xref: /freebsd/sys/arm/allwinner/if_awg.c (revision e9b148a3185f41e3a09e91ea75cae7828d908845)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Allwinner Gigabit Ethernet MAC (EMAC) controller
31  */
32 
33 #include "opt_device_polling.h"
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/kernel.h>
43 #include <sys/endian.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/module.h>
48 #include <sys/taskqueue.h>
49 #include <sys/gpio.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 
59 #include <machine/bus.h>
60 
61 #include <dev/ofw/ofw_bus.h>
62 #include <dev/ofw/ofw_bus_subr.h>
63 
64 #include <arm/allwinner/if_awgreg.h>
65 #include <arm/allwinner/aw_sid.h>
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/extres/clk/clk.h>
70 #include <dev/extres/hwreset/hwreset.h>
71 #include <dev/extres/regulator/regulator.h>
72 #include <dev/extres/syscon/syscon.h>
73 
74 #include "syscon_if.h"
75 #include "miibus_if.h"
76 #include "gpio_if.h"
77 
78 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
79 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
80 
81 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
82 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
83 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
84 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
85 
86 #define	DESC_ALIGN		4
87 #define	TX_DESC_COUNT		1024
88 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
89 #define	RX_DESC_COUNT		256
90 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
91 
92 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
93 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
94 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
95 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
96 
97 #define	TX_MAX_SEGS		20
98 
99 #define	SOFT_RST_RETRY		1000
100 #define	MII_BUSY_RETRY		1000
101 #define	MDIO_FREQ		2500000
102 
103 #define	BURST_LEN_DEFAULT	8
104 #define	RX_TX_PRI_DEFAULT	0
105 #define	PAUSE_TIME_DEFAULT	0x400
106 #define	TX_INTERVAL_DEFAULT	64
107 #define	RX_BATCH_DEFAULT	64
108 
109 /* syscon EMAC clock register */
110 #define	EMAC_CLK_REG		0x30
111 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
112 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
113 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
114 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
115 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
116 #define	EMAC_CLK_RMII_EN	(1 << 13)
117 #define	EMAC_CLK_ETXDC		(0x7 << 10)
118 #define	EMAC_CLK_ETXDC_SHIFT	10
119 #define	EMAC_CLK_ERXDC		(0x1f << 5)
120 #define	EMAC_CLK_ERXDC_SHIFT	5
121 #define	EMAC_CLK_PIT		(0x1 << 2)
122 #define	 EMAC_CLK_PIT_MII	(0 << 2)
123 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
124 #define	EMAC_CLK_SRC		(0x3 << 0)
125 #define	 EMAC_CLK_SRC_MII	(0 << 0)
126 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
127 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
128 
129 /* Burst length of RX and TX DMA transfers */
130 static int awg_burst_len = BURST_LEN_DEFAULT;
131 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
132 
133 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
134 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
135 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
136 
137 /* Pause time field in the transmitted control frame */
138 static int awg_pause_time = PAUSE_TIME_DEFAULT;
139 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
140 
141 /* Request a TX interrupt every <n> descriptors */
142 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
143 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
144 
145 /* Maximum number of mbufs to send to if_input */
146 static int awg_rx_batch = RX_BATCH_DEFAULT;
147 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
148 
149 enum awg_type {
150 	EMAC_A83T = 1,
151 	EMAC_H3,
152 	EMAC_A64,
153 };
154 
155 static struct ofw_compat_data compat_data[] = {
156 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
157 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
158 	{ "allwinner,sun50i-a64-emac",		EMAC_A64 },
159 	{ NULL,					0 }
160 };
161 
162 struct awg_bufmap {
163 	bus_dmamap_t		map;
164 	struct mbuf		*mbuf;
165 };
166 
167 struct awg_txring {
168 	bus_dma_tag_t		desc_tag;
169 	bus_dmamap_t		desc_map;
170 	struct emac_desc	*desc_ring;
171 	bus_addr_t		desc_ring_paddr;
172 	bus_dma_tag_t		buf_tag;
173 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
174 	u_int			cur, next, queued;
175 	u_int			segs;
176 };
177 
178 struct awg_rxring {
179 	bus_dma_tag_t		desc_tag;
180 	bus_dmamap_t		desc_map;
181 	struct emac_desc	*desc_ring;
182 	bus_addr_t		desc_ring_paddr;
183 	bus_dma_tag_t		buf_tag;
184 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
185 	bus_dmamap_t		buf_spare_map;
186 	u_int			cur;
187 };
188 
189 enum {
190 	_RES_EMAC,
191 	_RES_IRQ,
192 	_RES_SYSCON,
193 	_RES_NITEMS
194 };
195 
196 struct awg_softc {
197 	struct resource		*res[_RES_NITEMS];
198 	struct mtx		mtx;
199 	if_t			ifp;
200 	device_t		dev;
201 	device_t		miibus;
202 	struct callout		stat_ch;
203 	struct task		link_task;
204 	void			*ih;
205 	u_int			mdc_div_ratio_m;
206 	int			link;
207 	int			if_flags;
208 	enum awg_type		type;
209 	struct syscon		*syscon;
210 
211 	struct awg_txring	tx;
212 	struct awg_rxring	rx;
213 };
214 
215 static struct resource_spec awg_spec[] = {
216 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
217 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
218 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
219 	{ -1, 0 }
220 };
221 
222 static void awg_txeof(struct awg_softc *sc);
223 
224 static int awg_parse_delay(device_t dev, uint32_t *tx_delay,
225     uint32_t *rx_delay);
226 static uint32_t syscon_read_emac_clk_reg(device_t dev);
227 static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
228 static phandle_t awg_get_phy_node(device_t dev);
229 static bool awg_has_internal_phy(device_t dev);
230 
231 static int
232 awg_miibus_readreg(device_t dev, int phy, int reg)
233 {
234 	struct awg_softc *sc;
235 	int retry, val;
236 
237 	sc = device_get_softc(dev);
238 	val = 0;
239 
240 	WR4(sc, EMAC_MII_CMD,
241 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
242 	    (phy << PHY_ADDR_SHIFT) |
243 	    (reg << PHY_REG_ADDR_SHIFT) |
244 	    MII_BUSY);
245 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
246 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
247 			val = RD4(sc, EMAC_MII_DATA);
248 			break;
249 		}
250 		DELAY(10);
