_bsc_fall_proc(SYSCTL_HANDLER_ARGS)
182 {
183 	struct bcm_bsc_softc *sc;
184 	uint32_t clk, reg;
185 	int error;
186 
187 	sc = (struct bcm_bsc_softc *)arg1;
188 
189 	BCM_BSC_LOCK(sc);
190 	reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
191 	BCM_BSC_UNLOCK(sc);
192 	reg >>= 16;
193 	error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
194 	if (error != 0 || req->newptr == NULL)
195 		return (error);
196 
197 	BCM_BSC_LOCK(sc);
198 	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
199 	clk = BCM_BSC_CORE_CLK / clk;
200 	if (reg > clk / 2)
201 		reg = clk / 2 - 1;
202 	bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff0000, reg << 16);
203 	BCM_BSC_UNLOCK(sc);
204 
205 	return (0);
206 }
207 
208 static int
209 bcm_bsc_rise_proc(SYSCTL_HANDLER_ARGS)
210 {
211 	struct bcm_bsc_softc *sc;
212 	uint32_t clk, reg;
213 	int error;
214 
215 	sc = (struct bcm_bsc_softc *)arg1;
216 
217 	BCM_BSC_LOCK(sc);
218 	reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
219 	BCM_BSC_UNLOCK(sc);
220 	reg &= 0xffff;
221 	error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
222 	if (error != 0 || req->newptr == NULL)
223 		return (error);
224 
225 	BCM_BSC_LOCK(sc);
226 	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
227 	clk = BCM_BSC_CORE_CLK / clk;
228 	if (reg > clk / 2)
229 		reg = clk / 2 - 1;
230 	bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff, reg);
231 	BCM_BSC_UNLOCK(sc);
232 
233 	return (0);
234 }
235 
236 static void
237 bcm_bsc_sysctl_init(struct bcm_bsc_softc *sc)
238 {
239 	struct sysctl_ctx_list *ctx;
240 	struct sysctl_oid *tree_node;
241 	struct sysctl_oid_list *tree;
242 
243 	/*
244 	 * Add system sysctl tree/handlers.
245 	 */
246 	ctx = device_get_sysctl_ctx(sc->sc_dev);
247 	tree_node = device_get_sysctl_tree(sc->sc_dev);
248 	tree = SYSCTL_CHILDREN(tree_node);
249 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "frequency",
250 	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
251 	    bcm_bsc_clock_proc, "IU", "I2C BUS clock frequency");
252 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clock_stretch",
253 	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
254 	    bcm_bsc_clkt_proc, "IU", "I2C BUS clock stretch timeout");
255 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "fall_edge_delay",
256 	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
257 	    bcm_bsc_fall_proc, "IU", "I2C BUS falling edge delay");
258 	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rise_edge_delay",
259 	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
260 	    bcm_bsc_rise_proc, "IU", "I2C BUS rising edge delay");
261 	SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "debug",
262 	    CTLFLAG_RWTUN, &sc->sc_debug, 0,
263 	    "Enable debug; 1=reads/writes, 2=add starts/stops");
264 }
265 
266 static void
267 bcm_bsc_reset(struct bcm_bsc_softc *sc)
268 {
269 
270 	/* Enable the BSC Controller, disable interrupts. */
271 	BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN);
272 	/* Clear pending interrupts. */
273 	BCM_BSC_WRITE(sc, BCM_BSC_STATUS, BCM_BSC_STATUS_CLKT |
274 	    BCM_BSC_STATUS_ERR | BCM_BSC_STATUS_DONE);
275 	/* Clear the FIFO. */
276 	bcm_bsc_modifyreg(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_CLEAR0,
277 	    BCM_BSC_CTRL_CLEAR0);
278 }
279 
280 static int
281 bcm_bsc_probe(device_t dev)
282 {
283 
284 	if (!ofw_bus_status_okay(dev))
285 		return (ENXIO);
286 
287 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
288 		return (ENXIO);
289 
290 	device_set_desc(dev, "BCM2708/2835 BSC controller");
291 
292 	return (BUS_PROBE_DEFAULT);
293 }
294 
295 static int
296 bcm_bsc_attach(device_t dev)
297 {
298 	struct bcm_bsc_softc *sc;
299 	unsigned long start;
300 	device_t gpio;
301 	int i, rid;
302 
303 	sc = device_get_softc(dev);
304 	sc->sc_dev = dev;
305 
306 	rid = 0;
307 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
308 	    RF_ACTIVE);
309 	if (!sc->sc_mem_res) {
310 		device_printf(dev, "cannot allocate memory window\n");
311 		return (ENXIO);
312 	}
313 
314 	sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
315 	sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
316 
317 	/* Check the unit we are attaching by its base address. */
318 	start = rman_get_start(sc->sc_mem_res);
319 	for (i = 0; i < nitems(bcm_bsc_pins); i++) {
320 		if (bcm_bsc_pins[i].start == (start & BCM_BSC_BASE_MASK))
321 			break;
322 	}
323 	if (i == nitems(bcm_bsc_pins)) {
324 		device_printf(dev, "only bsc0 and bsc1 are supported\n");
325 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
326 		return (ENXIO);
327 	}
328 
329 	/*
330 	 * Configure the GPIO pins to ALT0 function to enable BSC control
331 	 * over the pins.
