xref: /freebsd/sys/arm/allwinner/if_awg.c (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
18  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
20  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
21  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27 
28 /*
29  * Allwinner Gigabit Ethernet MAC (EMAC) controller
30  */
31 
32 #include "opt_device_polling.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/rman.h>
41 #include <sys/kernel.h>
42 #include <sys/endian.h>
43 #include <sys/mbuf.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/module.h>
47 #include <sys/taskqueue.h>
48 #include <sys/gpio.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_var.h>
57 
58 #include <machine/bus.h>
59 
60 #include <dev/ofw/ofw_bus.h>
61 #include <dev/ofw/ofw_bus_subr.h>
62 
63 #include <arm/allwinner/if_awgreg.h>
64 #include <arm/allwinner/aw_sid.h>
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 
68 #include <dev/extres/clk/clk.h>
69 #include <dev/extres/hwreset/hwreset.h>
70 #include <dev/extres/regulator/regulator.h>
71 #include <dev/extres/syscon/syscon.h>
72 
73 #include "syscon_if.h"
74 #include "miibus_if.h"
75 #include "gpio_if.h"
76 
77 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
78 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
79 
80 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
81 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
82 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
83 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
84 
85 #define	DESC_ALIGN		4
86 #define	TX_DESC_COUNT		1024
87 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
88 #define	RX_DESC_COUNT		256
89 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
90 
91 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
92 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
93 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
94 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
95 
96 #define	TX_MAX_SEGS		20
97 
98 #define	SOFT_RST_RETRY		1000
99 #define	MII_BUSY_RETRY		1000
100 #define	MDIO_FREQ		2500000
101 
102 #define	BURST_LEN_DEFAULT	8
103 #define	RX_TX_PRI_DEFAULT	0
104 #define	PAUSE_TIME_DEFAULT	0x400
105 #define	TX_INTERVAL_DEFAULT	64
106 #define	RX_BATCH_DEFAULT	64
107 
108 /* syscon EMAC clock register */
109 #define	EMAC_CLK_REG		0x30
110 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
111 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
112 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
113 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
114 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
115 #define	EMAC_CLK_RMII_EN	(1 << 13)
116 #define	EMAC_CLK_ETXDC		(0x7 << 10)
117 #define	EMAC_CLK_ETXDC_SHIFT	10
118 #define	EMAC_CLK_ERXDC		(0x1f << 5)
119 #define	EMAC_CLK_ERXDC_SHIFT	5
120 #define	EMAC_CLK_PIT		(0x1 << 2)
121 #define	 EMAC_CLK_PIT_MII	(0 << 2)
122 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
123 #define	EMAC_CLK_SRC		(0x3 << 0)
124 #define	 EMAC_CLK_SRC_MII	(0 << 0)
125 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
126 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
127 
128 /* Burst length of RX and TX DMA transfers */
129 static int awg_burst_len = BURST_LEN_DEFAULT;
130 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
131 
132 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
133 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
134 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
135 
136 /* Pause time field in the transmitted control frame */
137 static int awg_pause_time = PAUSE_TIME_DEFAULT;
138 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
139 
140 /* Request a TX interrupt every <n> descriptors */
141 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
142 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
143 
144 /* Maximum number of mbufs to send to if_input */
145 static int awg_rx_batch = RX_BATCH_DEFAULT;
146 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
147 
148 enum awg_type {
149 	EMAC_A83T = 1,
150 	EMAC_H3,
151 	EMAC_A64,
152 };
153 
154 static struct ofw_compat_data compat_data[] = {
155 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
156 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
157 	{ "allwinner,sun50i-a64-emac",		EMAC_A64 },
158 	{ NULL,					0 }
159 };
160 
161 struct awg_bufmap {
162 	bus_dmamap_t		map;
163 	struct mbuf		*mbuf;
164 };
165 
166 struct awg_txring {
167 	bus_dma_tag_t		desc_tag;
168 	bus_dmamap_t		desc_map;
169 	struct emac_desc	*desc_ring;
170 	bus_addr_t		desc_ring_paddr;
171 	bus_dma_tag_t		buf_tag;
172 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
173 	u_int			cur, next, queued;
174 	u_int			segs;
175 };
176 
177 struct awg_rxring {
178 	bus_dma_tag_t		desc_tag;
179 	bus_dmamap_t		desc_map;
180 	struct emac_desc	*desc_ring;
181 	bus_addr_t		desc_ring_paddr;
182 	bus_dma_tag_t		buf_tag;
183 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
184 	bus_dmamap_t		buf_spare_map;
185 	u_int			cur;
186 };
187 
188 enum {
189 	_RES_EMAC,
190 	_RES_IRQ,
191 	_RES_SYSCON,
192 	_RES_NITEMS
193 };
194 
195 struct awg_softc {
196 	struct resource		*res[_RES_NITEMS];
197 	struct mtx		mtx;
198 	if_t			ifp;
199 	device_t		dev;
200 	device_t		miibus;
201 	struct callout		stat_ch;
202 	struct task		link_task;
203 	void			*ih;
204 	u_int			mdc_div_ratio_m;
205 	int			link;
206 	int			if_flags;
207 	enum awg_type		type;
208 	struct syscon		*syscon;
209 
210 	struct awg_txring	tx;
211 	struct awg_rxring	rx;
212 };
213 
214 static struct resource_spec awg_spec[] = {
215 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
216 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
217 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
218 	{ -1, 0 }
219 };
220 
221 static void awg_txeof(struct awg_softc *sc);
222 
223 static int awg_parse_delay(device_t dev, uint32_t *tx_delay,
224     uint32_t *rx_delay);
225 static uint32_t syscon_read_emac_clk_reg(device_t dev);
226 static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
227 static phandle_t awg_get_phy_node(device_t dev);
228 static bool awg_has_internal_phy(device_t dev);
229 
230 static int
231 awg_miibus_readreg(device_t dev, int phy, int reg)
232 {
233 	struct awg_softc *sc;
234 	int retry, val;
235 
236 	sc = device_get_softc(dev);
237 	val = 0;
238 
239 	WR4(sc, EMAC_MII_CMD,
240 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
241 	    (phy << PHY_ADDR_SHIFT) |
242 	    (reg << PHY_REG_ADDR_SHIFT) |
243 	    MII_BUSY);
244 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