251 	}
252 
253 	if (retry == 0)
254 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
255 		    phy, reg);
256 
257 	return (val);
258 }
259 
260 static int
261 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
262 {
263 	struct awg_softc *sc;
264 	int retry;
265 
266 	sc = device_get_softc(dev);
267 
268 	WR4(sc, EMAC_MII_DATA, val);
269 	WR4(sc, EMAC_MII_CMD,
270 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
271 	    (phy << PHY_ADDR_SHIFT) |
272 	    (reg << PHY_REG_ADDR_SHIFT) |
273 	    MII_WR | MII_BUSY);
274 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
275 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
276 			break;
277 		DELAY(10);
278 	}
279 
280 	if (retry == 0)
281 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
282 		    phy, reg);
283 
284 	return (0);
285 }
286 
287 static void
288 awg_update_link_locked(struct awg_softc *sc)
289 {
290 	struct mii_data *mii;
291 	uint32_t val;
292 
293 	AWG_ASSERT_LOCKED(sc);
294 
295 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
296 		return;
297 	mii = device_get_softc(sc->miibus);
298 
299 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
300 	    (IFM_ACTIVE | IFM_AVALID)) {
301 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
302 		case IFM_1000_T:
303 		case IFM_1000_SX:
304 		case IFM_100_TX:
305 		case IFM_10_T:
306 			sc->link = 1;
307 			break;
308 		default:
309 			sc->link = 0;
310 			break;
311 		}
312 	} else
313 		sc->link = 0;
314 
315 	if (sc->link == 0)
316 		return;
317 
318 	val = RD4(sc, EMAC_BASIC_CTL_0);
319 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
320 
321 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
322 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
323 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
324 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
325 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
326 	else
327 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
328 
329 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
330 		val |= BASIC_CTL_DUPLEX;
331 
332 	WR4(sc, EMAC_BASIC_CTL_0, val);
333 
334 	val = RD4(sc, EMAC_RX_CTL_0);
335 	val &= ~RX_FLOW_CTL_EN;
336 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
337 		val |= RX_FLOW_CTL_EN;
338 	WR4(sc, EMAC_RX_CTL_0, val);
339 
340 	val = RD4(sc, EMAC_TX_FLOW_CTL);
341 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
342 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
343 		val |= TX_FLOW_CTL_EN;
344 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
345 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
346 	WR4(sc, EMAC_TX_FLOW_CTL, val);
347 }
348 
349 static void
350 awg_link_task(void *arg, int pending)
351 {
352 	struct awg_softc *sc;
353 
354 	sc = arg;
355 
356 	AWG_LOCK(sc);
357 	awg_update_link_locked(sc);
358 	AWG_UNLOCK(sc);
359 }
360 
361 static void
362 awg_miibus_statchg(device_t dev)
363 {
364 	struct awg_softc *sc;
365 
366 	sc = device_get_softc(dev);
367 
368 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
369 }
370 
371 static void
372 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
373 {
374 	struct awg_softc *sc;
375 	struct mii_data *mii;
376 
377 	sc = if_getsoftc(ifp);
378 	mii = device_get_softc(sc->miibus);
379 
380 	AWG_LOCK(sc);
381 	mii_pollstat(mii);
382 	ifmr->ifm_active = mii->mii_media_active;
383 	ifmr->ifm_status = mii->mii_media_status;
384 	AWG_UNLOCK(sc);
385 }
386 
387 static int
388 awg_media_change(if_t ifp)
389 {
390 	struct awg_softc *sc;
391 	struct mii_data *mii;
392 	int error;
393 
394 	sc = if_getsoftc(ifp);
395 	mii = device_get_softc(sc->miibus);
396 
397 	AWG_LOCK(sc);
398 	error = mii_mediachg(mii);
399 	AWG_UNLOCK(sc);
400 
401 	return (error);
402 }
403 
404 static int
405 awg_encap(struct awg_softc *sc, struct mbuf **mp)
406 {
407 	bus_dmamap_t map;
408 	bus_dma_segment_t segs[TX_MAX_SEGS];
409 	int error, nsegs, cur, first, last, i;
410 	u_int csum_flags;
411 	uint32_t flags, status;
412 	struct mbuf *m;
413 
414 	cur = first = sc->tx.cur;
415 	map = sc->tx.buf_map[first].map;
416 
417 	m = *mp;
418 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
419 	    &nsegs, BUS_DMA_NOWAIT);
420 	if (error == EFBIG) {
421 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
422 		if (m == NULL) {
423 			device_printf(sc->dev, "awg_encap: m_collapse failed\n");
424 			m_freem(*mp);
425 			*mp = NULL;
426 			return (ENOMEM);
427 		}
428 		*mp = m;
429 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
430 		    segs, &nsegs, BUS_DMA_NOWAIT);
431 		if (error != 0) {
432 			m_freem(*mp);
433 			*mp = NULL;
434 		}
435 	}
436 	if (error != 0) {
437 		device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
438 		return (error);
439 	}
440 	if (nsegs == 0) {
441 		m_freem(*mp);
442 		*mp = NULL;
443 		return (EIO);
444 	}
445 
446 	if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
447 		bus_dmamap_unload(sc->tx.buf_tag, map);
448 		return (ENOBUFS);
449 	}
450 
451 	bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
452 
453 	flags = TX_FIR_DESC;
454 	status = 0;
455 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
456 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
457 			csum_flags = TX_CHECKSUM_CTL_FULL;
458 		else
459 			csum_flags = TX_CHECKSUM_CTL_IP;
460 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
461 	}
462 
463 	for (i = 0; i < nsegs; i++) {
464 		sc->tx.segs++;
465 		if (i == nsegs - 1) {
466 			flags |= TX_LAST_DESC;
467 			/*
468 			 * Can only request TX completion
469 			 * interrupt on last descriptor.
470 			 */
471 			if (sc->tx.segs >= awg_tx_interval) {
472 				sc->tx.segs = 0;
473 				flags |= TX_INT_CTL;
474 			}
475 		}
476 
477 		sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
478 		sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
479 		sc->tx.desc_ring[cur].status = htole32(status);
480 
481 		flags &= ~TX_FIR_DESC;
482 		/*
483 		 * Setting of the valid bit in the first descriptor is
484 		 * deferred until the whole chain is fully set up.
485 		 */
486 		status = TX_DESC_CTL;
487 
488 		++sc->tx.queued;
489 		cur = TX_NEXT(cur);
490 	}
491 
492 	sc->tx.cur = cur;
493 
494 	/* Store mapping and mbuf in the last segment */
495 	last = TX_SKIP(cur, TX_DESC_COUNT - 1);
496 	sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
497 	sc->tx.buf_map[last].map = map;
498 	sc->tx.buf_map[last].mbuf = m;
499 
500 	/*
501 	 * The whole mbuf chain has been DMA mapped,
502 	 * fix the first descriptor.
