xref: /freebsd/sys/arm/allwinner/if_awg.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
18  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
20  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
21  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 /*
27  * Allwinner Gigabit Ethernet MAC (EMAC) controller
28  */
29 
30 #include "opt_device_polling.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/rman.h>
36 #include <sys/kernel.h>
37 #include <sys/endian.h>
38 #include <sys/mbuf.h>
39 #include <sys/socket.h>
40 #include <sys/sockio.h>
41 #include <sys/module.h>
42 #include <sys/gpio.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/if_var.h>
51 
52 #include <machine/bus.h>
53 
54 #include <dev/ofw/ofw_bus.h>
55 #include <dev/ofw/ofw_bus_subr.h>
56 
57 #include <arm/allwinner/if_awgreg.h>
58 #include <arm/allwinner/aw_sid.h>
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61 
62 #include <dev/clk/clk.h>
63 #include <dev/hwreset/hwreset.h>
64 #include <dev/regulator/regulator.h>
65 #include <dev/syscon/syscon.h>
66 
67 #include "syscon_if.h"
68 #include "miibus_if.h"
69 #include "gpio_if.h"
70 
71 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
72 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
73 
74 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
75 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
76 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
77 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
78 
79 #define	DESC_ALIGN		4
80 #define	TX_DESC_COUNT		1024
81 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
82 #define	RX_DESC_COUNT		256
83 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
84 
85 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
86 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
87 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
88 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
89 
90 #define	TX_MAX_SEGS		20
91 
92 #define	SOFT_RST_RETRY		1000
93 #define	MII_BUSY_RETRY		1000
94 #define	MDIO_FREQ		2500000
95 
96 #define	BURST_LEN_DEFAULT	8
97 #define	RX_TX_PRI_DEFAULT	0
98 #define	PAUSE_TIME_DEFAULT	0x400
99 #define	TX_INTERVAL_DEFAULT	64
100 #define	RX_BATCH_DEFAULT	64
101 
102 /* syscon EMAC clock register */
103 #define	EMAC_CLK_REG		0x30
104 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
105 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
106 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
107 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
108 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
109 #define	EMAC_CLK_RMII_EN	(1 << 13)
110 #define	EMAC_CLK_ETXDC		(0x7 << 10)
111 #define	EMAC_CLK_ETXDC_SHIFT	10
112 #define	EMAC_CLK_ERXDC		(0x1f << 5)
113 #define	EMAC_CLK_ERXDC_SHIFT	5
114 #define	EMAC_CLK_PIT		(0x1 << 2)
115 #define	 EMAC_CLK_PIT_MII	(0 << 2)
116 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
117 #define	EMAC_CLK_SRC		(0x3 << 0)
118 #define	 EMAC_CLK_SRC_MII	(0 << 0)
119 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
120 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
121 
122 /* Burst length of RX and TX DMA transfers */
123 static int awg_burst_len = BURST_LEN_DEFAULT;
124 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
125 
126 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
127 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
128 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
129 
130 /* Pause time field in the transmitted control frame */
131 static int awg_pause_time = PAUSE_TIME_DEFAULT;
132 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
133 
134 /* Request a TX interrupt every <n> descriptors */
135 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