245 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
246 			val = RD4(sc, EMAC_MII_DATA);
247 			break;
248 		}
249 		DELAY(10);
250 	}
251 
252 	if (retry == 0)
253 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
254 		    phy, reg);
255 
256 	return (val);
257 }
258 
259 static int
260 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
261 {
262 	struct awg_softc *sc;
263 	int retry;
264 
265 	sc = device_get_softc(dev);
266 
267 	WR4(sc, EMAC_MII_DATA, val);
268 	WR4(sc, EMAC_MII_CMD,
269 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
270 	    (phy << PHY_ADDR_SHIFT) |
271 	    (reg << PHY_REG_ADDR_SHIFT) |
272 	    MII_WR | MII_BUSY);
273 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
274 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
275 			break;
276 		DELAY(10);
277 	}
278 
279 	if (retry == 0)
280 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
281 		    phy, reg);
282 
283 	return (0);
284 }
285 
286 static void
287 awg_update_link_locked(struct awg_softc *sc)
288 {
289 	struct mii_data *mii;
290 	uint32_t val;
291 
292 	AWG_ASSERT_LOCKED(sc);
293 
294 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
295 		return;
296 	mii = device_get_softc(sc->miibus);
297 
298 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
299 	    (IFM_ACTIVE | IFM_AVALID)) {
300 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
301 		case IFM_1000_T:
302 		case IFM_1000_SX:
303 		case IFM_100_TX:
304 		case IFM_10_T:
305 			sc->link = 1;
306 			break;
307 		default:
308 			sc->link = 0;
309 			break;
310 		}
311 	} else
312 		sc->link = 0;
313 
314 	if (sc->link == 0)
315 		return;
316 
317 	val = RD4(sc, EMAC_BASIC_CTL_0);
318 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
319 
320 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
321 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
322 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
323 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
324 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
325 	else
326 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
327 
328 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
329 		val |= BASIC_CTL_DUPLEX;
330 
331 	WR4(sc, EMAC_BASIC_CTL_0, val);
332 
333 	val = RD4(sc, EMAC_RX_CTL_0);
334 	val &= ~RX_FLOW_CTL_EN;
335 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
336 		val |= RX_FLOW_CTL_EN;
337 	WR4(sc, EMAC_RX_CTL_0, val);
338 
339 	val = RD4(sc, EMAC_TX_FLOW_CTL);
340 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
341 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
342 		val |= TX_FLOW_CTL_EN;
343 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
344 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
345 	WR4(sc, EMAC_TX_FLOW_CTL, val);
346 }
347 
348 static void
349 awg_link_task(void *arg, int pending)
350 {
351 	struct awg_softc *sc;
352 
353 	sc = arg;
354 
355 	AWG_LOCK(sc);
356 	awg_update_link_locked(sc);
357 	AWG_UNLOCK(sc);
358 }
359 
360 static void
361 awg_miibus_statchg(device_t dev)
362 {
363 	struct awg_softc *sc;
364 
365 	sc = device_get_softc(dev);
366 
367 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
368 }
369 
370 static void
371 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
372 {
373 	struct awg_softc *sc;
374 	struct mii_data *mii;
375 
376 	sc = if_getsoftc(ifp);
377 	mii = device_get_softc(sc->miibus);
378 
379 	AWG_LOCK(sc);
380 	mii_pollstat(mii);
381 	ifmr->ifm_active = mii->mii_media_active;
382 	ifmr->ifm_status = mii->mii_media_status;
383 	AWG_UNLOCK(sc);
384 }
385 
386 static int
387 awg_media_change(if_t ifp)
388 {
389 	struct awg_softc *sc;
390 	struct mii_data *mii;
391 	int error;
392 
393 	sc = if_getsoftc(ifp);
394 	mii = device_get_softc(sc->miibus);
395 
396 	AWG_LOCK(sc);
397 	error = mii_mediachg(mii);
398 	AWG_UNLOCK(sc);
399 
400 	return (error);
401 }
402 
403 static int
404 awg_encap(struct awg_softc *sc, struct mbuf **mp)
405 {
406 	bus_dmamap_t map;
407 	bus_dma_segment_t segs[TX_MAX_SEGS];
408 	int error, nsegs, cur, first, last, i;
409 	u_int csum_flags;
410 	uint32_t flags, status;
411 	struct mbuf *m;
412 
413 	cur = first = sc->tx.cur;
414 	map = sc->tx.buf_map[first].map;
415 
416 	m = *mp;
417 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
418 	    &nsegs, BUS_DMA_NOWAIT);
419 	if (error == EFBIG) {
420 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
421 		if (m == NULL) {
422 			device_printf(sc->dev, "awg_encap: m_collapse failed\n");
423 			m_freem(*mp);
424 			*mp = NULL;
425 			return (ENOMEM);
426 		}
427 		*mp = m;
428 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
429 		    segs, &nsegs, BUS_DMA_NOWAIT);
430 		if (error != 0) {
431 			m_freem(*mp);
432 			*mp = NULL;
433 		}
434 	}
435 	if (error != 0) {
436 		device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
437 		return (error);
438 	}
439 	if (nsegs == 0) {
440 		m_freem(*mp);
441 		*mp = NULL;
442 		return (EIO);
443 	}
444 
445 	if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
446 		bus_dmamap_unload(sc->tx.buf_tag, map);
447 		return (ENOBUFS);
448 	}
449 
450 	bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
451 
452 	flags = TX_FIR_DESC;
453 	status = 0;
454 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
455 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
456 			csum_flags = TX_CHECKSUM_CTL_FULL;
457 		else
458 			csum_flags = TX_CHECKSUM_CTL_IP;
459 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
460 	}
461 
462 	for (i = 0; i < nsegs; i++) {
463 		sc->tx.segs++;
464 		if (i == nsegs - 1) {
465 			flags |= TX_LAST_DESC;
466 			/*
467 			 * Can only request TX completion
468 			 * interrupt on last descriptor.
469 			 */
470 			if (sc->tx.segs >= awg_tx_interval) {
471 				sc->tx.segs = 0;
472 				flags |= TX_INT_CTL;
473 			}
474 		}
475 
476 		sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
477 		sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
478 		sc->tx.desc_ring[cur].status = htole32(status);
479 
480 		flags &= ~TX_FIR_DESC;
481 		/*
482 		 * Setting of the valid bit in the first descriptor is
483 		 * deferred until the whole chain is fully set up.
484 		 */
485 		status = TX_DESC_CTL;
486 
487 		++sc->tx.queued;
488 		cur = TX_NEXT(cur);
489 	}
490 
491 	sc->tx.cur = cur;
492 
493 	/* Store mapping and mbuf in the last segment */
494 	last = TX_SKIP(cur, TX_DESC_COUNT - 1);
495 	sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
496 	sc->tx.buf_map[last].map = map;
497 	sc->tx.buf_map[last].mbuf = m;
498 
499 	/*
500 	 * The whole mbuf chain has been DMA mapped,
501 	 * fix the first descriptor.