332 	 */
333 	gpio = devclass_get_device(devclass_find("gpio"), 0);
334 	if (!gpio) {
335 		device_printf(dev, "cannot find gpio0\n");
336 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
337 		return (ENXIO);
338 	}
339 	bcm_gpio_set_alternate(gpio, bcm_bsc_pins[i].sda, BCM_GPIO_ALT0);
340 	bcm_gpio_set_alternate(gpio, bcm_bsc_pins[i].scl, BCM_GPIO_ALT0);
341 
342 	rid = 0;
343 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
344 	    RF_ACTIVE | RF_SHAREABLE);
345 	if (!sc->sc_irq_res) {
346 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
347 		device_printf(dev, "cannot allocate interrupt\n");
348 		return (ENXIO);
349 	}
350 
351 	/* Hook up our interrupt handler. */
352 	if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
353 	    NULL, bcm_bsc_intr, sc, &sc->sc_intrhand)) {
354 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
355 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
356 		device_printf(dev, "cannot setup the interrupt handler\n");
357 		return (ENXIO);
358 	}
359 
360 	mtx_init(&sc->sc_mtx, "bcm_bsc", NULL, MTX_DEF);
361 
362 	bcm_bsc_sysctl_init(sc);
363 
364 	/* Enable the BSC controller.  Flush the FIFO. */
365 	BCM_BSC_LOCK(sc);
366 	bcm_bsc_reset(sc);
367 	BCM_BSC_UNLOCK(sc);
368 
369 	sc->sc_iicbus = device_add_child(dev, "iicbus", -1);
370 	if (sc->sc_iicbus == NULL) {
371 		bcm_bsc_detach(dev);
372 		return (ENXIO);
373 	}
374 
375 	/* Probe and attach the iicbus when interrupts are available. */
376 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
377 
378 	return (0);
379 }
380 
381 static int
382 bcm_bsc_detach(device_t dev)
383 {
384 	struct bcm_bsc_softc *sc;
385 
386 	bus_generic_detach(dev);
387 
388 	sc = device_get_softc(dev);
389 	if (sc->sc_iicbus != NULL)
390 		device_delete_child(dev, sc->sc_iicbus);
391 	mtx_destroy(&sc->sc_mtx);
392 	if (sc->sc_intrhand)
393 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
394 	if (sc->sc_irq_res)
395 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
396 	if (sc->sc_mem_res)
397 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
398 
399 	return (0);
400 }
401 
402 static void
403 bcm_bsc_empty_rx_fifo(struct bcm_bsc_softc *sc)
404 {
405 	uint32_t status;
406 
407 	/* Assumes sc_totlen > 0 and BCM_BSC_STATUS_RXD is asserted on entry. */
408 	do {
409 		if (sc->sc_resid == 0) {
410 			sc->sc_data  = sc->sc_curmsg->buf;
411 			sc->sc_dlen  = sc->sc_curmsg->len;
412 			sc->sc_resid = sc->sc_dlen;
413 			++sc->sc_curmsg;
414 		}
415 		do {
416 			*sc->sc_data = BCM_BSC_READ(sc, BCM_BSC_DATA);
417 			DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
418 			++sc->sc_data;
419 			--sc->sc_resid;
420 			--sc->sc_totlen;
421 			status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
422 		} while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_RXD));
423 	} while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_RXD));
424 }
425 
426 static void
427 bcm_bsc_fill_tx_fifo(struct bcm_bsc_softc *sc)
428 {
429 	uint32_t status;
430 
431 	/* Assumes sc_totlen > 0 and BCM_BSC_STATUS_TXD is asserted on entry. */
432 	do {
433 		if (sc->sc_resid == 0) {
434 			sc->sc_data  = sc->sc_curmsg->buf;
435 			sc->sc_dlen  = sc->sc_curmsg->len;
436 			sc->sc_resid = sc->sc_dlen;
437 			++sc->sc_curmsg;
438 		}
439 		do {
440 			BCM_BSC_WRITE(sc, BCM_BSC_DATA, *sc->sc_data);
441 			DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
442 			++sc->sc_data;
443 			--sc->sc_resid;
444 			--sc->sc_totlen;
445 			status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
446 		} while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_TXD));
447 		/*
448 		 * If a repeat-start was pending and we just hit the end of a tx
449 		 * buffer, see if it's also the end of the writes that preceeded
450 		 * the repeat-start.  If so, log the repeat-start and the start
451 		 * of the following read, and return because we're not writing
452 		 * anymore (and TXD will be true because there's room to write
453 		 * in the fifo).