503 	 */
504 	sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
505 
506 	return (0);
507 }
508 
509 static void
510 awg_clean_txbuf(struct awg_softc *sc, int index)
511 {
512 	struct awg_bufmap *bmap;
513 
514 	--sc->tx.queued;
515 
516 	bmap = &sc->tx.buf_map[index];
517 	if (bmap->mbuf != NULL) {
518 		bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
519 		    BUS_DMASYNC_POSTWRITE);
520 		bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
521 		m_freem(bmap->mbuf);
522 		bmap->mbuf = NULL;
523 	}
524 }
525 
526 static void
527 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
528 {
529 	uint32_t status, size;
530 
531 	status = RX_DESC_CTL;
532 	size = MCLBYTES - 1;
533 
534 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
535 	sc->rx.desc_ring[index].size = htole32(size);
536 	sc->rx.desc_ring[index].status = htole32(status);
537 }
538 
539 static void
540 awg_reuse_rxdesc(struct awg_softc *sc, int index)
541 {
542 
543 	sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
544 }
545 
546 static int
547 awg_newbuf_rx(struct awg_softc *sc, int index)
548 {
549 	struct mbuf *m;
550 	bus_dma_segment_t seg;
551 	bus_dmamap_t map;
552 	int nsegs;
553 
554 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
555 	if (m == NULL)
556 		return (ENOBUFS);
557 
558 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
559 	m_adj(m, ETHER_ALIGN);
560 
561 	if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
562 	    m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
563 		m_freem(m);
564 		return (ENOBUFS);
565 	}
566 
567 	if (sc->rx.buf_map[index].mbuf != NULL) {
568 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
569 		    BUS_DMASYNC_POSTREAD);
570 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
571 	}
572 	map = sc->rx.buf_map[index].map;
573 	sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
574 	sc->rx.buf_spare_map = map;
575 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
576 	    BUS_DMASYNC_PREREAD);
577 
578 	sc->rx.buf_map[index].mbuf = m;
579 	awg_setup_rxdesc(sc, index, seg.ds_addr);
580 
581 	return (0);
582 }
583 
584 static void
585 awg_start_locked(struct awg_softc *sc)
586 {
587 	struct mbuf *m;
588 	uint32_t val;
589 	if_t ifp;
590 	int cnt, err;
591 
592 	AWG_ASSERT_LOCKED(sc);
593 
594 	if (!sc->link)
595 		return;
596 
597 	ifp = sc->ifp;
598 
599 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
600 	    IFF_DRV_RUNNING)
601 		return;
602 
603 	for (cnt = 0; ; cnt++) {
604 		m = if_dequeue(ifp);
605 		if (m == NULL)
606 			break;
607 
608 		err = awg_encap(sc, &m);
609 		if (err != 0) {
610 			if (err == ENOBUFS)
611 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
612 			if (m != NULL)
613 				if_sendq_prepend(ifp, m);
614 			break;
615 		}
616 		if_bpfmtap(ifp, m);
617 	}
618 
619 	if (cnt != 0) {
620 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
621 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
622 
623 		/* Start and run TX DMA */
624 		val = RD4(sc, EMAC_TX_CTL_1);
625 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
626 	}
627 }
628 
629 static void
630 awg_start(if_t ifp)
631 {
632 	struct awg_softc *sc;
633 
634 	sc = if_getsoftc(ifp);
635 
636 	AWG_LOCK(sc);
637 	awg_start_locked(sc);
638 	AWG_UNLOCK(sc);
639 }
640 
641 static void
642 awg_tick(void *softc)
643 {
644 	struct awg_softc *sc;
645 	struct mii_data *mii;
646 	if_t ifp;
647 	int link;
648 
649 	sc = softc;
650 	ifp = sc->ifp;
651 	mii = device_get_softc(sc->miibus);
652 
653 	AWG_ASSERT_LOCKED(sc);
654 
655 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
656 		return;
657 
658 	link = sc->link;
659 	mii_tick(mii);
660 	if (sc->link && !link)
661 		awg_start_locked(sc);
662 
663 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
664 }
665 
666 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
667 static uint32_t
668 bitrev32(uint32_t x)
669 {
670 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
671 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
672 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
673 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
674 
675 	return (x >> 16) | (x << 16);
676 }
677 
678 static u_int
679 awg_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
680 {
681 	uint32_t crc, hashreg, hashbit, *hash = arg;
682 
683 	crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7f;
684 	crc = bitrev32(~crc) >> 26;
685 	hashreg = (crc >> 5);
686 	hashbit = (crc & 0x1f);
687 	hash[hashreg] |= (1 << hashbit);
688 
689 	return (1);
690 }
691 
692 static void
693 awg_setup_rxfilter(struct awg_softc *sc)
694 {
695 	uint32_t val, hash[2], machi, maclo;
696 	uint8_t *eaddr;
697 	if_t ifp;
698 
699 	AWG_ASSERT_LOCKED(sc);
700 
701 	ifp = sc->ifp;
702 	val = 0;
703 	hash[0] = hash[1] = 0;
704 
705 	if (if_getflags(ifp) & IFF_PROMISC)
706 		val |= DIS_ADDR_FILTER;
707 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
708 		val |= RX_ALL_MULTICAST;
709 		hash[0] = hash[1] = ~0;
710 	} else if (if_foreach_llmaddr(ifp, awg_hash_maddr, hash) > 0)
711 		val |= HASH_MULTICAST;
712 
713 	/* Write our unicast address */
714 	eaddr = IF_LLADDR(ifp);
715 	machi = (eaddr[5] << 8) | eaddr[4];
716 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
717 	   (eaddr[0] << 0);
718 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
719 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
720 
721 	/* Multicast hash filters */
722 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
723 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
724 
725 	/* RX frame filter config */
726 	WR4(sc, EMAC_RX_FRM_FLT, val);
727 }
728 
729 static void
730 awg_enable_intr(struct awg_softc *sc)
731 {
732 	/* Enable interrupts */
733 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
734 }
735 
736 static void
737 awg_disable_intr(struct awg_softc *sc)
738 {
739 	/* Disable interrupts */
740 	WR4(sc, EMAC_INT_EN, 0);
741 }
742 
743 static void
744 awg_init_locked(struct awg_softc *sc)
745 {
746 	struct mii_data *mii;
747 	uint32_t val;
748 	if_t ifp;
749 
750 	mii = device_get_softc(sc->miibus);
751 	ifp = sc->ifp;
752 
753 	AWG_ASSERT_LOCKED(sc);
754 
755 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
756 		return;
757 
758 	awg_setup_rxfilter(sc);
759 
760 	/* Configure DMA burst length and priorities */
761 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
762 	if (awg_rx_tx_pri)
763 		val |= BASIC_CTL_RX_TX_PRI;
764 	WR4(sc, EMAC_BASIC_CTL_1, val);
765 
766 	/* Enable interrupts */
767 #ifdef DEVICE_POLLING
768 	if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
769 		awg_enable_intr(sc);
770 	else
771 		awg_disable_intr(sc);
772 #else
773 	awg_enable_intr(sc);
774 #endif
775 
776 	/* Enable transmit DMA */
777 	val = RD4(sc, EMAC_TX_CTL_1);
778 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
779 