502 	 */
503 	sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
504 
505 	return (0);
506 }
507 
508 static void
509 awg_clean_txbuf(struct awg_softc *sc, int index)
510 {
511 	struct awg_bufmap *bmap;
512 
513 	--sc->tx.queued;
514 
515 	bmap = &sc->tx.buf_map[index];
516 	if (bmap->mbuf != NULL) {
517 		bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
518 		    BUS_DMASYNC_POSTWRITE);
519 		bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
520 		m_freem(bmap->mbuf);
521 		bmap->mbuf = NULL;
522 	}
523 }
524 
525 static void
526 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
527 {
528 	uint32_t status, size;
529 
530 	status = RX_DESC_CTL;
531 	size = MCLBYTES - 1;
532 
533 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
534 	sc->rx.desc_ring[index].size = htole32(size);
535 	sc->rx.desc_ring[index].status = htole32(status);
536 }
537 
538 static void
539 awg_reuse_rxdesc(struct awg_softc *sc, int index)
540 {
541 
542 	sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
543 }
544 
545 static int
546 awg_newbuf_rx(struct awg_softc *sc, int index)
547 {
548 	struct mbuf *m;
549 	bus_dma_segment_t seg;
550 	bus_dmamap_t map;
551 	int nsegs;
552 
553 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
554 	if (m == NULL)
555 		return (ENOBUFS);
556 
557 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
558 	m_adj(m, ETHER_ALIGN);
559 
560 	if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
561 	    m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
562 		m_freem(m);
563 		return (ENOBUFS);
564 	}
565 
566 	if (sc->rx.buf_map[index].mbuf != NULL) {
567 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
568 		    BUS_DMASYNC_POSTREAD);
569 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
570 	}
571 	map = sc->rx.buf_map[index].map;
572 	sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
573 	sc->rx.buf_spare_map = map;
574 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
575 	    BUS_DMASYNC_PREREAD);
576 
577 	sc->rx.buf_map[index].mbuf = m;
578 	awg_setup_rxdesc(sc, index, seg.ds_addr);
579 
580 	return (0);
581 }
582 
583 static void
584 awg_start_locked(struct awg_softc *sc)
585 {
586 	struct mbuf *m;
587 	uint32_t val;
588 	if_t ifp;
589 	int cnt, err;
590 
591 	AWG_ASSERT_LOCKED(sc);
592 
593 	if (!sc->link)
594 		return;
595 
596 	ifp = sc->ifp;
597 
598 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
599 	    IFF_DRV_RUNNING)
600 		return;
601 
602 	for (cnt = 0; ; cnt++) {
603 		m = if_dequeue(ifp);
604 		if (m == NULL)
605 			break;
606 
607 		err = awg_encap(sc, &m);
608 		if (err != 0) {
609 			if (err == ENOBUFS)
610 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
611 			if (m != NULL)
612 				if_sendq_prepend(ifp, m);
613 			break;
614 		}
615 		if_bpfmtap(ifp, m);
616 	}
617 
618 	if (cnt != 0) {
619 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
620 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
621 
622 		/* Start and run TX DMA */
623 		val = RD4(sc, EMAC_TX_CTL_1);
624 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
625 	}
626 }
627 
628 static void
629 awg_start(if_t ifp)
630 {
631 	struct awg_softc *sc;
632 
633 	sc = if_getsoftc(ifp);
634 
635 	AWG_LOCK(sc);
636 	awg_start_locked(sc);
637 	AWG_UNLOCK(sc);
638 }
639 
640 static void
641 awg_tick(void *softc)
642 {
643 	struct awg_softc *sc;
644 	struct mii_data *mii;
645 	if_t ifp;
646 	int link;
647 
648 	sc = softc;
649 	ifp = sc->ifp;
650 	mii = device_get_softc(sc->miibus);
651 
652 	AWG_ASSERT_LOCKED(sc);
653 
654 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
655 		return;
656 
657 	link = sc->link;
658 	mii_tick(mii);
659 	if (sc->link && !link)
660 		awg_start_locked(sc);
661 
662 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
663 }
664 
665 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
666 static uint32_t
667 bitrev32(uint32_t x)
668 {
669 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
670 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
671 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
672 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
673 
674 	return (x >> 16) | (x << 16);
675 }
676 
677 static u_int
678 awg_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
679 {
680 	uint32_t crc, hashreg, hashbit, *hash = arg;
681 
682 	crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7f;
683 	crc = bitrev32(~crc) >> 26;
684 	hashreg = (crc >> 5);
685 	hashbit = (crc & 0x1f);
686 	hash[hashreg] |= (1 << hashbit);
687 
688 	return (1);
689 }
690 
691 static void
692 awg_setup_rxfilter(struct awg_softc *sc)
693 {
694 	uint32_t val, hash[2], machi, maclo;
695 	uint8_t *eaddr;
696 	if_t ifp;
697 
698 	AWG_ASSERT_LOCKED(sc);
699 
700 	ifp = sc->ifp;
701 	val = 0;
702 	hash[0] = hash[1] = 0;
703 
704 	if (if_getflags(ifp) & IFF_PROMISC)
705 		val |= DIS_ADDR_FILTER;
706 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
707 		val |= RX_ALL_MULTICAST;
708 		hash[0] = hash[1] = ~0;
709 	} else if (if_foreach_llmaddr(ifp, awg_hash_maddr, hash) > 0)
710 		val |= HASH_MULTICAST;
711 
712 	/* Write our unicast address */
713 	eaddr = IF_LLADDR(ifp);
714 	machi = (eaddr[5] << 8) | eaddr[4];
715 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
716 	   (eaddr[0] << 0);
717 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
718 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
719 
720 	/* Multicast hash filters */
721 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
722 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
723 
724 	/* RX frame filter config */
725 	WR4(sc, EMAC_RX_FRM_FLT, val);
726 }
727 
728 static void
729 awg_enable_intr(struct awg_softc *sc)
730 {
731 	/* Enable interrupts */
732 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
733 }
734 
735 static void
736 awg_disable_intr(struct awg_softc *sc)
737 {
738 	/* Disable interrupts */
739 	WR4(sc, EMAC_INT_EN, 0);
740 }
741 
742 static void
743 awg_init_locked(struct awg_softc *sc)
744 {
745 	struct mii_data *mii;
746 	uint32_t val;
747 	if_t ifp;
748 
749 	mii = device_get_softc(sc->miibus);
750 	ifp = sc->ifp;
751 
752 	AWG_ASSERT_LOCKED(sc);
753 
754 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
755 		return;
756 
757 	awg_setup_rxfilter(sc);
758 
759 	/* Configure DMA burst length and priorities */
760 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
761 	if (awg_rx_tx_pri)
762 		val |= BASIC_CTL_RX_TX_PRI;
763 	WR4(sc, EMAC_BASIC_CTL_1, val);
764 
765 	/* Enable interrupts */
766 #ifdef DEVICE_POLLING
767 	if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
768 		awg_enable_intr(sc);
769 	else
770 		awg_disable_intr(sc);
771 #else
772 	awg_enable_intr(sc);
773 #endif
774 
775 	/* Enable transmit DMA */
776 	val = RD4(sc, EMAC_TX_CTL_1);
777 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
778 