136 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
137 
138 /* Maximum number of mbufs to send to if_input */
139 static int awg_rx_batch = RX_BATCH_DEFAULT;
140 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
141 
142 enum awg_type {
143 	EMAC_A83T = 1,
144 	EMAC_H3,
145 	EMAC_A64,
146 	EMAC_D1,
147 };
148 
149 static struct ofw_compat_data compat_data[] = {
150 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
151 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
152 	{ "allwinner,sun50i-a64-emac",		EMAC_A64 },
153 	{ "allwinner,sun20i-d1-emac",		EMAC_D1 },
154 	{ NULL,					0 }
155 };
156 
157 struct awg_bufmap {
158 	bus_dmamap_t		map;
159 	struct mbuf		*mbuf;
160 };
161 
162 struct awg_txring {
163 	bus_dma_tag_t		desc_tag;
164 	bus_dmamap_t		desc_map;
165 	struct emac_desc	*desc_ring;
166 	bus_addr_t		desc_ring_paddr;
167 	bus_dma_tag_t		buf_tag;
168 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
169 	u_int			cur, next, queued;
170 	u_int			segs;
171 };
172 
173 struct awg_rxring {
174 	bus_dma_tag_t		desc_tag;
175 	bus_dmamap_t		desc_map;
176 	struct emac_desc	*desc_ring;
177 	bus_addr_t		desc_ring_paddr;
178 	bus_dma_tag_t		buf_tag;
179 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
180 	bus_dmamap_t		buf_spare_map;
181 	u_int			cur;
182 };
183 
184 enum {
185 	_RES_EMAC,
186 	_RES_IRQ,
187 	_RES_SYSCON,
188 	_RES_NITEMS
189 };
190 
191 struct awg_softc {
192 	struct resource		*res[_RES_NITEMS];
193 	struct mtx		mtx;
194 	if_t			ifp;
195 	device_t		dev;
196 	device_t		miibus;
197 	struct callout		stat_ch;
198 	void			*ih;
199 	u_int			mdc_div_ratio_m;
200 	int			link;
201 	int			if_flags;
202 	enum awg_type		type;
203 	struct syscon		*syscon;
204 
205 	struct awg_txring	tx;
206 	struct awg_rxring	rx;
207 };
208 
209 static struct resource_spec awg_spec[] = {
210 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
211 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
212 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
213 	{ -1, 0 }
214 };
215 
216 static void awg_txeof(struct awg_softc *sc);
217 static void awg_start_locked(struct awg_softc *sc);
218 
219 static void awg_tick(void *softc);
220 
221 static int awg_parse_delay(device_t dev, uint32_t *tx_delay,
222     uint32_t *rx_delay);
223 static uint32_t syscon_read_emac_clk_reg(device_t dev);
224 static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
225 static phandle_t awg_get_phy_node(device_t dev);
226 static bool awg_has_internal_phy(device_t dev);
227 
228 /*
229  * MII functions
230  */
231 
232 static int
233 awg_miibus_readreg(device_t dev, int phy, int reg)
234 {
235 	struct awg_softc *sc;
236 	int retry, val;
237 
238 	sc = device_get_softc(dev);
239 	val = 0;
240 
241 	WR4(sc, EMAC_MII_CMD,
242 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
243 	    (phy << PHY_ADDR_SHIFT) |
244 	    (reg << PHY_REG_ADDR_SHIFT) |
245 	    MII_BUSY);
246 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
247 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
248 			val = RD4(sc, EMAC_MII_DATA);
249 			break;
250 		}
251 		DELAY(10);
252 	}
253 
254 	if (retry == 0)
255 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
256 		    phy, reg);
257 
258 	return (val);
259 }
260 
261 static int
262 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
263 {
264 	struct awg_softc *sc;
265 	int retry;
266 
267 	sc = device_get_softc(dev);
268 
269 	WR4(sc, EMAC_MII_DATA, val);
270 	WR4(sc, EMAC_MII_CMD,
271 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
272 	    (phy << PHY_ADDR_SHIFT) |
273 	    (reg << PHY_REG_ADDR_SHIFT) |
274 	    MII_WR | MII_BUSY);
275 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