780 	/* Enable receive DMA */
781 	val = RD4(sc, EMAC_RX_CTL_1);
782 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
783 
784 	/* Enable transmitter */
785 	val = RD4(sc, EMAC_TX_CTL_0);
786 	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
787 
788 	/* Enable receiver */
789 	val = RD4(sc, EMAC_RX_CTL_0);
790 	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
791 
792 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
793 
794 	mii_mediachg(mii);
795 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
796 }
797 
798 static void
799 awg_init(void *softc)
800 {
801 	struct awg_softc *sc;
802 
803 	sc = softc;
804 
805 	AWG_LOCK(sc);
806 	awg_init_locked(sc);
807 	AWG_UNLOCK(sc);
808 }
809 
810 static void
811 awg_stop(struct awg_softc *sc)
812 {
813 	if_t ifp;
814 	uint32_t val;
815 	int i;
816 
817 	AWG_ASSERT_LOCKED(sc);
818 
819 	ifp = sc->ifp;
820 
821 	callout_stop(&sc->stat_ch);
822 
823 	/* Stop transmit DMA and flush data in the TX FIFO */
824 	val = RD4(sc, EMAC_TX_CTL_1);
825 	val &= ~TX_DMA_EN;
826 	val |= FLUSH_TX_FIFO;
827 	WR4(sc, EMAC_TX_CTL_1, val);
828 
829 	/* Disable transmitter */
830 	val = RD4(sc, EMAC_TX_CTL_0);
831 	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
832 
833 	/* Disable receiver */
834 	val = RD4(sc, EMAC_RX_CTL_0);
835 	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
836 
837 	/* Disable interrupts */
838 	awg_disable_intr(sc);
839 
840 	/* Disable transmit DMA */
841 	val = RD4(sc, EMAC_TX_CTL_1);
842 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
843 
844 	/* Disable receive DMA */
845 	val = RD4(sc, EMAC_RX_CTL_1);
846 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
847 
848 	sc->link = 0;
849 
850 	/* Finish handling transmitted buffers */
851 	awg_txeof(sc);
852 
853 	/* Release any untransmitted buffers. */
854 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
855 		val = le32toh(sc->tx.desc_ring[i].status);
856 		if ((val & TX_DESC_CTL) != 0)
857 			break;
858 		awg_clean_txbuf(sc, i);
859 	}
860 	sc->tx.next = i;
861 	for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
862 		sc->tx.desc_ring[i].status = 0;
863 		awg_clean_txbuf(sc, i);
864 	}
865 	sc->tx.cur = sc->tx.next;
866 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
867 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
868 
869 	/* Setup RX buffers for reuse */
870 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
871 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
872 
873 	for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
874 		val = le32toh(sc->rx.desc_ring[i].status);
875 		if ((val & RX_DESC_CTL) != 0)
876 			break;
877 		awg_reuse_rxdesc(sc, i);
878 	}
879 	sc->rx.cur = i;
880 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
881 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
882 
883 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
884 }
885 
886 static int
887 awg_rxintr(struct awg_softc *sc)
888 {
889 	if_t ifp;
890 	struct mbuf *m, *mh, *mt;
891 	int error, index, len, cnt, npkt;
892 	uint32_t status;
893 
894 	ifp = sc->ifp;
895 	mh = mt = NULL;
896 	cnt = 0;
897 	npkt = 0;
898 
899 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
900 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
901 
902 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
903 		status = le32toh(sc->rx.desc_ring[index].status);
904 		if ((status & RX_DESC_CTL) != 0)
905 			break;
906 
907 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
908 
909 		if (len == 0) {
910 			if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
911 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
912 			awg_reuse_rxdesc(sc, index);
913 			continue;
914 		}
915 
916 		m = sc->rx.buf_map[index].mbuf;
917 
918 		error = awg_newbuf_rx(sc, index);
919 		if (error != 0) {
920 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
921 			awg_reuse_rxdesc(sc, index);
922 			continue;
923 		}
924 
925 		m->m_pkthdr.rcvif = ifp;
926 		m->m_pkthdr.len = len;
927 		m->m_len = len;
928 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
929 
930 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
931 		    (status & RX_FRM_TYPE) != 0) {
932 			m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
933 			if ((status & RX_HEADER_ERR) == 0)
934 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
935 			if ((status & RX_PAYLOAD_ERR) == 0) {
936 				m->m_pkthdr.csum_flags |=
937 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
938 				m->m_pkthdr.csum_data = 0xffff;
939 			}
940 		}
941 
942 		m->m_nextpkt = NULL;
943 		if (mh == NULL)
944 			mh = m;
945 		else
946 			mt->m_nextpkt = m;
947 		mt = m;
948 		++cnt;
949 		++npkt;
950 
951 		if (cnt == awg_rx_batch) {
952 			AWG_UNLOCK(sc);
953 			if_input(ifp, mh);
954 			AWG_LOCK(sc);
955 			mh = mt = NULL;
956 			cnt = 0;
957 		}
958 	}
959 
960 	if (index != sc->rx.cur) {
961 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
962 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
963 	}
964 
965 	if (mh != NULL) {
966 		AWG_UNLOCK(sc);
967 		if_input(ifp, mh);
968 		AWG_LOCK(sc);
969 	}
970 
971 	sc->rx.cur = index;
972 
973 	return (npkt);
974 }
975 
976 static void
977 awg_txeof(struct awg_softc *sc)
978 {
979 	struct emac_desc *desc;
980 	uint32_t status, size;
981 	if_t ifp;
982 	int i, prog;
983 
984 	AWG_ASSERT_LOCKED(sc);
985 
986 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
987 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
988 
989 	ifp = sc->ifp;
990 
991 	prog = 0;
992 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
993 		desc = &sc->tx.desc_ring[i];
994 		status = le32toh(desc->status);
995 		if ((status & TX_DESC_CTL) != 0)
996 			break;
997 		size = le32toh(desc->size);
998 		if (size & TX_LAST_DESC) {
999 			if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
1000 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1001 			else
1002 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1003 		}
1004 		prog++;
1005 		awg_clean_txbuf(sc, i);
1006 	}
1007 
1008 	if (prog > 0) {
1009 		sc->tx.next = i;
1010 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1011 	}
1012 }
1013 
1014 static void
1015 awg_intr(void *arg)
1016 {
1017 	struct awg_softc *sc;
1018 	uint32_t val;
1019 
1020 	sc = arg;
1021 
1022 	AWG_LOCK(sc);
1023 	val = RD4(sc, EMAC_INT_STA);
1024 	WR4(sc, EMAC_INT_STA, val);
1025 
1026 	if (val & RX_INT)
1027 		awg_rxintr(sc);
1028 
1029 	if (val & TX_INT)
1030 		awg_txeof(sc);
1031 
1032 	if (val & (TX_INT | TX_BUF_UA_INT)) {
1033 		if (!if_sendq_empty(sc->ifp))
1034 			awg_start_locked(sc);
1035 	}
1036 
1037 	AWG_UNLOCK(sc);
1038 }
1039 
1040 #ifdef DEVICE_POLLING
1041 static int
1042 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
1043 {
1044 	struct awg_softc *sc;
1045 	uint32_t val;
1046 	int rx_npkts;
1047 
1048 	sc = if_getsoftc(ifp);