779 	/* Enable receive DMA */
780 	val = RD4(sc, EMAC_RX_CTL_1);
781 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
782 
783 	/* Enable transmitter */
784 	val = RD4(sc, EMAC_TX_CTL_0);
785 	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
786 
787 	/* Enable receiver */
788 	val = RD4(sc, EMAC_RX_CTL_0);
789 	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
790 
791 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
792 
793 	mii_mediachg(mii);
794 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
795 }
796 
797 static void
798 awg_init(void *softc)
799 {
800 	struct awg_softc *sc;
801 
802 	sc = softc;
803 
804 	AWG_LOCK(sc);
805 	awg_init_locked(sc);
806 	AWG_UNLOCK(sc);
807 }
808 
809 static void
810 awg_stop(struct awg_softc *sc)
811 {
812 	if_t ifp;
813 	uint32_t val;
814 	int i;
815 
816 	AWG_ASSERT_LOCKED(sc);
817 
818 	ifp = sc->ifp;
819 
820 	callout_stop(&sc->stat_ch);
821 
822 	/* Stop transmit DMA and flush data in the TX FIFO */
823 	val = RD4(sc, EMAC_TX_CTL_1);
824 	val &= ~TX_DMA_EN;
825 	val |= FLUSH_TX_FIFO;
826 	WR4(sc, EMAC_TX_CTL_1, val);
827 
828 	/* Disable transmitter */
829 	val = RD4(sc, EMAC_TX_CTL_0);
830 	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
831 
832 	/* Disable receiver */
833 	val = RD4(sc, EMAC_RX_CTL_0);
834 	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
835 
836 	/* Disable interrupts */
837 	awg_disable_intr(sc);
838 
839 	/* Disable transmit DMA */
840 	val = RD4(sc, EMAC_TX_CTL_1);
841 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
842 
843 	/* Disable receive DMA */
844 	val = RD4(sc, EMAC_RX_CTL_1);
845 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
846 
847 	sc->link = 0;
848 
849 	/* Finish handling transmitted buffers */
850 	awg_txeof(sc);
851 
852 	/* Release any untransmitted buffers. */
853 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
854 		val = le32toh(sc->tx.desc_ring[i].status);
855 		if ((val & TX_DESC_CTL) != 0)
856 			break;
857 		awg_clean_txbuf(sc, i);
858 	}
859 	sc->tx.next = i;
860 	for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
861 		sc->tx.desc_ring[i].status = 0;
862 		awg_clean_txbuf(sc, i);
863 	}
864 	sc->tx.cur = sc->tx.next;
865 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
866 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
867 
868 	/* Setup RX buffers for reuse */
869 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
870 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
871 
872 	for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
873 		val = le32toh(sc->rx.desc_ring[i].status);
874 		if ((val & RX_DESC_CTL) != 0)
875 			break;
876 		awg_reuse_rxdesc(sc, i);
877 	}
878 	sc->rx.cur = i;
879 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
880 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
881 
882 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
883 }
884 
885 static int
886 awg_rxintr(struct awg_softc *sc)
887 {
888 	if_t ifp;
889 	struct mbuf *m, *mh, *mt;
890 	int error, index, len, cnt, npkt;
891 	uint32_t status;
892 
893 	ifp = sc->ifp;
894 	mh = mt = NULL;
895 	cnt = 0;
896 	npkt = 0;
897 
898 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
899 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
900 
901 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
902 		status = le32toh(sc->rx.desc_ring[index].status);
903 		if ((status & RX_DESC_CTL) != 0)
904 			break;
905 
906 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
907 
908 		if (len == 0) {
909 			if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
910 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
911 			awg_reuse_rxdesc(sc, index);
912 			continue;
913 		}
914 
915 		m = sc->rx.buf_map[index].mbuf;
916 
917 		error = awg_newbuf_rx(sc, index);
918 		if (error != 0) {
919 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
920 			awg_reuse_rxdesc(sc, index);
921 			continue;
922 		}
923 
924 		m->m_pkthdr.rcvif = ifp;
925 		m->m_pkthdr.len = len;
926 		m->m_len = len;
927 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
928 
929 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
930 		    (status & RX_FRM_TYPE) != 0) {
931 			m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
932 			if ((status & RX_HEADER_ERR) == 0)
933 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
934 			if ((status & RX_PAYLOAD_ERR) == 0) {
935 				m->m_pkthdr.csum_flags |=
936 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
937 				m->m_pkthdr.csum_data = 0xffff;
938 			}
939 		}
940 
941 		m->m_nextpkt = NULL;
942 		if (mh == NULL)
943 			mh = m;
944 		else
945 			mt->m_nextpkt = m;
946 		mt = m;
947 		++cnt;
948 		++npkt;
949 
950 		if (cnt == awg_rx_batch) {
951 			AWG_UNLOCK(sc);
952 			if_input(ifp, mh);
953 			AWG_LOCK(sc);
954 			mh = mt = NULL;
955 			cnt = 0;
956 		}
957 	}
958 
959 	if (index != sc->rx.cur) {
960 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
961 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
962 	}
963 
964 	if (mh != NULL) {
965 		AWG_UNLOCK(sc);
966 		if_input(ifp, mh);
967 		AWG_LOCK(sc);
968 	}
969 
970 	sc->rx.cur = index;
971 
972 	return (npkt);
973 }
974 
975 static void
976 awg_txeof(struct awg_softc *sc)
977 {
978 	struct emac_desc *desc;
979 	uint32_t status, size;
980 	if_t ifp;
981 	int i, prog;
982 
983 	AWG_ASSERT_LOCKED(sc);
984 
985 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
986 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
987 
988 	ifp = sc->ifp;
989 
990 	prog = 0;
991 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
992 		desc = &sc->tx.desc_ring[i];
993 		status = le32toh(desc->status);
994 		if ((status & TX_DESC_CTL) != 0)
995 			break;
996 		size = le32toh(desc->size);
997 		if (size & TX_LAST_DESC) {
998 			if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
999 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1000 			else
1001 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1002 		}
1003 		prog++;
1004 		awg_clean_txbuf(sc, i);
1005 	}
1006 
1007 	if (prog > 0) {
1008 		sc->tx.next = i;
1009 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1010 	}
1011 }
1012 
1013 static void
1014 awg_intr(void *arg)
1015 {
1016 	struct awg_softc *sc;
1017 	uint32_t val;
1018 
1019 	sc = arg;
1020 
1021 	AWG_LOCK(sc);
1022 	val = RD4(sc, EMAC_INT_STA);
1023 	WR4(sc, EMAC_INT_STA, val);
1024 
1025 	if (val & RX_INT)
1026 		awg_rxintr(sc);
1027 
1028 	if (val & TX_INT)
1029 		awg_txeof(sc);
1030 
1031 	if (val & (TX_INT | TX_BUF_UA_INT)) {
1032 		if (!if_sendq_empty(sc->ifp))
1033 			awg_start_locked(sc);
1034 	}
1035 
1036 	AWG_UNLOCK(sc);
1037 }
1038 
1039 #ifdef DEVICE_POLLING
1040 static int
1041 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
1042 {
1043 	struct awg_softc *sc;
1044 	uint32_t val;
1045 	int rx_npkts;
1046 
1047 	sc = if_getsoftc(ifp);