454 		 */
455 		if (sc->sc_replen > 0 && sc->sc_resid == 0) {
456 			sc->sc_replen -= sc->sc_dlen;
457 			if (sc->sc_replen == 0) {
458 				DEBUGF(sc, 1, " err=0\n");
459 				DEVICE_DEBUGF(sc, 2, "rstart 0x%02x\n",
460 				    sc->sc_curmsg->slave | 0x01);
461 				DEVICE_DEBUGF(sc, 1,
462 				    "read   0x%02x len %d: ",
463 				    sc->sc_curmsg->slave | 0x01,
464 				    sc->sc_totlen);
465 				sc->sc_flags |= BCM_I2C_READ;
466 				return;
467 			}
468 		}
469 	} while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_TXD));
470 }
471 
472 static void
473 bcm_bsc_intr(void *arg)
474 {
475 	struct bcm_bsc_softc *sc;
476 	uint32_t status;
477 
478 	sc = (struct bcm_bsc_softc *)arg;
479 
480 	BCM_BSC_LOCK(sc);
481 
482 	/* The I2C interrupt is shared among all the BSC controllers. */
483 	if ((sc->sc_flags & BCM_I2C_BUSY) == 0) {
484 		BCM_BSC_UNLOCK(sc);
485 		return;
486 	}
487 
488 	status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
489 	DEBUGF(sc, 4, " <intrstatus=0x%08x> ", status);
490 
491 	/* RXD and DONE can assert together, empty fifo before checking done. */
492 	if ((sc->sc_flags & BCM_I2C_READ) && (status & BCM_BSC_STATUS_RXD))
493 		bcm_bsc_empty_rx_fifo(sc);
494 
495 	/* Check for completion. */
496 	if (status & (BCM_BSC_STATUS_ERRBITS | BCM_BSC_STATUS_DONE)) {
497 		sc->sc_flags |= BCM_I2C_DONE;
498 		if (status & BCM_BSC_STATUS_ERRBITS)
499 			sc->sc_flags |= BCM_I2C_ERROR;
500 		/* Disable interrupts. */
501 		bcm_bsc_reset(sc);
502 		wakeup(sc);
503 	} else if (!(sc->sc_flags & BCM_I2C_READ)) {
504 		/*
505 		 * Don't check for TXD until after determining whether the
506 		 * transfer is complete; TXD will be asserted along with ERR or
507 		 * DONE if there is room in the fifo.
508 		 */
509 		if (status & BCM_BSC_STATUS_TXD)
510 			bcm_bsc_fill_tx_fifo(sc);
511 	}
512 
513 	BCM_BSC_UNLOCK(sc);
514 }
515 
516 static int
517 bcm_bsc_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
518 {
519 	struct bcm_bsc_softc *sc;
520 	struct iic_msg *endmsgs, *nxtmsg;
521 	uint32_t readctl, status;
522 	int err;
523 	uint16_t curlen;
524 	uint8_t curisread, curslave, nxtisread, nxtslave;
525 
526 	sc = device_get_softc(dev);
527 	BCM_BSC_LOCK(sc);
528 
529 	/* If the controller is busy wait until it is available. */
530 	while (sc->sc_flags & BCM_I2C_BUSY)
531 		mtx_sleep(dev, &sc->sc_mtx, 0, "bscbusw", 0);
532 
533 	/* Now we have control over the BSC controller. */
534 	sc->sc_flags = BCM_I2C_BUSY;
535 
536 	DEVICE_DEBUGF(sc, 3, "Transfer %d msgs\n", nmsgs);
537 
538 	/* Clear the FIFO and the pending interrupts. */
539 	bcm_bsc_reset(sc);
540 
541 	/*
542 	 * Perform all the transfers requested in the array of msgs.  Note that
543 	 * it is bcm_bsc_empty_rx_fifo() and bcm_bsc_fill_tx_fifo() that advance
544 	 * sc->sc_curmsg through the array of messages, as the data from each
545 	 * message is fully consumed, but it is this loop that notices when we
546 	 * have no more messages to process.