1049 	rx_npkts = 0;
1050 
1051 	AWG_LOCK(sc);
1052 
1053 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1054 		AWG_UNLOCK(sc);
1055 		return (0);
1056 	}
1057 
1058 	rx_npkts = awg_rxintr(sc);
1059 	awg_txeof(sc);
1060 	if (!if_sendq_empty(ifp))
1061 		awg_start_locked(sc);
1062 
1063 	if (cmd == POLL_AND_CHECK_STATUS) {
1064 		val = RD4(sc, EMAC_INT_STA);
1065 		if (val != 0)
1066 			WR4(sc, EMAC_INT_STA, val);
1067 	}
1068 
1069 	AWG_UNLOCK(sc);
1070 
1071 	return (rx_npkts);
1072 }
1073 #endif
1074 
1075 static int
1076 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
1077 {
1078 	struct awg_softc *sc;
1079 	struct mii_data *mii;
1080 	struct ifreq *ifr;
1081 	int flags, mask, error;
1082 
1083 	sc = if_getsoftc(ifp);
1084 	mii = device_get_softc(sc->miibus);
1085 	ifr = (struct ifreq *)data;
1086 	error = 0;
1087 
1088 	switch (cmd) {
1089 	case SIOCSIFFLAGS:
1090 		AWG_LOCK(sc);
1091 		if (if_getflags(ifp) & IFF_UP) {
1092 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1093 				flags = if_getflags(ifp) ^ sc->if_flags;
1094 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
1095 					awg_setup_rxfilter(sc);
1096 			} else
1097 				awg_init_locked(sc);
1098 		} else {
1099 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1100 				awg_stop(sc);
1101 		}
1102 		sc->if_flags = if_getflags(ifp);
1103 		AWG_UNLOCK(sc);
1104 		break;
1105 	case SIOCADDMULTI:
1106 	case SIOCDELMULTI:
1107 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1108 			AWG_LOCK(sc);
1109 			awg_setup_rxfilter(sc);
1110 			AWG_UNLOCK(sc);
1111 		}
1112 		break;
1113 	case SIOCSIFMEDIA:
1114 	case SIOCGIFMEDIA:
1115 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1116 		break;
1117 	case SIOCSIFCAP:
1118 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1119 #ifdef DEVICE_POLLING
1120 		if (mask & IFCAP_POLLING) {
1121 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1122 				error = ether_poll_register(awg_poll, ifp);
1123 				if (error != 0)
1124 					break;
1125 				AWG_LOCK(sc);
1126 				awg_disable_intr(sc);
1127 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1128 				AWG_UNLOCK(sc);
1129 			} else {
1130 				error = ether_poll_deregister(ifp);
1131 				AWG_LOCK(sc);
1132 				awg_enable_intr(sc);
1133 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1134 				AWG_UNLOCK(sc);
1135 			}
1136 		}
1137 #endif
1138 		if (mask & IFCAP_VLAN_MTU)
1139 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1140 		if (mask & IFCAP_RXCSUM)
1141 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1142 		if (mask & IFCAP_TXCSUM)
1143 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1144 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1145 			if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
1146 		else
1147 			if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
1148 		break;
1149 	default:
1150 		error = ether_ioctl(ifp, cmd, data);
1151 		break;
1152 	}
1153 
1154 	return (error);
1155 }
1156 
1157 static uint32_t
1158 syscon_read_emac_clk_reg(device_t dev)
1159 {
1160 	struct awg_softc *sc;
1161 
1162 	sc = device_get_softc(dev);
1163 	if (sc->syscon != NULL)
1164 		return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
1165 	else if (sc->res[_RES_SYSCON] != NULL)
1166 		return (bus_read_4(sc->res[_RES_SYSCON], 0));
1167 
1168 	return (0);
1169 }
1170 
1171 static void
1172 syscon_write_emac_clk_reg(device_t dev, uint32_t val)
1173 {
1174 	struct awg_softc *sc;
1175 
1176 	sc = device_get_softc(dev);
1177 	if (sc->syscon != NULL)
1178 		SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
1179 	else if (sc->res[_RES_SYSCON] != NULL)
1180 		bus_write_4(sc->res[_RES_SYSCON], 0, val);
1181 }
1182 
1183 static phandle_t
1184 awg_get_phy_node(device_t dev)
1185 {
1186 	phandle_t node;
1187 	pcell_t phy_handle;
1188 
1189 	node = ofw_bus_get_node(dev);
1190 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
1191 	    sizeof(phy_handle)) <= 0)
1192 		return (0);
1193 
1194 	return (OF_node_from_xref(phy_handle));
1195 }
1196 
1197 static bool
1198 awg_has_internal_phy(device_t dev)
1199 {
1200 	phandle_t node, phy_node;
1201 
1202 	node = ofw_bus_get_node(dev);
1203 	/* Legacy binding */
1204 	if (OF_hasprop(node, "allwinner,use-internal-phy"))
1205 		return (true);
1206 
1207 	phy_node = awg_get_phy_node(dev);
1208 	return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
1209 	    "allwinner,sun8i-h3-mdio-internal") != 0);
1210 }
1211 
1212 static int
1213 awg_parse_delay(device_t dev, uint32_t *tx_delay, uint32_t *rx_delay)
1214 {
1215 	phandle_t node;
1216 	uint32_t delay;
1217 
1218 	if (tx_delay == NULL || rx_delay == NULL)
1219 		return (EINVAL);
1220 	*tx_delay = *rx_delay = 0;
1221 	node = ofw_bus_get_node(dev);
1222 
1223 	if (OF_getencprop(node, "tx-delay", &delay, sizeof(delay)) >= 0)
1224 		*tx_delay = delay;
1225 	else if (OF_getencprop(node, "allwinner,tx-delay-ps", &delay,
1226 	    sizeof(delay)) >= 0) {
1227 		if ((delay % 100) != 0) {
1228 			device_printf(dev, "tx-delay-ps is not a multiple of 100\n");
1229 			return (EDOM);
1230 		}
1231 		*tx_delay = delay / 100;
1232 	}
1233 	if (*tx_delay > 7) {
1234 		device_printf(dev, "tx-delay out of range\n");
1235 		return (ERANGE);
1236 	}
1237 
1238 	if (OF_getencprop(node, "rx-delay", &delay, sizeof(delay)) >= 0)
1239 		*rx_delay = delay;
1240 	else if (OF_getencprop(node, "allwinner,rx-delay-ps", &delay,
1241 	    sizeof(delay)) >= 0) {
1242 		if ((delay % 100) != 0) {
1243 			device_printf(dev, "rx-delay-ps is not within documented domain\n");
1244 			return (EDOM);
1245 		}
1246 		*rx_delay = delay / 100;
1247 	}
1248 	if (*rx_delay > 31) {
1249 		device_printf(dev, "rx-delay out of range\n");
1250 		return (ERANGE);
1251 	}
1252 
1253 	return (0);
1254 }
1255 
1256 static int
1257 awg_setup_phy(device_t dev)
1258 {
1259 	struct awg_softc *sc;
1260 	clk_t clk_tx, clk_tx_parent;
1261 	const char *tx_parent_name;
1262 	char *phy_type;
1263 	phandle_t node;
1264 	uint32_t reg, tx_delay, rx_delay;
1265 	int error;
1266 	bool use_syscon;
1267 
1268 	sc = device_get_softc(dev);
1269 	node = ofw_bus_get_node(dev);
1270 	use_syscon = false;
1271 
1272 	if (OF_getprop_alloc(node, "phy-mode", (void **)&phy_type) == 0)
1273 		return (0);
1274 
1275 	if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
1276 		use_syscon = true;
1277 
1278 	if (bootverbose)
1279 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1280 		    use_syscon ? "reg" : "clk");
1281 
1282 	if (use_syscon) {
1283 		/*
1284 		 * Abstract away writing to syscon for devices like the pine64.
1285 		 * For the pine64, we get dtb from U-Boot and it still uses the
1286 		 * legacy setup of specifying syscon register in emac node
1287 		 * rather than as its own node and using an xref in emac.
1288 		 * These abstractions can go away once U-Boot dts is up-to-date.