1048 	rx_npkts = 0;
1049 
1050 	AWG_LOCK(sc);
1051 
1052 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1053 		AWG_UNLOCK(sc);
1054 		return (0);
1055 	}
1056 
1057 	rx_npkts = awg_rxintr(sc);
1058 	awg_txeof(sc);
1059 	if (!if_sendq_empty(ifp))
1060 		awg_start_locked(sc);
1061 
1062 	if (cmd == POLL_AND_CHECK_STATUS) {
1063 		val = RD4(sc, EMAC_INT_STA);
1064 		if (val != 0)
1065 			WR4(sc, EMAC_INT_STA, val);
1066 	}
1067 
1068 	AWG_UNLOCK(sc);
1069 
1070 	return (rx_npkts);
1071 }
1072 #endif
1073 
1074 static int
1075 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
1076 {
1077 	struct awg_softc *sc;
1078 	struct mii_data *mii;
1079 	struct ifreq *ifr;
1080 	int flags, mask, error;
1081 
1082 	sc = if_getsoftc(ifp);
1083 	mii = device_get_softc(sc->miibus);
1084 	ifr = (struct ifreq *)data;
1085 	error = 0;
1086 
1087 	switch (cmd) {
1088 	case SIOCSIFFLAGS:
1089 		AWG_LOCK(sc);
1090 		if (if_getflags(ifp) & IFF_UP) {
1091 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1092 				flags = if_getflags(ifp) ^ sc->if_flags;
1093 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
1094 					awg_setup_rxfilter(sc);
1095 			} else
1096 				awg_init_locked(sc);
1097 		} else {
1098 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1099 				awg_stop(sc);
1100 		}
1101 		sc->if_flags = if_getflags(ifp);
1102 		AWG_UNLOCK(sc);
1103 		break;
1104 	case SIOCADDMULTI:
1105 	case SIOCDELMULTI:
1106 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1107 			AWG_LOCK(sc);
1108 			awg_setup_rxfilter(sc);
1109 			AWG_UNLOCK(sc);
1110 		}
1111 		break;
1112 	case SIOCSIFMEDIA:
1113 	case SIOCGIFMEDIA:
1114 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1115 		break;
1116 	case SIOCSIFCAP:
1117 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1118 #ifdef DEVICE_POLLING
1119 		if (mask & IFCAP_POLLING) {
1120 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1121 				error = ether_poll_register(awg_poll, ifp);
1122 				if (error != 0)
1123 					break;
1124 				AWG_LOCK(sc);
1125 				awg_disable_intr(sc);
1126 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1127 				AWG_UNLOCK(sc);
1128 			} else {
1129 				error = ether_poll_deregister(ifp);
1130 				AWG_LOCK(sc);
1131 				awg_enable_intr(sc);
1132 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1133 				AWG_UNLOCK(sc);
1134 			}
1135 		}
1136 #endif
1137 		if (mask & IFCAP_VLAN_MTU)
1138 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1139 		if (mask & IFCAP_RXCSUM)
1140 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1141 		if (mask & IFCAP_TXCSUM)
1142 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1143 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1144 			if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
1145 		else
1146 			if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
1147 		break;
1148 	default:
1149 		error = ether_ioctl(ifp, cmd, data);
1150 		break;
1151 	}
1152 
1153 	return (error);
1154 }
1155 
1156 static uint32_t
1157 syscon_read_emac_clk_reg(device_t dev)
1158 {
1159 	struct awg_softc *sc;
1160 
1161 	sc = device_get_softc(dev);
1162 	if (sc->syscon != NULL)
1163 		return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
1164 	else if (sc->res[_RES_SYSCON] != NULL)
1165 		return (bus_read_4(sc->res[_RES_SYSCON], 0));
1166 
1167 	return (0);
1168 }
1169 
1170 static void
1171 syscon_write_emac_clk_reg(device_t dev, uint32_t val)
1172 {
1173 	struct awg_softc *sc;
1174 
1175 	sc = device_get_softc(dev);
1176 	if (sc->syscon != NULL)
1177 		SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
1178 	else if (sc->res[_RES_SYSCON] != NULL)
1179 		bus_write_4(sc->res[_RES_SYSCON], 0, val);
1180 }
1181 
1182 static phandle_t
1183 awg_get_phy_node(device_t dev)
1184 {
1185 	phandle_t node;
1186 	pcell_t phy_handle;
1187 
1188 	node = ofw_bus_get_node(dev);
1189 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
1190 	    sizeof(phy_handle)) <= 0)
1191 		return (0);
1192 
1193 	return (OF_node_from_xref(phy_handle));
1194 }
1195 
1196 static bool
1197 awg_has_internal_phy(device_t dev)
1198 {
1199 	phandle_t node, phy_node;
1200 
1201 	node = ofw_bus_get_node(dev);
1202 	/* Legacy binding */
1203 	if (OF_hasprop(node, "allwinner,use-internal-phy"))
1204 		return (true);
1205 
1206 	phy_node = awg_get_phy_node(dev);
1207 	return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
1208 	    "allwinner,sun8i-h3-mdio-internal") != 0);
1209 }
1210 
1211 static int
1212 awg_parse_delay(device_t dev, uint32_t *tx_delay, uint32_t *rx_delay)
1213 {
1214 	phandle_t node;
1215 	uint32_t delay;
1216 
1217 	if (tx_delay == NULL || rx_delay == NULL)
1218 		return (EINVAL);
1219 	*tx_delay = *rx_delay = 0;
1220 	node = ofw_bus_get_node(dev);
1221 
1222 	if (OF_getencprop(node, "tx-delay", &delay, sizeof(delay)) >= 0)
1223 		*tx_delay = delay;
1224 	else if (OF_getencprop(node, "allwinner,tx-delay-ps", &delay,
1225 	    sizeof(delay)) >= 0) {
1226 		if ((delay % 100) != 0) {
1227 			device_printf(dev, "tx-delay-ps is not a multiple of 100\n");
1228 			return (EDOM);
1229 		}
1230 		*tx_delay = delay / 100;
1231 	}
1232 	if (*tx_delay > 7) {
1233 		device_printf(dev, "tx-delay out of range\n");
1234 		return (ERANGE);
1235 	}
1236 
1237 	if (OF_getencprop(node, "rx-delay", &delay, sizeof(delay)) >= 0)
1238 		*rx_delay = delay;
1239 	else if (OF_getencprop(node, "allwinner,rx-delay-ps", &delay,
1240 	    sizeof(delay)) >= 0) {
1241 		if ((delay % 100) != 0) {
1242 			device_printf(dev, "rx-delay-ps is not within documented domain\n");
1243 			return (EDOM);
1244 		}
1245 		*rx_delay = delay / 100;
1246 	}
1247 	if (*rx_delay > 31) {
1248 		device_printf(dev, "rx-delay out of range\n");
1249 		return (ERANGE);
1250 	}
1251 
1252 	return (0);
1253 }
1254 
1255 static int
1256 awg_setup_phy(device_t dev)
1257 {
1258 	struct awg_softc *sc;
1259 	clk_t clk_tx, clk_tx_parent;
1260 	const char *tx_parent_name;
1261 	char *phy_type;
1262 	phandle_t node;
1263 	uint32_t reg, tx_delay, rx_delay;
1264 	int error;
1265 	bool use_syscon;
1266 
1267 	sc = device_get_softc(dev);
1268 	node = ofw_bus_get_node(dev);
1269 	use_syscon = false;
1270 
1271 	if (OF_getprop_alloc(node, "phy-mode", (void **)&phy_type) == 0)
1272 		return (0);
1273 
1274 	if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
1275 		use_syscon = true;
1276 
1277 	if (bootverbose)
1278 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1279 		    use_syscon ? "reg" : "clk");
1280 
1281 	if (use_syscon) {
1282 		/*
1283 		 * Abstract away writing to syscon for devices like the pine64.
1284 		 * For the pine64, we get dtb from U-Boot and it still uses the
1285 		 * legacy setup of specifying syscon register in emac node
1286 		 * rather than as its own node and using an xref in emac.
1287 		 * These abstractions can go away once U-Boot dts is up-to-date.