547 	 */
548 	err = 0;
549 	sc->sc_resid = 0;
550 	sc->sc_curmsg = msgs;
551 	endmsgs = &msgs[nmsgs];
552 	while (sc->sc_curmsg < endmsgs) {
553 		readctl = 0;
554 		curslave = sc->sc_curmsg->slave >> 1;
555 		curisread = sc->sc_curmsg->flags & IIC_M_RD;
556 		sc->sc_replen = 0;
557 		sc->sc_totlen = sc->sc_curmsg->len;
558 		/*
559 		 * Scan for scatter/gather IO (same slave and direction) or
560 		 * repeat-start (read following write for the same slave).
561 		 */
562 		for (nxtmsg = sc->sc_curmsg + 1; nxtmsg < endmsgs; ++nxtmsg) {
563 			nxtslave = nxtmsg->slave >> 1;
564 			if (curslave == nxtslave) {
565 				nxtisread = nxtmsg->flags & IIC_M_RD;
566 				if (curisread == nxtisread) {
567 					/*
568 					 * Same slave and direction, this
569 					 * message will be part of the same
570 					 * transfer as the previous one.
571 					 */
572 					sc->sc_totlen += nxtmsg->len;
573 					continue;
574 				} else if (curisread == IIC_M_WR) {
575 					/*
576 					 * Read after write to same slave means
577 					 * repeat-start, remember how many bytes
578 					 * come before the repeat-start, switch
579 					 * the direction to IIC_M_RD, and gather
580 					 * up following reads to the same slave.
581 					 */
582 					curisread = IIC_M_RD;
583 					sc->sc_replen = sc->sc_totlen;
584 					sc->sc_totlen += nxtmsg->len;
585 					continue;
586 				}
587 			}
588 			break;
589 		}
590 
591 		/*
592 		 * curslave and curisread temporaries from above may refer to
593 		 * the after-repstart msg, reset them to reflect sc_curmsg.
594 		 */
595 		curisread = (sc->sc_curmsg->flags & IIC_M_RD) ? 1 : 0;
596 		curslave = sc->sc_curmsg->slave | curisread;
597 
598 		/* Write the slave address. */
599 		BCM_BSC_WRITE(sc, BCM_BSC_SLAVE, curslave >> 1);
600 
601 		DEVICE_DEBUGF(sc, 2, "start  0x%02x\n", curslave);
602 
603 		/*
604 		 * Either set up read length and direction variables for a
605 		 * simple transfer or get the hardware started on the first
606 		 * piece of a transfer that involves a repeat-start and set up
607 		 * the read length and direction vars for the second piece.
608 		 */
609 		if (sc->sc_replen == 0) {
610 			DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
611 			    (curisread) ? "readctl" : "write", curslave,
612 			    sc->sc_totlen);
613 			curlen = sc->sc_totlen;
614 			if (curisread) {
615 				readctl = BCM_BSC_CTRL_READ;
616 				sc->sc_flags |= BCM_I2C_READ;
617 			} else {
618 				readctl = 0;
619 				sc->sc_flags &= ~BCM_I2C_READ;
620 			}
621 		} else {
622 			DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
623 			    (curisread) ? "readctl" : "write", curslave,
624 			    sc->sc_replen);
625 
626 			/*
627 			 * Start the write transfer with an empty fifo and wait
628 			 * for the 'transfer active' status bit to light up;
629 			 * that indicates that the hardware has latched the
630 			 * direction and length for the write, and we can safely
631 			 * reload those registers and issue the start for the
632 			 * following read; interrupts are not enabled here.
633 			 */
634 			BCM_BSC_WRITE(sc, BCM_BSC_DLEN, sc->sc_replen);
635 			BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN |
636 			    BCM_BSC_CTRL_ST);
637 			do {
638 				status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
639 				if (status & BCM_BSC_STATUS_ERR) {
640 					/* no ACK on slave addr */
641 					err = EIO;
642 					goto xfer_done;
643 				}
644 			} while ((status & BCM_BSC_STATUS_TA) == 0);
645 			/*
646 			 * Set curlen and readctl for the repeat-start read that
647 			 * we need to set up below, but set sc_flags to write,
648 			 * because that is the operation in progress right now.