1289 		 */
1290 		reg = syscon_read_emac_clk_reg(dev);
1291 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1292 		if (strncmp(phy_type, "rgmii", 5) == 0)
1293 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1294 		else if (strcmp(phy_type, "rmii") == 0)
1295 			reg |= EMAC_CLK_RMII_EN;
1296 		else
1297 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1298 
1299 		/*
1300 		 * Fail attach if we fail to parse either of the delay
1301 		 * parameters. If we don't have the proper delay to write to
1302 		 * syscon, then awg likely won't function properly anyways.
1303 		 * Lack of delay is not an error!
1304 		 */
1305 		error = awg_parse_delay(dev, &tx_delay, &rx_delay);
1306 		if (error != 0)
1307 			goto fail;
1308 
1309 		/* Default to 0 and we'll increase it if we need to. */
1310 		reg &= ~(EMAC_CLK_ETXDC | EMAC_CLK_ERXDC);
1311 		if (tx_delay > 0)
1312 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1313 		if (rx_delay > 0)
1314 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1315 
1316 		if (sc->type == EMAC_H3) {
1317 			if (awg_has_internal_phy(dev)) {
1318 				reg |= EMAC_CLK_EPHY_SELECT;
1319 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1320 				if (OF_hasprop(node,
1321 				    "allwinner,leds-active-low"))
1322 					reg |= EMAC_CLK_EPHY_LED_POL;
1323 				else
1324 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1325 
1326 				/* Set internal PHY addr to 1 */
1327 				reg &= ~EMAC_CLK_EPHY_ADDR;
1328 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1329 			} else {
1330 				reg &= ~EMAC_CLK_EPHY_SELECT;
1331 			}
1332 		}
1333 
1334 		if (bootverbose)
1335 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1336 		syscon_write_emac_clk_reg(dev, reg);
1337 	} else {
1338 		if (strncmp(phy_type, "rgmii", 5) == 0)
1339 			tx_parent_name = "emac_int_tx";
1340 		else
1341 			tx_parent_name = "mii_phy_tx";
1342 
1343 		/* Get the TX clock */
1344 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1345 		if (error != 0) {
1346 			device_printf(dev, "cannot get tx clock\n");
1347 			goto fail;
1348 		}
1349 
1350 		/* Find the desired parent clock based on phy-mode property */
1351 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1352 		if (error != 0) {
1353 			device_printf(dev, "cannot get clock '%s'\n",
1354 			    tx_parent_name);
1355 			goto fail;
1356 		}
1357 
1358 		/* Set TX clock parent */
1359 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1360 		if (error != 0) {
1361 			device_printf(dev, "cannot set tx clock parent\n");
1362 			goto fail;
1363 		}
1364 
1365 		/* Enable TX clock */
1366 		error = clk_enable(clk_tx);
1367 		if (error != 0) {
1368 			device_printf(dev, "cannot enable tx clock\n");
1369 			goto fail;
1370 		}
1371 	}
1372 
1373 	error = 0;
1374 
1375 fail:
1376 	OF_prop_free(phy_type);
1377 	return (error);
1378 }
1379 
1380 static int
1381 awg_setup_extres(device_t dev)
1382 {
1383 	struct awg_softc *sc;
1384 	phandle_t node, phy_node;
1385 	hwreset_t rst_ahb, rst_ephy;
1386 	clk_t clk_ahb, clk_ephy;
1387 	regulator_t reg;
1388 	uint64_t freq;
1389 	int error, div;
1390 
1391 	sc = device_get_softc(dev);
1392 	rst_ahb = rst_ephy = NULL;
1393 	clk_ahb = clk_ephy = NULL;
1394 	reg = NULL;
1395 	node = ofw_bus_get_node(dev);
1396 	phy_node = awg_get_phy_node(dev);
1397 
1398 	if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
1399 		error = ENXIO;
1400 		device_printf(dev, "cannot get phy handle\n");
1401 		goto fail;
1402 	}
1403 
1404 	/* Get AHB clock and reset resources */
1405 	error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
1406 	if (error != 0)
1407 		error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1408 	if (error != 0) {
1409 		device_printf(dev, "cannot get ahb reset\n");
1410 		goto fail;
1411 	}
1412 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1413 		if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
1414 		    &rst_ephy) != 0)
1415 			rst_ephy = NULL;
1416 	error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
1417 	if (error != 0)
1418 		error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1419 	if (error != 0) {
1420 		device_printf(dev, "cannot get ahb clock\n");
1421 		goto fail;
1422 	}
1423 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1424 		if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
1425 		    &clk_ephy) != 0)
1426 			clk_ephy = NULL;
1427 
1428 	if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
1429 	    "syscon", &sc->syscon) != 0) {
1430 		device_printf(dev, "cannot get syscon driver handle\n");
1431 		goto fail;
1432 	}
1433 
1434 	/* Configure PHY for MII or RGMII mode */
1435 	if (awg_setup_phy(dev) != 0)
1436 		goto fail;
1437 
1438 	/* Enable clocks */
1439 	error = clk_enable(clk_ahb);
1440 	if (error != 0) {
1441 		device_printf(dev, "cannot enable ahb clock\n");
1442 		goto fail;
1443 	}
1444 	if (clk_ephy != NULL) {
1445 		error = clk_enable(clk_ephy);
1446 		if (error != 0) {
1447 			device_printf(dev, "cannot enable ephy clock\n");
1448 			goto fail;
1449 		}
1450 	}
1451 
1452 	/* De-assert reset */
1453 	error = hwreset_deassert(rst_ahb);
1454 	if (error != 0) {
1455 		device_printf(dev, "cannot de-assert ahb reset\n");
1456 		goto fail;
1457 	}
1458 	if (rst_ephy != NULL) {
1459 		/*
1460 		 * The ephy reset is left de-asserted by U-Boot.  Assert it
1461 		 * here to make sure that we're in a known good state going
1462 		 * into the PHY reset.