276 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
277 			break;
278 		DELAY(10);
279 	}
280 
281 	if (retry == 0)
282 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
283 		    phy, reg);
284 
285 	return (0);
286 }
287 
288 static void
289 awg_miibus_statchg(device_t dev)
290 {
291 	struct awg_softc *sc;
292 	struct mii_data *mii;
293 	uint32_t val;
294 
295 	sc = device_get_softc(dev);
296 
297 	AWG_ASSERT_LOCKED(sc);
298 
299 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
300 		return;
301 	mii = device_get_softc(sc->miibus);
302 
303 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
304 	    (IFM_ACTIVE | IFM_AVALID)) {
305 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
306 		case IFM_1000_T:
307 		case IFM_1000_SX:
308 		case IFM_100_TX:
309 		case IFM_10_T:
310 			sc->link = 1;
311 			break;
312 		default:
313 			sc->link = 0;
314 			break;
315 		}
316 	} else
317 		sc->link = 0;
318 
319 	if (sc->link == 0)
320 		return;
321 
322 	val = RD4(sc, EMAC_BASIC_CTL_0);
323 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
324 
325 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
326 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
327 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
328 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
329 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
330 	else
331 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
332 
333 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
334 		val |= BASIC_CTL_DUPLEX;
335 
336 	WR4(sc, EMAC_BASIC_CTL_0, val);
337 
338 	val = RD4(sc, EMAC_RX_CTL_0);
339 	val &= ~RX_FLOW_CTL_EN;
340 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
341 		val |= RX_FLOW_CTL_EN;
342 	WR4(sc, EMAC_RX_CTL_0, val);
343 
344 	val = RD4(sc, EMAC_TX_FLOW_CTL);
345 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
346 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
347 		val |= TX_FLOW_CTL_EN;
348 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
349 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
350 	WR4(sc, EMAC_TX_FLOW_CTL, val);
351 }
352 
353 /*
354  * Media functions
355  */
356 
357 static void
358 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
359 {
360 	struct awg_softc *sc;
361 	struct mii_data *mii;
362 
363 	sc = if_getsoftc(ifp);
364 	mii = device_get_softc(sc->miibus);
365 
366 	AWG_LOCK(sc);
367 	mii_pollstat(mii);
368 	ifmr->ifm_active = mii->mii_media_active;
369 	ifmr->ifm_status = mii->mii_media_status;
370 	AWG_UNLOCK(sc);
371 }
372 
373 static int
374 awg_media_change(if_t ifp)
375 {
376 	struct awg_softc *sc;
377 	struct mii_data *mii;
378 	int error;
379 
380 	sc = if_getsoftc(ifp);
381 	mii = device_get_softc(sc->miibus);
382 
383 	AWG_LOCK(sc);
384 	error = mii_mediachg(mii);
385 	AWG_UNLOCK(sc);
386 
387 	return (error);
388 }
389 
390 /*
391  * Core functions
392  */
393 
394 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
395 static uint32_t
396 bitrev32(uint32_t x)
397 {
398 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
399 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
400 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
401 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
402 
403 	return (x >> 16) | (x << 16);
404 }
405 
406 static u_int
407 awg_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
408 {
409 	uint32_t crc, hashreg, hashbit, *hash = arg;
410 
411 	crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7f;
412 	crc = bitrev32(~crc) >> 26;
413 	hashreg = (crc >> 5);
414 	hashbit = (crc & 0x1f);
415 	hash[hashreg] |= (1 << hashbit);
416 
417 	return (1);
418 }
419 
420 static void
421 awg_setup_rxfilter(struct awg_softc *sc)
