1 /* $NetBSD: db_trace.c,v 1.8 2003/01/17 22:28:48 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001 Ben Harris 5 * Copyright (c) 1996 Scott K. Stevens 6 * 7 * Mach Operating System 8 * Copyright (c) 1991,1990 Carnegie Mellon University 9 * All Rights Reserved. 10 * 11 * Permission to use, copy, modify and distribute this software and its 12 * documentation is hereby granted, provided that both the copyright 13 * notice and this permission notice appear in all copies of the 14 * software, derivative works or modified versions, and any portions 15 * thereof, and that both notices appear in supporting documentation. 16 * 17 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 18 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR 19 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 20 * 21 * Carnegie Mellon requests users of this software to return to 22 * 23 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 24 * School of Computer Science 25 * Carnegie Mellon University 26 * Pittsburgh PA 15213-3890 27 * 28 * any improvements or extensions that they make and grant Carnegie the 29 * rights to redistribute these changes. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 37 38 #include <sys/proc.h> 39 #include <sys/kdb.h> 40 #include <sys/stack.h> 41 #include <machine/armreg.h> 42 #include <machine/asm.h> 43 #include <machine/cpufunc.h> 44 #include <machine/db_machdep.h> 45 #include <machine/pcb.h> 46 #include <machine/stack.h> 47 #include <machine/vmparam.h> 48 #include <ddb/ddb.h> 49 #include <ddb/db_access.h> 50 #include <ddb/db_sym.h> 51 #include <ddb/db_output.h> 52 53 #ifdef __ARM_EABI__ 54 /* 55 * Definitions for the instruction interpreter. 56 * 57 * The ARM EABI specifies how to perform the frame unwinding in the 58 * Exception Handling ABI for the ARM Architecture document. To perform 59 * the unwind we need to know the initial frame pointer, stack pointer, 60 * link register and program counter. We then find the entry within the 61 * index table that points to the function the program counter is within. 62 * This gives us either a list of three instructions to process, a 31-bit 63 * relative offset to a table of instructions, or a value telling us 64 * we can't unwind any further. 65 * 66 * When we have the instructions to process we need to decode them 67 * following table 4 in section 9.3. This describes a collection of bit 68 * patterns to encode that steps to take to update the stack pointer and 69 * link register to the correct values at the start of the function. 70 */ 71 72 /* A special case when we are unable to unwind past this function */ 73 #define EXIDX_CANTUNWIND 1 74 75 /* The register names */ 76 #define FP 11 77 #define SP 13 78 #define LR 14 79 #define PC 15 80 81 /* 82 * These are set in the linker script. Their addresses will be 83 * either the start or end of the exception table or index. 84 */ 85 extern int extab_start, extab_end, exidx_start, exidx_end; 86 87 /* 88 * Entry types. 89 * These are the only entry types that have been seen in the kernel. 