1463 		 */
1464 		hwreset_assert(rst_ephy);
1465 		error = hwreset_deassert(rst_ephy);
1466 		if (error != 0) {
1467 			device_printf(dev, "cannot de-assert ephy reset\n");
1468 			goto fail;
1469 		}
1470 	}
1471 
1472 	/* Enable PHY regulator if applicable */
1473 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1474 		error = regulator_enable(reg);
1475 		if (error != 0) {
1476 			device_printf(dev, "cannot enable PHY regulator\n");
1477 			goto fail;
1478 		}
1479 	}
1480 
1481 	/* Determine MDC clock divide ratio based on AHB clock */
1482 	error = clk_get_freq(clk_ahb, &freq);
1483 	if (error != 0) {
1484 		device_printf(dev, "cannot get AHB clock frequency\n");
1485 		goto fail;
1486 	}
1487 	div = freq / MDIO_FREQ;
1488 	if (div <= 16)
1489 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1490 	else if (div <= 32)
1491 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1492 	else if (div <= 64)
1493 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1494 	else if (div <= 128)
1495 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1496 	else {
1497 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1498 		error = ENXIO;
1499 		goto fail;
1500 	}
1501 
1502 	if (bootverbose)
1503 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1504 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1505 
1506 	return (0);
1507 
1508 fail:
1509 	if (reg != NULL)
1510 		regulator_release(reg);
1511 	if (clk_ephy != NULL)
1512 		clk_release(clk_ephy);
1513 	if (clk_ahb != NULL)
1514 		clk_release(clk_ahb);
1515 	if (rst_ephy != NULL)
1516 		hwreset_release(rst_ephy);
1517 	if (rst_ahb != NULL)
1518 		hwreset_release(rst_ahb);
1519 	return (error);
1520 }
1521 
1522 static void
1523 awg_get_eaddr(device_t dev, uint8_t *eaddr)
1524 {
1525 	struct awg_softc *sc;
1526 	uint32_t maclo, machi, rnd;
1527 	u_char rootkey[16];
1528 	uint32_t rootkey_size;
1529 
1530 	sc = device_get_softc(dev);
1531 
1532 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1533 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1534 
1535 	rootkey_size = sizeof(rootkey);
1536 	if (maclo == 0xffffffff && machi == 0xffff) {
1537 		/* MAC address in hardware is invalid, create one */
1538 		if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
1539 		    &rootkey_size) == 0 &&
1540 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1541 		     rootkey[15]) != 0) {
1542 			/* MAC address is derived from the root key in SID */
1543 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1544 				(rootkey[3] << 8) | 0x02;
1545 			machi = (rootkey[15] << 8) | rootkey[14];
1546 		} else {
1547 			/* Create one */
1548 			rnd = arc4random();
1549 			maclo = 0x00f2 | (rnd & 0xffff0000);
1550 			machi = rnd & 0xffff;
1551 		}
1552 	}
1553 
1554 	eaddr[0] = maclo & 0xff;
1555 	eaddr[1] = (maclo >> 8) & 0xff;
1556 	eaddr[2] = (maclo >> 16) & 0xff;
1557 	eaddr[3] = (maclo >> 24) & 0xff;
1558 	eaddr[4] = machi & 0xff;
1559 	eaddr[5] = (machi >> 8) & 0xff;
1560 }
1561 
1562 #ifdef AWG_DEBUG
1563 static void
1564 awg_dump_regs(device_t dev)
1565 {
1566 	static const struct {
1567 		const char *name;
1568 		u_int reg;
1569 	} regs[] = {
1570 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1571 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1572 		{ "INT_STA", EMAC_INT_STA },
1573 		{ "INT_EN", EMAC_INT_EN },
1574 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1575 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1576 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1577 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1578 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1579 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1580 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1581 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1582 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1583 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1584 		{ "MII_CMD", EMAC_MII_CMD },
1585 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1586 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1587 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1588 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1589 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1590 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1591 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1592 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1593 		{ "RGMII_STA", EMAC_RGMII_STA },
1594 	};
1595 	struct awg_softc *sc;
1596 	unsigned int n;
1597 
1598 	sc = device_get_softc(dev);
1599 
1600 	for (n = 0; n < nitems(regs); n++)
1601 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1602 		    RD4(sc, regs[n].reg));
1603 }
1604 #endif
1605 
1606 #define	GPIO_ACTIVE_LOW		1
1607 
1608 static int
1609 awg_phy_reset(device_t dev)
1610 {
1611 	pcell_t gpio_prop[4], delay_prop[3];
1612 	phandle_t node, gpio_node;
1613 	device_t gpio;
1614 	uint32_t pin, flags;
1615 	uint32_t pin_value;
1616 
1617 	node = ofw_bus_get_node(dev);
1618 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1619 	    sizeof(gpio_prop)) <= 0)
1620 		return (0);
1621 
1622 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1623 	    sizeof(delay_prop)) <= 0)
1624 		return (ENXIO);
1625 
1626 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1627 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1628 		return (ENXIO);
1629 
1630 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1631 	    gpio_prop + 1, &pin, &flags) != 0)
1632 		return (ENXIO);
1633 
1634 	pin_value = GPIO_PIN_LOW;
1635 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1636 		pin_value = GPIO_PIN_HIGH;
1637 
1638 	if (flags & GPIO_ACTIVE_LOW)
1639 		pin_value = !pin_value;
1640 
1641 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1642 	GPIO_PIN_SET(gpio, pin, pin_value);
1643 	DELAY(delay_prop[0]);
1644 	GPIO_PIN_SET(gpio, pin, !pin_value);
1645 	DELAY(delay_prop[1]);
1646 	GPIO_PIN_SET(gpio, pin, pin_value);
1647 	DELAY(delay_prop[2]);
1648 
1649 	return (0);
1650 }
1651 
1652 static int
1653 awg_reset(device_t dev)
1654 {
1655 	struct awg_softc *sc;
1656 	int retry;
1657 
1658 	sc = device_get_softc(dev);
1659 
1660 	/* Reset PHY if necessary */
1661 	if (awg_phy_reset(dev) != 0) {
1662 		device_printf(dev, "failed to reset PHY\n");
1663 		return (ENXIO);
1664 	}
1665 
1666 	/* Soft reset all registers and logic */
1667 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1668 
1669 	/* Wait for soft reset bit to self-clear */
1670 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1671 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1672 			break;
1673 		DELAY(10);
1674 	}
1675 	if (retry == 0) {
1676 		device_printf(dev, "soft reset timed out\n");
1677 #ifdef AWG_DEBUG
1678 		awg_dump_regs(dev);
1679 #endif
1680 		return (ETIMEDOUT);
1681 	}
1682 
1683 	return (0);
1684 }
1685 
1686 static void
1687 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1688 {
1689 	if (error != 0)
1690 		return;
1691 	*(bus_addr_t *)arg = segs[0].ds_addr;
1692 }
1693 
1694 static int
1695 awg_setup_dma(device_t dev)
1696 {
1697 	struct awg_softc *sc;
1698 	int error, i;
1699 
1700 	sc = device_get_softc(dev);
1701 
1702 	/* Setup TX ring */
1703 	error = bus_dma_tag_create(
1704 	    bus_get_dma_tag(dev),	/* Parent tag */
1705 	    DESC_ALIGN, 0,		/* alignment, boundary */
1706 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1707 	    BUS_SPACE_MAXADDR,		/* highaddr */
1708 	    NULL, NULL,			/* filter, filterarg */
1709 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
1710 	    TX_DESC_SIZE,		/* maxsegsize */
1711 	    0,				/* flags */
1712 	    NULL, NULL,			/* lockfunc, lockarg */
1713 	    &sc->tx.desc_tag);
1714 	if (error != 0) {
1715 		device_printf(dev, "cannot create TX descriptor ring tag\n");
1716 		return (error);
1717 	}
1718 
1719 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