422 {
423 	uint32_t val, hash[2], machi, maclo;
424 	uint8_t *eaddr;
425 	if_t ifp;
426 
427 	AWG_ASSERT_LOCKED(sc);
428 
429 	ifp = sc->ifp;
430 	val = 0;
431 	hash[0] = hash[1] = 0;
432 
433 	if (if_getflags(ifp) & IFF_PROMISC)
434 		val |= DIS_ADDR_FILTER;
435 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
436 		val |= RX_ALL_MULTICAST;
437 		hash[0] = hash[1] = ~0;
438 	} else if (if_foreach_llmaddr(ifp, awg_hash_maddr, hash) > 0)
439 		val |= HASH_MULTICAST;
440 
441 	/* Write our unicast address */
442 	eaddr = if_getlladdr(ifp);
443 	machi = (eaddr[5] << 8) | eaddr[4];
444 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
445 	   (eaddr[0] << 0);
446 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
447 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
448 
449 	/* Multicast hash filters */
450 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
451 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
452 
453 	/* RX frame filter config */
454 	WR4(sc, EMAC_RX_FRM_FLT, val);
455 }
456 
457 static void
458 awg_setup_core(struct awg_softc *sc)
459 {
460 	uint32_t val;
461 
462 	AWG_ASSERT_LOCKED(sc);
463 	/* Configure DMA burst length and priorities */
464 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
465 	if (awg_rx_tx_pri)
466 		val |= BASIC_CTL_RX_TX_PRI;
467 	WR4(sc, EMAC_BASIC_CTL_1, val);
468 
469 }
470 
471 static void
472 awg_enable_mac(struct awg_softc *sc, bool enable)
473 {
474 	uint32_t tx, rx;
475 
476 	AWG_ASSERT_LOCKED(sc);
477 
478 	tx = RD4(sc, EMAC_TX_CTL_0);
479 	rx = RD4(sc, EMAC_RX_CTL_0);
480 	if (enable) {
481 		tx |= TX_EN;
482 		rx |= RX_EN | CHECK_CRC;
483 	} else {
484 		tx &= ~TX_EN;
485 		rx &= ~(RX_EN | CHECK_CRC);
486 	}
487 
488 	WR4(sc, EMAC_TX_CTL_0, tx);
489 	WR4(sc, EMAC_RX_CTL_0, rx);
490 }
491 
492 static void
493 awg_get_eaddr(device_t dev, uint8_t *eaddr)
494 {
495 	struct awg_softc *sc;
496 	uint32_t maclo, machi, rnd;
497 	u_char rootkey[16];
498 	uint32_t rootkey_size;
499 
500 	sc = device_get_softc(dev);
501 
502 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
503 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
504 
505 	rootkey_size = sizeof(rootkey);
506 	if (maclo == 0xffffffff && machi == 0xffff) {
507 		/* MAC address in hardware is invalid, create one */
508 		if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
509 		    &rootkey_size) == 0 &&
510 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
511 		     rootkey[15]) != 0) {
512 			/* MAC address is derived from the root key in SID */
513 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
514 				(rootkey[3] << 8) | 0x02;
515 			machi = (rootkey[15] << 8) | rootkey[14];
516 		} else {
517 			/* Create one */
518 			rnd = arc4random();
519 			maclo = 0x00f2 | (rnd & 0xffff0000);
520 			machi = rnd & 0xffff;
521 		}
522 	}
523 
524 	eaddr[0] = maclo & 0xff;
525 	eaddr[1] = (maclo >> 8) & 0xff;
526 	eaddr[2] = (maclo >> 16) & 0xff;
527 	eaddr[3] = (maclo >> 24) & 0xff;
528 	eaddr[4] = machi & 0xff;
529 	eaddr[5] = (machi >> 8) & 0xff;
530 }
531 
532 /*
533  * DMA functions
534  */
535 
536 static void
537 awg_enable_dma_intr(struct awg_softc *sc)
538 {
539 	/* Enable interrupts */
540 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
541 }
542 
543 static void
544 awg_disable_dma_intr(struct awg_softc *sc)
545 {
546 	/* Disable interrupts */
547 	WR4(sc, EMAC_INT_EN, 0);
548 }
549 
550 static void
551 awg_init_dma(struct awg_softc *sc)
552 {
553 	uint32_t val;
554 
555 	AWG_ASSERT_LOCKED(sc);
556 
557 	/* Enable interrupts */
558 #ifdef DEVICE_POLLING
559 	if ((if_getcapenable(sc->ifp) & IFCAP_POLLING) == 0)
560 		awg_enable_dma_intr(sc);
561 	else
562 		awg_disable_dma_intr(sc);