1288 		 */
1289 		reg = syscon_read_emac_clk_reg(dev);
1290 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1291 		if (strncmp(phy_type, "rgmii", 5) == 0)
1292 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1293 		else if (strcmp(phy_type, "rmii") == 0)
1294 			reg |= EMAC_CLK_RMII_EN;
1295 		else
1296 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1297 
1298 		/*
1299 		 * Fail attach if we fail to parse either of the delay
1300 		 * parameters. If we don't have the proper delay to write to
1301 		 * syscon, then awg likely won't function properly anyways.
1302 		 * Lack of delay is not an error!
1303 		 */
1304 		error = awg_parse_delay(dev, &tx_delay, &rx_delay);
1305 		if (error != 0)
1306 			goto fail;
1307 
1308 		/* Default to 0 and we'll increase it if we need to. */
1309 		reg &= ~(EMAC_CLK_ETXDC | EMAC_CLK_ERXDC);
1310 		if (tx_delay > 0)
1311 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1312 		if (rx_delay > 0)
1313 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1314 
1315 		if (sc->type == EMAC_H3) {
1316 			if (awg_has_internal_phy(dev)) {
1317 				reg |= EMAC_CLK_EPHY_SELECT;
1318 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1319 				if (OF_hasprop(node,
1320 				    "allwinner,leds-active-low"))
1321 					reg |= EMAC_CLK_EPHY_LED_POL;
1322 				else
1323 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1324 
1325 				/* Set internal PHY addr to 1 */
1326 				reg &= ~EMAC_CLK_EPHY_ADDR;
1327 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1328 			} else {
1329 				reg &= ~EMAC_CLK_EPHY_SELECT;
1330 			}
1331 		}
1332 
1333 		if (bootverbose)
1334 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1335 		syscon_write_emac_clk_reg(dev, reg);
1336 	} else {
1337 		if (strncmp(phy_type, "rgmii", 5) == 0)
1338 			tx_parent_name = "emac_int_tx";
1339 		else
1340 			tx_parent_name = "mii_phy_tx";
1341 
1342 		/* Get the TX clock */
1343 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1344 		if (error != 0) {
1345 			device_printf(dev, "cannot get tx clock\n");
1346 			goto fail;
1347 		}
1348 
1349 		/* Find the desired parent clock based on phy-mode property */
1350 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1351 		if (error != 0) {
1352 			device_printf(dev, "cannot get clock '%s'\n",
1353 			    tx_parent_name);
1354 			goto fail;
1355 		}
1356 
1357 		/* Set TX clock parent */
1358 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1359 		if (error != 0) {
1360 			device_printf(dev, "cannot set tx clock parent\n");
1361 			goto fail;
1362 		}
1363 
1364 		/* Enable TX clock */
1365 		error = clk_enable(clk_tx);
1366 		if (error != 0) {
1367 			device_printf(dev, "cannot enable tx clock\n");
1368 			goto fail;
1369 		}
1370 	}
1371 
1372 	error = 0;
1373 
1374 fail:
1375 	OF_prop_free(phy_type);
1376 	return (error);
1377 }
1378 
1379 static int
1380 awg_setup_extres(device_t dev)
1381 {
1382 	struct awg_softc *sc;
1383 	phandle_t node, phy_node;
1384 	hwreset_t rst_ahb, rst_ephy;
1385 	clk_t clk_ahb, clk_ephy;
1386 	regulator_t reg;
1387 	uint64_t freq;
1388 	int error, div;
1389 
1390 	sc = device_get_softc(dev);
1391 	rst_ahb = rst_ephy = NULL;
1392 	clk_ahb = clk_ephy = NULL;
1393 	reg = NULL;
1394 	node = ofw_bus_get_node(dev);
1395 	phy_node = awg_get_phy_node(dev);
1396 
1397 	if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
1398 		error = ENXIO;
1399 		device_printf(dev, "cannot get phy handle\n");
1400 		goto fail;
1401 	}
1402 
1403 	/* Get AHB clock and reset resources */
1404 	error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
1405 	if (error != 0)
1406 		error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1407 	if (error != 0) {
1408 		device_printf(dev, "cannot get ahb reset\n");
1409 		goto fail;
1410 	}
1411 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1412 		if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
1413 		    &rst_ephy) != 0)
1414 			rst_ephy = NULL;
1415 	error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
1416 	if (error != 0)
1417 		error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1418 	if (error != 0) {
1419 		device_printf(dev, "cannot get ahb clock\n");
1420 		goto fail;
1421 	}
1422 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1423 		if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
1424 		    &clk_ephy) != 0)
1425 			clk_ephy = NULL;
1426 
1427 	if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
1428 	    "syscon", &sc->syscon) != 0) {
1429 		device_printf(dev, "cannot get syscon driver handle\n");
1430 		goto fail;
1431 	}
1432 
1433 	/* Configure PHY for MII or RGMII mode */
1434 	if (awg_setup_phy(dev) != 0)
1435 		goto fail;
1436 
1437 	/* Enable clocks */
1438 	error = clk_enable(clk_ahb);
1439 	if (error != 0) {
1440 		device_printf(dev, "cannot enable ahb clock\n");
1441 		goto fail;
1442 	}
1443 	if (clk_ephy != NULL) {
1444 		error = clk_enable(clk_ephy);
1445 		if (error != 0) {
1446 			device_printf(dev, "cannot enable ephy clock\n");
1447 			goto fail;
1448 		}
1449 	}
1450 
1451 	/* De-assert reset */
1452 	error = hwreset_deassert(rst_ahb);
1453 	if (error != 0) {
1454 		device_printf(dev, "cannot de-assert ahb reset\n");
1455 		goto fail;
1456 	}
1457 	if (rst_ephy != NULL) {
1458 		/*
1459 		 * The ephy reset is left de-asserted by U-Boot.  Assert it
1460 		 * here to make sure that we're in a known good state going
1461 		 * into the PHY reset.