1720 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
1721 	if (error != 0) {
1722 		device_printf(dev, "cannot allocate TX descriptor ring\n");
1723 		return (error);
1724 	}
1725 
1726 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
1727 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
1728 	    &sc->tx.desc_ring_paddr, 0);
1729 	if (error != 0) {
1730 		device_printf(dev, "cannot load TX descriptor ring\n");
1731 		return (error);
1732 	}
1733 
1734 	for (i = 0; i < TX_DESC_COUNT; i++)
1735 		sc->tx.desc_ring[i].next =
1736 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1737 
1738 	error = bus_dma_tag_create(
1739 	    bus_get_dma_tag(dev),	/* Parent tag */
1740 	    1, 0,			/* alignment, boundary */
1741 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1742 	    BUS_SPACE_MAXADDR,		/* highaddr */
1743 	    NULL, NULL,			/* filter, filterarg */
1744 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
1745 	    MCLBYTES,			/* maxsegsize */
1746 	    0,				/* flags */
1747 	    NULL, NULL,			/* lockfunc, lockarg */
1748 	    &sc->tx.buf_tag);
1749 	if (error != 0) {
1750 		device_printf(dev, "cannot create TX buffer tag\n");
1751 		return (error);
1752 	}
1753 
1754 	sc->tx.queued = 0;
1755 	for (i = 0; i < TX_DESC_COUNT; i++) {
1756 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
1757 		    &sc->tx.buf_map[i].map);
1758 		if (error != 0) {
1759 			device_printf(dev, "cannot create TX buffer map\n");
1760 			return (error);
1761 		}
1762 	}
1763 
1764 	/* Setup RX ring */
1765 	error = bus_dma_tag_create(
1766 	    bus_get_dma_tag(dev),	/* Parent tag */
1767 	    DESC_ALIGN, 0,		/* alignment, boundary */
1768 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1769 	    BUS_SPACE_MAXADDR,		/* highaddr */
1770 	    NULL, NULL,			/* filter, filterarg */
1771 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
1772 	    RX_DESC_SIZE,		/* maxsegsize */
1773 	    0,				/* flags */
1774 	    NULL, NULL,			/* lockfunc, lockarg */
1775 	    &sc->rx.desc_tag);
1776 	if (error != 0) {
1777 		device_printf(dev, "cannot create RX descriptor ring tag\n");
1778 		return (error);
1779 	}
1780 
1781 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
1782 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
1783 	if (error != 0) {
1784 		device_printf(dev, "cannot allocate RX descriptor ring\n");
1785 		return (error);
1786 	}
1787 
1788 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
1789 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
1790 	    &sc->rx.desc_ring_paddr, 0);
1791 	if (error != 0) {
1792 		device_printf(dev, "cannot load RX descriptor ring\n");
1793 		return (error);
1794 	}
1795 
1796 	error = bus_dma_tag_create(
1797 	    bus_get_dma_tag(dev),	/* Parent tag */
1798 	    1, 0,			/* alignment, boundary */
1799 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1800 	    BUS_SPACE_MAXADDR,		/* highaddr */
1801 	    NULL, NULL,			/* filter, filterarg */
1802 	    MCLBYTES, 1,		/* maxsize, nsegs */
1803 	    MCLBYTES,			/* maxsegsize */
1804 	    0,				/* flags */
1805 	    NULL, NULL,			/* lockfunc, lockarg */
1806 	    &sc->rx.buf_tag);
1807 	if (error != 0) {
1808 		device_printf(dev, "cannot create RX buffer tag\n");
1809 		return (error);
1810 	}
1811 
1812 	error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
1813 	if (error != 0) {
1814 		device_printf(dev,
1815 		    "cannot create RX buffer spare map\n");
1816 		return (error);
1817 	}
1818 
1819 	for (i = 0; i < RX_DESC_COUNT; i++) {
1820 		sc->rx.desc_ring[i].next =
1821 		    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
1822 
1823 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
1824 		    &sc->rx.buf_map[i].map);
1825 		if (error != 0) {
1826 			device_printf(dev, "cannot create RX buffer map\n");
1827 			return (error);
1828 		}
1829 		sc->rx.buf_map[i].mbuf = NULL;
1830 		error = awg_newbuf_rx(sc, i);
1831 		if (error != 0) {
1832 			device_printf(dev, "cannot create RX buffer\n");
1833 			return (error);
1834 		}
1835 	}
1836 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1837 	    BUS_DMASYNC_PREWRITE);
1838 
1839 	/* Write transmit and receive descriptor base address registers */
1840 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1841 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1842 
1843 	return (0);
1844 }
1845 
1846 static int
1847 awg_probe(device_t dev)
1848 {
1849 	if (!ofw_bus_status_okay(dev))
1850 		return (ENXIO);
1851 
1852 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1853 		return (ENXIO);
1854 
1855 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1856 	return (BUS_PROBE_DEFAULT);
1857 }
1858 
1859 static int
1860 awg_attach(device_t dev)
1861 {
1862 	uint8_t eaddr[ETHER_ADDR_LEN];
1863 	struct awg_softc *sc;
1864 	int error;
1865 
1866 	sc = device_get_softc(dev);
1867 	sc->dev = dev;
1868 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1869 
1870 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1871 		device_printf(dev, "cannot allocate resources for device\n");
1872 		return (ENXIO);
1873 	}
1874 
1875 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1876 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1877 	TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
1878 
1879 	/* Setup clocks and regulators */
1880 	error = awg_setup_extres(dev);
1881 	if (error != 0)
1882 		return (error);
1883 
1884 	/* Read MAC address before resetting the chip */
1885 	awg_get_eaddr(dev, eaddr);
1886 
1887 	/* Soft reset EMAC core */
1888 	error = awg_reset(dev);
1889 	if (error != 0)
1890 		return (error);
1891 
1892 	/* Setup DMA descriptors */
1893 	error = awg_setup_dma(dev);
1894 	if (error != 0)
1895 		return (error);
1896 
1897 	/* Install interrupt handler */
1898 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1899 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1900 	if (error != 0) {
1901 		device_printf(dev, "cannot setup interrupt handler\n");
1902 		return (error);
1903 	}
1904 
1905 	/* Setup ethernet interface */
1906 	sc->ifp = if_alloc(IFT_ETHER);
1907 	if_setsoftc(sc->ifp, sc);
1908 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1909 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1910 	if_setstartfn(sc->ifp, awg_start);
1911 	if_setioctlfn(sc->ifp, awg_ioctl);
1912 	if_setinitfn(sc->ifp, awg_init);
1913 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1914 	if_setsendqready(sc->ifp);
1915 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1916 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1917 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1918 #ifdef DEVICE_POLLING
1919 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1920 #endif
1921 
1922 	/* Attach MII driver */
1923 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1924 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1925 	    MIIF_DOPAUSE);
1926 	if (error != 0) {
1927 		device_printf(dev, "cannot attach PHY\n");
1928 		return (error);
1929 	}
1930 
1931 	/* Attach ethernet interface */
1932 	ether_ifattach(sc->ifp, eaddr);
1933 
1934 	return (0);
1935 }
1936 
1937 static device_method_t awg_methods[] = {
1938 	/* Device interface */
1939 	DEVMETHOD(device_probe,		awg_probe),
1940 	DEVMETHOD(device_attach,	awg_attach),
1941 
1942 	/* MII interface */
1943 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
1944 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
1945 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
1946 
1947 	DEVMETHOD_END
1948 };
1949 
1950 static driver_t awg_driver = {
1951 	"awg",
1952 	awg_methods,
1953 	sizeof(struct awg_softc),
1954 };
1955 
1956 static devclass_t awg_devclass;
1957 
1958 DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
1959 DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
1960 MODULE_DEPEND(awg, ether, 1, 1, 1);
1961 MODULE_DEPEND(awg, miibus, 1, 1, 1);
1962 MODULE_DEPEND(awg, aw_sid, 1, 1, 1);
1963 SIMPLEBUS_PNP_INFO(compat_data);
1964