563 #else
564 	awg_enable_dma_intr(sc);
565 #endif
566 
567 	/* Enable transmit DMA */
568 	val = RD4(sc, EMAC_TX_CTL_1);
569 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
570 
571 	/* Enable receive DMA */
572 	val = RD4(sc, EMAC_RX_CTL_1);
573 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
574 }
575 
576 static void
577 awg_stop_dma(struct awg_softc *sc)
578 {
579 	uint32_t val;
580 
581 	AWG_ASSERT_LOCKED(sc);
582 
583 	/* Stop transmit DMA and flush data in the TX FIFO */
584 	val = RD4(sc, EMAC_TX_CTL_1);
585 	val &= ~TX_DMA_EN;
586 	val |= FLUSH_TX_FIFO;
587 	WR4(sc, EMAC_TX_CTL_1, val);
588 
589 	/* Disable interrupts */
590 	awg_disable_dma_intr(sc);
591 
592 	/* Disable transmit DMA */
593 	val = RD4(sc, EMAC_TX_CTL_1);
594 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
595 
596 	/* Disable receive DMA */
597 	val = RD4(sc, EMAC_RX_CTL_1);
598 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
599 }
600 
601 static int
602 awg_encap(struct awg_softc *sc, struct mbuf **mp)
603 {
604 	bus_dmamap_t map;
605 	bus_dma_segment_t segs[TX_MAX_SEGS];
606 	int error, nsegs, cur, first, last, i;
607 	u_int csum_flags;
608 	uint32_t flags, status;
609 	struct mbuf *m;
610 
611 	cur = first = sc->tx.cur;
612 	map = sc->tx.buf_map[first].map;
613 
614 	m = *mp;
615 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
616 	    &nsegs, BUS_DMA_NOWAIT);
617 	if (error == EFBIG) {
618 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
619 		if (m == NULL) {
620 			device_printf(sc->dev, "awg_encap: m_collapse failed\n");
621 			m_freem(*mp);
622 			*mp = NULL;
623 			return (ENOMEM);
624 		}
625 		*mp = m;
626 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
627 		    segs, &nsegs, BUS_DMA_NOWAIT);
628 		if (error != 0) {
629 			m_freem(*mp);
630 			*mp = NULL;
631 		}
632 	}
633 	if (error != 0) {
634 		device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
635 		return (error);
636 	}
637 	if (nsegs == 0) {
638 		m_freem(*mp);
639 		*mp = NULL;
640 		return (EIO);
641 	}
642 
643 	if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
644 		bus_dmamap_unload(sc->tx.buf_tag, map);
645 		return (ENOBUFS);
646 	}
647 
648 	bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
649 
650 	flags = TX_FIR_DESC;
651 	status = 0;
652 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
653 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
654 			csum_flags = TX_CHECKSUM_CTL_FULL;
655 		else
656 			csum_flags = TX_CHECKSUM_CTL_IP;
657 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
658 	}
659 
660 	for (i = 0; i < nsegs; i++) {
661 		sc->tx.segs++;
662 		if (i == nsegs - 1) {
663 			flags |= TX_LAST_DESC;
664 			/*
665 			 * Can only request TX completion
666 			 * interrupt on last descriptor.
667 			 */
668 			if (sc->tx.segs >= awg_tx_interval) {
669 				sc->tx.segs = 0;
670 				flags |= TX_INT_CTL;
671 			}
672 		}
673 
674 		sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
675 		sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
676 		sc->tx.desc_ring[cur].status = htole32(status);
677 
678 		flags &= ~TX_FIR_DESC;
679 		/*
680 		 * Setting of the valid bit in the first descriptor is
681 		 * deferred until the whole chain is fully set up.
682 		 */
683 		status = TX_DESC_CTL;
684 
685 		++sc->tx.queued;
686 		cur = TX_NEXT(cur);
687 	}
688 
689 	sc->tx.cur = cur;
690 
691 	/* Store mapping and mbuf in the last segment */
692 	last = TX_SKIP(cur, TX_DESC_COUNT - 1);
693 	sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
694 	sc->tx.buf_map[last].map = map;
695 	sc->tx.buf_map[last].mbuf = m;
696 
697 	/*
698 	 * The whole mbuf chain has been DMA mapped,
699 	 * fix the first descriptor.