90 */ 91 #define ENTRY_MASK 0xff000000 92 #define ENTRY_ARM_SU16 0x80000000 93 #define ENTRY_ARM_LU16 0x81000000 94 95 /* Instruction masks. */ 96 #define INSN_VSP_MASK 0xc0 97 #define INSN_VSP_SIZE_MASK 0x3f 98 #define INSN_STD_MASK 0xf0 99 #define INSN_STD_DATA_MASK 0x0f 100 #define INSN_POP_TYPE_MASK 0x08 101 #define INSN_POP_COUNT_MASK 0x07 102 #define INSN_VSP_LARGE_INC_MASK 0xff 103 104 /* Instruction definitions */ 105 #define INSN_VSP_INC 0x00 106 #define INSN_VSP_DEC 0x40 107 #define INSN_POP_MASKED 0x80 108 #define INSN_VSP_REG 0x90 109 #define INSN_POP_COUNT 0xa0 110 #define INSN_FINISH 0xb0 111 #define INSN_POP_REGS 0xb1 112 #define INSN_VSP_LARGE_INC 0xb2 113 114 /* An item in the exception index table */ 115 struct unwind_idx { 116 uint32_t offset; 117 uint32_t insn; 118 }; 119 120 /* The state of the unwind process */ 121 struct unwind_state { 122 uint32_t registers[16]; 123 uint32_t start_pc; 124 uint32_t *insn; 125 u_int entries; 126 u_int byte; 127 uint16_t update_mask; 128 }; 129 130 /* Expand a 31-bit signed value to a 32-bit signed value */ 131 static __inline int32_t 132 db_expand_prel31(uint32_t prel31) 133 { 134 135 return ((int32_t)(prel31 & 0x7fffffffu) << 1) / 2; 136 } 137 138 /* 139 * Perform a binary search of the index table to find the function 140 * with the largest address that doesn't exceed addr. 141 */ 142 static struct unwind_idx * 143 db_find_index(uint32_t addr) 144 { 145 unsigned int min, mid, max; 146 struct unwind_idx *start; 147 struct unwind_idx *item; 148 int32_t prel31_addr; 149 uint32_t func_addr; 150 151 start = (struct unwind_idx *)&exidx_start; 152 153 min = 0; 154 max = (&exidx_end - &exidx_start) / 2; 155 156 while (min != max) { 157 mid = min + (max - min + 1) / 2; 158 159 item = &start[mid]; 160 161 prel31_addr = db_expand_prel31(item->offset); 162 func_addr = (uint32_t)&item->offset + prel31_addr; 163 164 if (func_addr <= addr) { 165 min = mid; 166 } else { 167 max = mid - 1; 168 } 169 } 170 171 return &start[min]; 172 } 173 174 /* Reads the next byte from the instruction list */ 175 static uint8_t 176 db_unwind_exec_read_byte(struct unwind_state *state) 177 { 178 uint8_t insn; 179 180 /* Read the unwind instruction */ 181 insn = (*state->insn) >> (state->byte * 8); 182 183 /* Update the location of the next instruction */ 184 if (state->byte == 0) { 185 state->byte = 3; 186 state->insn++; 187 state->entries--; 188 } else 189 state->byte--; 190 191 return insn; 192 } 193 194 /* Executes the next instruction on the list */ 195 static int 196 db_unwind_exec_insn(struct unwind_state *state) 197 { 198 unsigned int insn; 199 uint32_t *vsp = (uint32_t *)state->registers[SP]; 200 int update_vsp = 0; 201 202 /* This should never happen */ 203 if (state->entries == 0) 204 return 1; 205 206 /* Read the next instruction */ 207 insn = db_unwind_exec_read_byte(state); 208 209 if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) { 210 state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4; 211 212 } else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) { 213 state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4; 214 215 } else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) { 216 unsigned int mask, reg; 217 218 /* Load the mask */ 219 mask = db_unwind_exec_read_byte(state); 220 mask |= (insn & INSN_STD_DATA_MASK) << 8; 221 222 /* We have a refuse to unwind instruction */ 223 if (mask == 0) 224 return 1; 225 226 /* Update SP */ 227 update_vsp = 1; 228 229 /* Load the registers */ 230 for (reg = 4; mask && reg < 16; mask >>= 1, reg++) { 231 if (mask & 1) { 232 state->registers[reg] = *vsp++; 233 state->update_mask |= 1 << reg; 234 235 /* If we have updated SP kep its value */ 236 if (reg == SP) 237 update_vsp = 0; 238 } 239 } 240 241 } else if ((insn & INSN_STD_MASK) == INSN_VSP_REG && 242 ((insn & INSN_STD_DATA_MASK) != 13) && 243 ((insn & INSN_STD_DATA_MASK) != 15)) { 244 /* sp = register */ 245 state->registers[SP] = 246 state->registers[insn & INSN_STD_DATA_MASK]; 247 248 } else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) { 249 unsigned int count, reg; 250 251 /* Read how many registers to load */ 252 count = insn & INSN_POP_COUNT_MASK; 253 254 /* Update sp */ 255 update_vsp = 1; 256 257 /* Pop the registers */ 258 for (reg = 4; reg <= 4 + count; reg++) { 259 state->registers[reg] = *vsp++; 260 state->update_mask |= 1 << reg; 261 } 262 263 /* Check if we are in the pop r14 version */ 264 if ((insn & INSN_POP_TYPE_MASK) != 0) { 265 state->registers[14] = *vsp++; 266 } 267 268 } else if (insn == INSN_FINISH) { 269 /* Stop processing */ 270 state->entries = 0; 271 272 } else if (insn == INSN_POP_REGS) { 273 unsigned int mask, reg; 274 275 mask = db_unwind_exec_read_byte(state); 276 if (mask == 0 || (mask & 0xf0) != 0) 277 return 1; 278 279 /* Update SP */ 280 update_vsp = 1; 281 282 /* Load the registers */ 283 for (reg = 0; mask && reg < 4; mask >>= 1, reg++) { 284 if (mask & 1) { 285 state->registers[reg] = *vsp++; 286 state->update_mask |= 1 << reg; 287 } 288 } 289 290 } else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) { 291 unsigned int uleb128; 292 293 /* Read the increment value */ 294 uleb128 = db_unwind_exec_read_byte(state); 295 296 state->registers[SP] += 0x204 + (uleb128 << 2); 297 298 } else { 299 /* We hit a new instruction that needs to be implemented */ 300 db_printf("Unhandled instruction %.2x\n", insn); 301 return 1; 302 } 303 304 if (update_vsp) { 305 state->registers[SP] = (uint32_t)vsp; 306 } 307 308 #if 0 309 db_printf("fp = %08x, sp = %08x, lr = %08x, pc = %08x\n", 310 state->registers[FP], state->registers[SP], state->registers[LR], 311 state->registers[PC]); 312 #endif 313 314 return 0; 315 } 316 317 /* Performs the unwind of a function */ 318 static int 319 db_unwind_tab(struct unwind_state *state) 320 { 321 uint32_t entry; 322 323 /* Set PC to a known value */ 324 state->registers[PC] = 0; 325 326 /* Read the personality */ 327 entry = *state->insn & ENTRY_MASK; 328 329 if (entry == ENTRY_ARM_SU16) { 330 state->byte = 2; 331 state->entries = 1; 332 } else if (entry == ENTRY_ARM_LU16) { 333 state->byte = 1; 334 state->entries = ((*state->insn >> 16) & 0xFF) + 1; 335 } else { 336 db_printf("Unknown entry: %x\n", entry); 337 return 1; 338 } 339 340 while (state->entries > 0) { 341 if (db_unwind_exec_insn(state) != 0) 342 return 1; 343 } 344 345 /* 346 * The program counter was not updated, load it from the link register. 347 */ 348 if (state->registers[PC] == 0) 349 state->registers[PC] = state->registers[LR]; 350 351 return 0; 352 } 353 354 static void 355 db_stack_trace_cmd(struct unwind_state *state) 356 { 357 struct unwind_idx *index; 358 const char *name; 359 db_expr_t value; 360 db_expr_t offset; 361 c_db_sym_t sym; 362 u_int reg, i; 363 char *sep; 364 uint16_t upd_mask; 365 bool finished; 366 367 finished = false; 368 while (!finished) { 369 /* Reset the mask of updated registers */ 370 state->update_mask = 0; 371 372 /* The pc value is correct and will be overwritten, save it */ 373 state->start_pc = state->registers[PC]; 374 375 /* Find the item to run */ 376 index = db_find_index(state->start_pc); 377 378 if (index->insn != EXIDX_CANTUNWIND) { 379 if (index->insn & (1U << 31)) { 380 /* The data is within the instruction */ 381 state->insn = &index->insn; 382 } else { 383 /* A prel31 offset to the unwind table */ 384 state->insn = (uint32_t *) 385 ((uintptr_t)&index->insn + 386 db_expand_prel31(index->insn)); 387 } 388 /* Run the unwind function */ 389 finished = db_unwind_tab(state); 390 } 391 392 /* Print the frame details */ 393 sym = db_search_symbol(state->start_pc, DB_STGY_ANY, &offset); 394 if (sym == C_DB_SYM_NULL) { 395 value = 0; 396 name = "(null)"; 397 } else 398 db_symbol_values(sym, &name, &value); 399 db_printf("%s() at ", name); 400 db_printsym(state->start_pc, DB_STGY_PROC); 401 db_printf("\n"); 402 db_printf("\t pc = 0x%08x lr = 0x%08x (", state->start_pc, 403 state->registers[LR]); 404 db_printsym(state->registers[LR], DB_STGY_PROC); 405 db_printf(")\n"); 406 db_printf("\t sp = 0x%08x fp = 0x%08x", 407 state->registers[SP], state->registers[FP]); 408 409 /* Don't print the registers we have already printed */ 410 upd_mask = state->update_mask & 411 ~((1 << SP) | (1 << FP) | (1 << LR) | (1 << PC)); 412 sep = "\n\t"; 413 for (i = 0, reg = 0; upd_mask != 0; upd_mask >>= 1, reg++) { 414 if ((upd_mask & 1) != 0) { 415 db_printf("%s%sr%d = 0x%08x", sep, 416 (reg < 10) ? " " : "", reg, 417 state->registers[reg]); 418 i++; 419 if (i == 2) { 420 sep = "\n\t"; 421 i = 0; 422 } else 423 sep = " "; 424 425 } 426 } 427 db_printf("\n"); 428 429 /* 430 * Stop if directed to do so, or if we've unwound back to the 431 * kernel entry point, or if the unwind function didn't change 432 * anything (to avoid getting stuck in this loop forever). 433 * If the latter happens, it's an indication that the unwind 434 * information is incorrect somehow for the function named in 435 * the last frame printed before you see the unwind failure 436 * message (maybe it needs a STOP_UNWINDING). 437 */ 438 if (index->insn == EXIDX_CANTUNWIND) { 439 db_printf("Unable to unwind further\n"); 440 finished = true; 441 } else if (state->registers[PC] < VM_MIN_KERNEL_ADDRESS) { 442 db_printf("Unable to unwind into user mode\n"); 443 finished = true; 444 } else if (state->update_mask == 0) { 445 db_printf("Unwind failure (no registers changed)\n"); 446 finished = true; 447 } 448 } 449 } 450 #endif 451 452 /* 453 * APCS stack frames are awkward beasts, so I don't think even trying to use 454 * a structure to represent them is a good idea. 455 * 456 * Here's the diagram from the APCS. Increasing address is _up_ the page. 457 * 458 * save code pointer [fp] <- fp points to here 459 * return link value [fp, #-4] 460 * return sp value [fp, #-8] 461 * return fp value [fp, #-12] 462 * [saved v7 value] 463 * [saved v6 value] 464 * [saved v5 value] 465 * [saved v4 value] 466 * [saved v3 value] 467 * [saved v2 value] 468 * [saved v1 value] 469 * [saved a4 value] 470 * [saved a3 value] 471 * [saved a2 value] 472 * [saved a1 value] 473 * 474 * The save code pointer points twelve bytes beyond the start of the 475 * code sequence (usually a single STM) that created the stack frame. 476 * We have to disassemble it if we want to know which of the optional 477 * fields are actually present. 