1462 		 */
1463 		hwreset_assert(rst_ephy);
1464 		error = hwreset_deassert(rst_ephy);
1465 		if (error != 0) {
1466 			device_printf(dev, "cannot de-assert ephy reset\n");
1467 			goto fail;
1468 		}
1469 	}
1470 
1471 	/* Enable PHY regulator if applicable */
1472 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1473 		error = regulator_enable(reg);
1474 		if (error != 0) {
1475 			device_printf(dev, "cannot enable PHY regulator\n");
1476 			goto fail;
1477 		}
1478 	}
1479 
1480 	/* Determine MDC clock divide ratio based on AHB clock */
1481 	error = clk_get_freq(clk_ahb, &freq);
1482 	if (error != 0) {
1483 		device_printf(dev, "cannot get AHB clock frequency\n");
1484 		goto fail;
1485 	}
1486 	div = freq / MDIO_FREQ;
1487 	if (div <= 16)
1488 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1489 	else if (div <= 32)
1490 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1491 	else if (div <= 64)
1492 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1493 	else if (div <= 128)
1494 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1495 	else {
1496 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1497 		error = ENXIO;
1498 		goto fail;
1499 	}
1500 
1501 	if (bootverbose)
1502 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1503 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1504 
1505 	return (0);
1506 
1507 fail:
1508 	if (reg != NULL)
1509 		regulator_release(reg);
1510 	if (clk_ephy != NULL)
1511 		clk_release(clk_ephy);
1512 	if (clk_ahb != NULL)
1513 		clk_release(clk_ahb);
1514 	if (rst_ephy != NULL)
1515 		hwreset_release(rst_ephy);
1516 	if (rst_ahb != NULL)
1517 		hwreset_release(rst_ahb);
1518 	return (error);
1519 }
1520 
1521 static void
1522 awg_get_eaddr(device_t dev, uint8_t *eaddr)
1523 {
1524 	struct awg_softc *sc;
1525 	uint32_t maclo, machi, rnd;
1526 	u_char rootkey[16];
1527 	uint32_t rootkey_size;
1528 
1529 	sc = device_get_softc(dev);
1530 
1531 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1532 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1533 
1534 	rootkey_size = sizeof(rootkey);
1535 	if (maclo == 0xffffffff && machi == 0xffff) {
1536 		/* MAC address in hardware is invalid, create one */
1537 		if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
1538 		    &rootkey_size) == 0 &&
1539 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1540 		     rootkey[15]) != 0) {
1541 			/* MAC address is derived from the root key in SID */
1542 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1543 				(rootkey[3] << 8) | 0x02;
1544 			machi = (rootkey[15] << 8) | rootkey[14];
1545 		} else {
1546 			/* Create one */
1547 			rnd = arc4random();
1548 			maclo = 0x00f2 | (rnd & 0xffff0000);
1549 			machi = rnd & 0xffff;
1550 		}
1551 	}
1552 
1553 	eaddr[0] = maclo & 0xff;
1554 	eaddr[1] = (maclo >> 8) & 0xff;
1555 	eaddr[2] = (maclo >> 16) & 0xff;
1556 	eaddr[3] = (maclo >> 24) & 0xff;
1557 	eaddr[4] = machi & 0xff;
1558 	eaddr[5] = (machi >> 8) & 0xff;
1559 }
1560 
1561 #ifdef AWG_DEBUG
1562 static void
1563 awg_dump_regs(device_t dev)
1564 {
1565 	static const struct {
1566 		const char *name;
1567 		u_int reg;
1568 	} regs[] = {
1569 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1570 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1571 		{ "INT_STA", EMAC_INT_STA },
1572 		{ "INT_EN", EMAC_INT_EN },
1573 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1574 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1575 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1576 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1577 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1578 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1579 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1580 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1581 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1582 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1583 		{ "MII_CMD", EMAC_MII_CMD },
1584 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1585 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1586 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1587 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1588 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1589 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1590 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1591 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1592 		{ "RGMII_STA", EMAC_RGMII_STA },
1593 	};
1594 	struct awg_softc *sc;
1595 	unsigned int n;
1596 
1597 	sc = device_get_softc(dev);
1598 
1599 	for (n = 0; n < nitems(regs); n++)
1600 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1601 		    RD4(sc, regs[n].reg));
1602 }
1603 #endif
1604 
1605 #define	GPIO_ACTIVE_LOW		1
1606 
1607 static int
1608 awg_phy_reset(device_t dev)
1609 {
1610 	pcell_t gpio_prop[4], delay_prop[3];
1611 	phandle_t node, gpio_node;
1612 	device_t gpio;
1613 	uint32_t pin, flags;
1614 	uint32_t pin_value;
1615 
1616 	node = ofw_bus_get_node(dev);
1617 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1618 	    sizeof(gpio_prop)) <= 0)
1619 		return (0);
1620 
1621 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1622 	    sizeof(delay_prop)) <= 0)
1623 		return (ENXIO);
1624 
1625 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1626 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1627 		return (ENXIO);
1628 
1629 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1630 	    gpio_prop + 1, &pin, &flags) != 0)
1631 		return (ENXIO);
1632 
1633 	pin_value = GPIO_PIN_LOW;
1634 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1635 		pin_value = GPIO_PIN_HIGH;
1636 
1637 	if (flags & GPIO_ACTIVE_LOW)
1638 		pin_value = !pin_value;
1639 
1640 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1641 	GPIO_PIN_SET(gpio, pin, pin_value);
1642 	DELAY(delay_prop[0]);
1643 	GPIO_PIN_SET(gpio, pin, !pin_value);
1644 	DELAY(delay_prop[1]);
1645 	GPIO_PIN_SET(gpio, pin, pin_value);
1646 	DELAY(delay_prop[2]);
1647 
1648 	return (0);
1649 }
1650 
1651 static int
1652 awg_reset(device_t dev)
1653 {
1654 	struct awg_softc *sc;
1655 	int retry;
1656 
1657 	sc = device_get_softc(dev);
1658 
1659 	/* Reset PHY if necessary */
1660 	if (awg_phy_reset(dev) != 0) {
1661 		device_printf(dev, "failed to reset PHY\n");
1662 		return (ENXIO);
1663 	}
1664 
1665 	/* Soft reset all registers and logic */
1666 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1667 
1668 	/* Wait for soft reset bit to self-clear */
1669 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1670 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1671 			break;
1672 		DELAY(10);
1673 	}
1674 	if (retry == 0) {
1675 		device_printf(dev, "soft reset timed out\n");
1676 #ifdef AWG_DEBUG
1677 		awg_dump_regs(dev);
1678 #endif
1679 		return (ETIMEDOUT);
1680 	}
1681 
1682 	return (0);
1683 }
1684 
1685 static void
1686 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1687 {
1688 	if (error != 0)
1689 		return;
1690 	*(bus_addr_t *)arg = segs[0].ds_addr;
1691 }
1692 
1693 static int
1694 awg_setup_dma(device_t dev)
1695 {
1696 	struct awg_softc *sc;
1697 	int error, i;
1698 
1699 	sc = device_get_softc(dev);
1700 
1701 	/* Setup TX ring */
1702 	error = bus_dma_tag_create(
1703 	    bus_get_dma_tag(dev),	/* Parent tag */
1704 	    DESC_ALIGN, 0,		/* alignment, boundary */
1705 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1706 	    BUS_SPACE_MAXADDR,		/* highaddr */
1707 	    NULL, NULL,			/* filter, filterarg */
1708 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
1709 	    TX_DESC_SIZE,		/* maxsegsize */
1710 	    0,				/* flags */
1711 	    NULL, NULL,			/* lockfunc, lockarg */
1712 	    &sc->tx.desc_tag);
1713 	if (error != 0) {
1714 		device_printf(dev, "cannot create TX descriptor ring tag\n");
1715 		return (error);
1716 	}
1717 
1718 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