700 	 */
701 	sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
702 
703 	return (0);
704 }
705 
706 static void
707 awg_clean_txbuf(struct awg_softc *sc, int index)
708 {
709 	struct awg_bufmap *bmap;
710 
711 	--sc->tx.queued;
712 
713 	bmap = &sc->tx.buf_map[index];
714 	if (bmap->mbuf != NULL) {
715 		bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
716 		    BUS_DMASYNC_POSTWRITE);
717 		bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
718 		m_freem(bmap->mbuf);
719 		bmap->mbuf = NULL;
720 	}
721 }
722 
723 static void
724 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
725 {
726 	uint32_t status, size;
727 
728 	status = RX_DESC_CTL;
729 	size = MCLBYTES - 1;
730 
731 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
732 	sc->rx.desc_ring[index].size = htole32(size);
733 	sc->rx.desc_ring[index].status = htole32(status);
734 }
735 
736 static void
737 awg_reuse_rxdesc(struct awg_softc *sc, int index)
738 {
739 
740 	sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
741 }
742 
743 static int
744 awg_newbuf_rx(struct awg_softc *sc, int index)
745 {
746 	struct mbuf *m;
747 	bus_dma_segment_t seg;
748 	bus_dmamap_t map;
749 	int nsegs;
750 
751 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
752 	if (m == NULL)
753 		return (ENOBUFS);
754 
755 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
756 	m_adj(m, ETHER_ALIGN);
757 
758 	if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
759 	    m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
760 		m_freem(m);
761 		return (ENOBUFS);
762 	}
763 
764 	if (sc->rx.buf_map[index].mbuf != NULL) {
765 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
766 		    BUS_DMASYNC_POSTREAD);
767 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
768 	}
769 	map = sc->rx.buf_map[index].map;
770 	sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
771 	sc->rx.buf_spare_map = map;
772 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
773 	    BUS_DMASYNC_PREREAD);
774 
775 	sc->rx.buf_map[index].mbuf = m;
776 	awg_setup_rxdesc(sc, index, seg.ds_addr);
777 
778 	return (0);
779 }
780 
781 static void
782 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
783 {
784 	if (error != 0)
785 		return;
786 	*(bus_addr_t *)arg = segs[0].ds_addr;
787 }
788 
789 static int
790 awg_setup_dma(device_t dev)
791 {
792 	struct awg_softc *sc;
793 	int error, i;
794 
795 	sc = device_get_softc(dev);
796 
797 	/* Setup TX ring */
798 	error = bus_dma_tag_create(
799 	    bus_get_dma_tag(dev),	/* Parent tag */
800 	    DESC_ALIGN, 0,		/* alignment, boundary */
801 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
802 	    BUS_SPACE_MAXADDR,		/* highaddr */
803 	    NULL, NULL,			/* filter, filterarg */
804 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
805 	    TX_DESC_SIZE,		/* maxsegsize */
806 	    0,				/* flags */
807 	    NULL, NULL,			/* lockfunc, lockarg */
808 	    &sc->tx.desc_tag);
809 	if (error != 0) {
810 		device_printf(dev, "cannot create TX descriptor ring tag\n");
811 		return (error);
812 	}
813 
814 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
815 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
816 	if (error != 0) {
817 		device_printf(dev, "cannot allocate TX descriptor ring\n");
818 		return (error);
819 	}
820 
821 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
822 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
823 	    &sc->tx.desc_ring_paddr, 0);
824 	if (error != 0) {
825 		device_printf(dev, "cannot load TX descriptor ring\n");
826 		return (error);
827 	}
828 
829 	for (i = 0; i < TX_DESC_COUNT; i++)
830 		sc->tx.desc_ring[i].next =
831 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
832 
833 	error = bus_dma_tag_create(
834 	    bus_get_dma_tag(dev),	/* Parent tag */
835 	    1, 0,			/* alignment, boundary */
836 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
837 	    BUS_SPACE_MAXADDR,		/* highaddr */
838 	    NULL, NULL,			/* filter, filterarg */
839 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
840 	    MCLBYTES,			/* maxsegsize */