649 			 */
650 			curlen = sc->sc_totlen - sc->sc_replen;
651 			readctl = BCM_BSC_CTRL_READ;
652 			sc->sc_flags &= ~BCM_I2C_READ;
653 		}
654 
655 		/*
656 		 * Start the transfer with interrupts enabled, then if doing a
657 		 * write, fill the tx fifo.  Not prefilling the fifo until after
658 		 * this start command is the key workaround for making
659 		 * repeat-start work, and it's harmless to do it in this order
660 		 * for a regular write too.
661 		 */
662 		BCM_BSC_WRITE(sc, BCM_BSC_DLEN, curlen);
663 		BCM_BSC_WRITE(sc, BCM_BSC_CTRL, readctl | BCM_BSC_CTRL_I2CEN |
664 		    BCM_BSC_CTRL_ST | BCM_BSC_CTRL_INT_ALL);
665 
666 		if (!(sc->sc_curmsg->flags & IIC_M_RD)) {
667 			bcm_bsc_fill_tx_fifo(sc);
668 		}
669 
670 		/* Wait for the transaction to complete. */
671 		while (err == 0 && !(sc->sc_flags & BCM_I2C_DONE)) {
672 			err = mtx_sleep(sc, &sc->sc_mtx, 0, "bsciow", hz);
673 		}
674 		/* Check for errors. */
675 		if (err == 0 && (sc->sc_flags & BCM_I2C_ERROR))
676 			err = EIO;
677 xfer_done:
678 		DEBUGF(sc, 1, " err=%d\n", err);
679 		DEVICE_DEBUGF(sc, 2, "stop\n");
680 		if (err != 0)
681 			break;
682 	}
683 
684 	/* Disable interrupts, clean fifo, etc. */
685 	bcm_bsc_reset(sc);
686 
687 	/* Clean the controller flags. */
688 	sc->sc_flags = 0;
689 
690 	/* Wake up the threads waiting for bus. */
691 	wakeup(dev);
692 
693 	BCM_BSC_UNLOCK(sc);
694 
695 	return (err);
696 }
697 
698 static int
699 bcm_bsc_iicbus_reset(device_t dev, u_char speed, u_char addr, u_char *oldaddr)
700 {
701 	struct bcm_bsc_softc *sc;
702 	uint32_t busfreq;
703 
704 	sc = device_get_softc(dev);
705 	BCM_BSC_LOCK(sc);
706 	bcm_bsc_reset(sc);
707 	if (sc->sc_iicbus == NULL)
708 		busfreq = 100000;
709 	else
710 		busfreq = IICBUS_GET_FREQUENCY(sc->sc_iicbus, speed);
711 	BCM_BSC_WRITE(sc, BCM_BSC_CLOCK, BCM_BSC_CORE_CLK / busfreq);
712 	BCM_BSC_UNLOCK(sc);
713 
714 	return (IIC_ENOADDR);
715 }
716 
717 static phandle_t
718 bcm_bsc_get_node(device_t bus, device_t dev)
719 {
720 
721 	/* We only have one child, the I2C bus, which needs our own node. */
722 	return (ofw_bus_get_node(bus));
723 }
724 
725 static device_method_t bcm_bsc_methods[] = {
726 	/* Device interface */
727 	DEVMETHOD(device_probe,		bcm_bsc_probe),
728 	DEVMETHOD(device_attach,	bcm_bsc_attach),
729 	DEVMETHOD(device_detach,	bcm_bsc_detach),
730 
731 	/* iicbus interface */
732 	DEVMETHOD(iicbus_reset,		bcm_bsc_iicbus_reset),
733 	DEVMETHOD(iicbus_callback,	iicbus_null_callback),
734 	DEVMETHOD(iicbus_transfer,	bcm_bsc_transfer),
735 
736 	/* ofw_bus interface */
737 	DEVMETHOD(ofw_bus_get_node,	bcm_bsc_get_node),
738 
739 	DEVMETHOD_END
740 };
741 
742 static devclass_t bcm_bsc_devclass;
743 
744 static driver_t bcm_bsc_driver = {
745 	"iichb",
746 	bcm_bsc_methods,
747 	sizeof(struct bcm_bsc_softc),
748 };
749 
750 DRIVER_MODULE(iicbus, bcm2835_bsc, iicbus_driver, iicbus_devclass, 0, 0);
751 DRIVER_MODULE(bcm2835_bsc, simplebus, bcm_bsc_driver, bcm_bsc_devclass, 0, 0);
752