478 */ 479 480 #ifndef __ARM_EABI__ /* The frame format is differend in AAPCS */ 481 static void 482 db_stack_trace_cmd(db_expr_t addr, db_expr_t count, boolean_t kernel_only) 483 { 484 u_int32_t *frame, *lastframe; 485 c_db_sym_t sym; 486 const char *name; 487 db_expr_t value; 488 db_expr_t offset; 489 int scp_offset; 490 491 frame = (u_int32_t *)addr; 492 lastframe = NULL; 493 scp_offset = -(get_pc_str_offset() >> 2); 494 495 while (count-- && frame != NULL && !db_pager_quit) { 496 db_addr_t scp; 497 u_int32_t savecode; 498 int r; 499 u_int32_t *rp; 500 const char *sep; 501 502 /* 503 * In theory, the SCP isn't guaranteed to be in the function 504 * that generated the stack frame. We hope for the best. 505 */ 506 scp = frame[FR_SCP]; 507 508 sym = db_search_symbol(scp, DB_STGY_ANY, &offset); 509 if (sym == C_DB_SYM_NULL) { 510 value = 0; 511 name = "(null)"; 512 } else 513 db_symbol_values(sym, &name, &value); 514 db_printf("%s() at ", name); 515 db_printsym(scp, DB_STGY_PROC); 516 db_printf("\n"); 517 #ifdef __PROG26 518 db_printf("\tscp=0x%08x rlv=0x%08x (", scp, frame[FR_RLV] & R15_PC); 519 db_printsym(frame[FR_RLV] & R15_PC, DB_STGY_PROC); 520 db_printf(")\n"); 521 #else 522 db_printf("\tscp=0x%08x rlv=0x%08x (", scp, frame[FR_RLV]); 523 db_printsym(frame[FR_RLV], DB_STGY_PROC); 524 db_printf(")\n"); 525 #endif 526 db_printf("\trsp=0x%08x rfp=0x%08x", frame[FR_RSP], frame[FR_RFP]); 527 528 savecode = ((u_int32_t *)scp)[scp_offset]; 529 if ((savecode & 0x0e100000) == 0x08000000) { 530 /* Looks like an STM */ 531 rp = frame - 4; 532 sep = "\n\t"; 533 for (r = 10; r >= 0; r--) { 534 if (savecode & (1 << r)) { 535 db_printf("%sr%d=0x%08x", 536 sep, r, *rp--); 537 sep = (frame - rp) % 4 == 2 ? 538 "\n\t" : " "; 539 } 540 } 541 } 542 543 db_printf("\n"); 544 545 /* 546 * Switch to next frame up 547 */ 548 if (frame[FR_RFP] == 0) 549 break; /* Top of stack */ 550 551 lastframe = frame; 552 frame = (u_int32_t *)(frame[FR_RFP]); 553 554 if (INKERNEL((int)frame)) { 555 /* staying in kernel */ 556 if (frame <= lastframe) { 557 db_printf("Bad frame pointer: %p\n", frame); 558 break; 559 } 560 } else if (INKERNEL((int)lastframe)) { 561 /* switch from user to kernel */ 562 if (kernel_only) 563 break; /* kernel stack only */ 564 } else { 565 /* in user */ 566 if (frame <= lastframe) { 567 db_printf("Bad user frame pointer: %p\n", 568 frame); 569 break; 570 } 571 } 572 } 573 } 574 #endif 575 576 /* XXX stubs */ 577 void 578 db_md_list_watchpoints() 579 { 580 } 581 582 int 583 db_md_clr_watchpoint(db_expr_t addr, db_expr_t size) 584 { 585 return (0); 586 } 587 588 int 589 db_md_set_watchpoint(db_expr_t addr, db_expr_t size) 590 { 591 return (0); 592 } 593 594 int 595 db_trace_thread(struct thread *thr, int count) 596 { 597 #ifdef __ARM_EABI__ 598 struct unwind_state state; 599 #endif 600 struct pcb *ctx; 601 602 if (thr != curthread) { 603 ctx = kdb_thr_ctx(thr); 604 605 #ifdef __ARM_EABI__ 606 state.registers[FP] = ctx->un_32.pcb32_r11; 607 state.registers[SP] = ctx->un_32.pcb32_sp; 608 state.registers[LR] = ctx->un_32.pcb32_lr; 609 state.registers[PC] = ctx->un_32.pcb32_pc; 610 611 db_stack_trace_cmd(&state); 612 #else 613 db_stack_trace_cmd(ctx->un_32.pcb32_r11, -1, TRUE); 614 #endif 615 } else 616 db_trace_self(); 617 return (0); 618 } 619 620 void 621 db_trace_self(void) 622 { 623 #ifdef __ARM_EABI__ 624 struct unwind_state state; 625 uint32_t sp; 626 627 /* Read the stack pointer */ 628 __asm __volatile("mov %0, sp" : "=&r" (sp)); 629 630 state.registers[FP] = (uint32_t)__builtin_frame_address(0); 631 state.registers[SP] = sp; 632 state.registers[LR] = (uint32_t)__builtin_return_address(0); 633 state.registers[PC] = (uint32_t)db_trace_self; 634 635 db_stack_trace_cmd(&state); 636 #else 637 db_addr_t addr; 638 639 addr = (db_addr_t)__builtin_frame_address(0); 640 db_stack_trace_cmd(addr, -1, FALSE); 641 #endif 642 } 643