841 	    0,				/* flags */
842 	    NULL, NULL,			/* lockfunc, lockarg */
843 	    &sc->tx.buf_tag);
844 	if (error != 0) {
845 		device_printf(dev, "cannot create TX buffer tag\n");
846 		return (error);
847 	}
848 
849 	sc->tx.queued = 0;
850 	for (i = 0; i < TX_DESC_COUNT; i++) {
851 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
852 		    &sc->tx.buf_map[i].map);
853 		if (error != 0) {
854 			device_printf(dev, "cannot create TX buffer map\n");
855 			return (error);
856 		}
857 	}
858 
859 	/* Setup RX ring */
860 	error = bus_dma_tag_create(
861 	    bus_get_dma_tag(dev),	/* Parent tag */
862 	    DESC_ALIGN, 0,		/* alignment, boundary */
863 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
864 	    BUS_SPACE_MAXADDR,		/* highaddr */
865 	    NULL, NULL,			/* filter, filterarg */
866 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
867 	    RX_DESC_SIZE,		/* maxsegsize */
868 	    0,				/* flags */
869 	    NULL, NULL,			/* lockfunc, lockarg */
870 	    &sc->rx.desc_tag);
871 	if (error != 0) {
872 		device_printf(dev, "cannot create RX descriptor ring tag\n");
873 		return (error);
874 	}
875 
876 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
877 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
878 	if (error != 0) {
879 		device_printf(dev, "cannot allocate RX descriptor ring\n");
880 		return (error);
881 	}
882 
883 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
884 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
885 	    &sc->rx.desc_ring_paddr, 0);
886 	if (error != 0) {
887 		device_printf(dev, "cannot load RX descriptor ring\n");
888 		return (error);
889 	}
890 
891 	error = bus_dma_tag_create(
892 	    bus_get_dma_tag(dev),	/* Parent tag */
893 	    1, 0,			/* alignment, boundary */
894 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
895 	    BUS_SPACE_MAXADDR,		/* highaddr */
896 	    NULL, NULL,			/* filter, filterarg */
897 	    MCLBYTES, 1,		/* maxsize, nsegs */
898 	    MCLBYTES,			/* maxsegsize */
899 	    0,				/* flags */
900 	    NULL, NULL,			/* lockfunc, lockarg */
901 	    &sc->rx.buf_tag);
902 	if (error != 0) {
903 		device_printf(dev, "cannot create RX buffer tag\n");
904 		return (error);
905 	}
906 
907 	error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
908 	if (error != 0) {
909 		device_printf(dev,
910 		    "cannot create RX buffer spare map\n");
911 		return (error);
912 	}
913 
914 	for (i = 0; i < RX_DESC_COUNT; i++) {
915 		sc->rx.desc_ring[i].next =
916 		    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
917 
918 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
919 		    &sc->rx.buf_map[i].map);
920 		if (error != 0) {
921 			device_printf(dev, "cannot create RX buffer map\n");
922 			return (error);
923 		}
924 		sc->rx.buf_map[i].mbuf = NULL;
925 		error = awg_newbuf_rx(sc, i);
926 		if (error != 0) {
927 			device_printf(dev, "cannot create RX buffer\n");
928 			return (error);
929 		}
930 	}
931 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
932 	    BUS_DMASYNC_PREWRITE);
933 
934 	/* Write transmit and receive descriptor base address registers */
935 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
936 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
937 
938 	return (0);
939 }
940 
941 static void
942 awg_dma_start_tx(struct awg_softc *sc)
943 {
944 	uint32_t val;
945 
946 	AWG_ASSERT_LOCKED(sc);
947 
948 	/* Start and run TX DMA */
949 	val = RD4(sc, EMAC_TX_CTL_1);
950 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
951 }
952 
953 /*
954  * if_ functions
955  */
956 
957 static void
958 awg_start_locked(struct awg_softc *sc)
959 {
960 	struct mbuf *m;
961 	if_t ifp;
962 	int cnt, err;
963 
964 	AWG_ASSERT_LOCKED(sc);
965 
966 	if (!sc->link)
967 		return;
968 
969 	ifp = sc->ifp;
970 
971 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
972 	    IFF_DRV_RUNNING)
973 		return;
974 
975 	for (cnt = 0; ; cnt++) {
976 		m = if_dequeue(ifp);
977 		if (m == NULL)
978 			break;
979 
980 		err = awg_encap(sc, &m);
981 		if (err != 0) {
982 			if (err == ENOBUFS)