1719 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
1720 	if (error != 0) {
1721 		device_printf(dev, "cannot allocate TX descriptor ring\n");
1722 		return (error);
1723 	}
1724 
1725 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
1726 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
1727 	    &sc->tx.desc_ring_paddr, 0);
1728 	if (error != 0) {
1729 		device_printf(dev, "cannot load TX descriptor ring\n");
1730 		return (error);
1731 	}
1732 
1733 	for (i = 0; i < TX_DESC_COUNT; i++)
1734 		sc->tx.desc_ring[i].next =
1735 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1736 
1737 	error = bus_dma_tag_create(
1738 	    bus_get_dma_tag(dev),	/* Parent tag */
1739 	    1, 0,			/* alignment, boundary */
1740 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1741 	    BUS_SPACE_MAXADDR,		/* highaddr */
1742 	    NULL, NULL,			/* filter, filterarg */
1743 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
1744 	    MCLBYTES,			/* maxsegsize */
1745 	    0,				/* flags */
1746 	    NULL, NULL,			/* lockfunc, lockarg */
1747 	    &sc->tx.buf_tag);
1748 	if (error != 0) {
1749 		device_printf(dev, "cannot create TX buffer tag\n");
1750 		return (error);
1751 	}
1752 
1753 	sc->tx.queued = 0;
1754 	for (i = 0; i < TX_DESC_COUNT; i++) {
1755 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
1756 		    &sc->tx.buf_map[i].map);
1757 		if (error != 0) {
1758 			device_printf(dev, "cannot create TX buffer map\n");
1759 			return (error);
1760 		}
1761 	}
1762 
1763 	/* Setup RX ring */
1764 	error = bus_dma_tag_create(
1765 	    bus_get_dma_tag(dev),	/* Parent tag */
1766 	    DESC_ALIGN, 0,		/* alignment, boundary */
1767 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1768 	    BUS_SPACE_MAXADDR,		/* highaddr */
1769 	    NULL, NULL,			/* filter, filterarg */
1770 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
1771 	    RX_DESC_SIZE,		/* maxsegsize */
1772 	    0,				/* flags */
1773 	    NULL, NULL,			/* lockfunc, lockarg */
1774 	    &sc->rx.desc_tag);
1775 	if (error != 0) {
1776 		device_printf(dev, "cannot create RX descriptor ring tag\n");
1777 		return (error);
1778 	}
1779 
1780 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
1781 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
1782 	if (error != 0) {
1783 		device_printf(dev, "cannot allocate RX descriptor ring\n");
1784 		return (error);
1785 	}
1786 
1787 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
1788 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
1789 	    &sc->rx.desc_ring_paddr, 0);
1790 	if (error != 0) {
1791 		device_printf(dev, "cannot load RX descriptor ring\n");
1792 		return (error);
1793 	}
1794 
1795 	error = bus_dma_tag_create(
1796 	    bus_get_dma_tag(dev),	/* Parent tag */
1797 	    1, 0,			/* alignment, boundary */
1798 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1799 	    BUS_SPACE_MAXADDR,		/* highaddr */
1800 	    NULL, NULL,			/* filter, filterarg */
1801 	    MCLBYTES, 1,		/* maxsize, nsegs */
1802 	    MCLBYTES,			/* maxsegsize */
1803 	    0,				/* flags */
1804 	    NULL, NULL,			/* lockfunc, lockarg */
1805 	    &sc->rx.buf_tag);
1806 	if (error != 0) {
1807 		device_printf(dev, "cannot create RX buffer tag\n");
1808 		return (error);
1809 	}
1810 
1811 	error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
1812 	if (error != 0) {
1813 		device_printf(dev,
1814 		    "cannot create RX buffer spare map\n");
1815 		return (error);
1816 	}
1817 
1818 	for (i = 0; i < RX_DESC_COUNT; i++) {
1819 		sc->rx.desc_ring[i].next =
1820 		    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
1821 
1822 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
1823 		    &sc->rx.buf_map[i].map);
1824 		if (error != 0) {
1825 			device_printf(dev, "cannot create RX buffer map\n");
1826 			return (error);
1827 		}
1828 		sc->rx.buf_map[i].mbuf = NULL;
1829 		error = awg_newbuf_rx(sc, i);
1830 		if (error != 0) {
1831 			device_printf(dev, "cannot create RX buffer\n");
1832 			return (error);
1833 		}
1834 	}
1835 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1836 	    BUS_DMASYNC_PREWRITE);
1837 
1838 	/* Write transmit and receive descriptor base address registers */
1839 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1840 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1841 
1842 	return (0);
1843 }
1844 
1845 static int
1846 awg_probe(device_t dev)
1847 {
1848 	if (!ofw_bus_status_okay(dev))
1849 		return (ENXIO);
1850 
1851 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1852 		return (ENXIO);
1853 
1854 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1855 	return (BUS_PROBE_DEFAULT);
1856 }
1857 
1858 static int
1859 awg_attach(device_t dev)
1860 {
1861 	uint8_t eaddr[ETHER_ADDR_LEN];
1862 	struct awg_softc *sc;
1863 	int error;
1864 
1865 	sc = device_get_softc(dev);
1866 	sc->dev = dev;
1867 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1868 
1869 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1870 		device_printf(dev, "cannot allocate resources for device\n");
1871 		return (ENXIO);
1872 	}
1873 
1874 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1875 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1876 	TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
1877 
1878 	/* Setup clocks and regulators */
1879 	error = awg_setup_extres(dev);
1880 	if (error != 0)
1881 		return (error);
1882 
1883 	/* Read MAC address before resetting the chip */
1884 	awg_get_eaddr(dev, eaddr);
1885 
1886 	/* Soft reset EMAC core */
1887 	error = awg_reset(dev);
1888 	if (error != 0)
1889 		return (error);
1890 
1891 	/* Setup DMA descriptors */
1892 	error = awg_setup_dma(dev);
1893 	if (error != 0)
1894 		return (error);
1895 
1896 	/* Install interrupt handler */
1897 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1898 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1899 	if (error != 0) {
1900 		device_printf(dev, "cannot setup interrupt handler\n");
1901 		return (error);
1902 	}
1903 
1904 	/* Setup ethernet interface */
1905 	sc->ifp = if_alloc(IFT_ETHER);
1906 	if_setsoftc(sc->ifp, sc);
1907 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1908 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1909 	if_setstartfn(sc->ifp, awg_start);
1910 	if_setioctlfn(sc->ifp, awg_ioctl);
1911 	if_setinitfn(sc->ifp, awg_init);
1912 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1913 	if_setsendqready(sc->ifp);
1914 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1915 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1916 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1917 #ifdef DEVICE_POLLING
1918 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1919 #endif
1920 
1921 	/* Attach MII driver */
1922 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1923 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1924 	    MIIF_DOPAUSE);
1925 	if (error != 0) {
1926 		device_printf(dev, "cannot attach PHY\n");
1927 		return (error);
1928 	}
1929 
1930 	/* Attach ethernet interface */
1931 	ether_ifattach(sc->ifp, eaddr);
1932 
1933 	return (0);
1934 }
1935 
1936 static device_method_t awg_methods[] = {
1937 	/* Device interface */
1938 	DEVMETHOD(device_probe,		awg_probe),
1939 	DEVMETHOD(device_attach,	awg_attach),
1940 
1941 	/* MII interface */
1942 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
1943 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
1944 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
1945 
1946 	DEVMETHOD_END
1947 };
1948 
1949 static driver_t awg_driver = {
1950 	"awg",
1951 	awg_methods,
1952 	sizeof(struct awg_softc),
1953 };
1954 
1955 static devclass_t awg_devclass;
1956 
1957 DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
1958 DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
1959 MODULE_DEPEND(awg, ether, 1, 1, 1);
1960 MODULE_DEPEND(awg, miibus, 1, 1, 1);
1961 MODULE_DEPEND(awg, aw_sid, 1, 1, 1);
1962 SIMPLEBUS_PNP_INFO(compat_data);
1963