983 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
984 			if (m != NULL)
985 				if_sendq_prepend(ifp, m);
986 			break;
987 		}
988 		bpf_mtap_if(ifp, m);
989 	}
990 
991 	if (cnt != 0) {
992 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
993 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
994 
995 		awg_dma_start_tx(sc);
996 	}
997 }
998 
999 static void
1000 awg_start(if_t ifp)
1001 {
1002 	struct awg_softc *sc;
1003 
1004 	sc = if_getsoftc(ifp);
1005 
1006 	AWG_LOCK(sc);
1007 	awg_start_locked(sc);
1008 	AWG_UNLOCK(sc);
1009 }
1010 
1011 static void
1012 awg_init_locked(struct awg_softc *sc)
1013 {
1014 	struct mii_data *mii;
1015 	if_t ifp;
1016 
1017 	mii = device_get_softc(sc->miibus);
1018 	ifp = sc->ifp;
1019 
1020 	AWG_ASSERT_LOCKED(sc);
1021 
1022 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1023 		return;
1024 
1025 	awg_setup_rxfilter(sc);
1026 	awg_setup_core(sc);
1027 	awg_enable_mac(sc, true);
1028 	awg_init_dma(sc);
1029 
1030 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
1031 
1032 	mii_mediachg(mii);
1033 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
1034 }
1035 
1036 static void
1037 awg_init(void *softc)
1038 {
1039 	struct awg_softc *sc;
1040 
1041 	sc = softc;
1042 
1043 	AWG_LOCK(sc);
1044 	awg_init_locked(sc);
1045 	AWG_UNLOCK(sc);
1046 }
1047 
1048 static void
1049 awg_stop(struct awg_softc *sc)
1050 {
1051 	if_t ifp;
1052 	uint32_t val;
1053 	int i;
1054 
1055 	AWG_ASSERT_LOCKED(sc);
1056 
1057 	ifp = sc->ifp;
1058 
1059 	callout_stop(&sc->stat_ch);
1060 
1061 	awg_stop_dma(sc);
1062 	awg_enable_mac(sc, false);
1063 
1064 	sc->link = 0;
1065 
1066 	/* Finish handling transmitted buffers */
1067 	awg_txeof(sc);
1068 
1069 	/* Release any untransmitted buffers. */
1070 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
1071 		val = le32toh(sc->tx.desc_ring[i].status);
1072 		if ((val & TX_DESC_CTL) != 0)
1073 			break;
1074 		awg_clean_txbuf(sc, i);
1075 	}
1076 	sc->tx.next = i;
1077 	for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
1078 		sc->tx.desc_ring[i].status = 0;
1079 		awg_clean_txbuf(sc, i);
1080 	}
1081 	sc->tx.cur = sc->tx.next;
1082 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
1083 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1084 
1085 	/* Setup RX buffers for reuse */
1086 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1087 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1088 
1089 	for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
1090 		val = le32toh(sc->rx.desc_ring[i].status);
1091 		if ((val & RX_DESC_CTL) != 0)
1092 			break;
1093 		awg_reuse_rxdesc(sc, i);
1094 	}
1095 	sc->rx.cur = i;
1096 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1097 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1098 
1099 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1100 }
1101 
1102 static int
1103 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
1104 {
1105 	struct awg_softc *sc;
1106 	struct mii_data *mii;
1107 	struct ifreq *ifr;
1108 	int flags, mask, error;
1109 
1110 	sc = if_getsoftc(ifp);
1111 	mii = device_get_softc(sc->miibus);
1112 	ifr = (struct ifreq *)data;
1113 	error = 0;
1114 
1115 	switch (cmd) {
1116 	case SIOCSIFFLAGS:
1117 		AWG_LOCK(sc);
1118 		if (if_getflags(ifp) & IFF_UP) {
1119 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1120 				flags = if_getflags(ifp) ^ sc->if_flags;
1121 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
1122 					awg_setup_rxfilter(sc);
1123 			} else
1124 				awg_init_locked(sc);
1125 		} else {
1126 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1127 				awg_stop(sc);
1128 		}
1129 		sc->if_flags = if_getflags(ifp);
1130 		AWG_UNLOCK(sc);
1131 		break;
1132 	case SIOCADDMULTI:
1133 	case SIOCDELMULTI:
1134 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1135 			AWG_LOCK(sc);
1136 			awg_setup_rxfilter(sc);
1137 			AWG_UNLOCK(sc);
1138 		}
1139 		break;
1140 	case SIOCSIFMEDIA:
1141 	case SIOCGIFMEDIA:
1142 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1143 		break;
1144 	case SIOCSIFCAP:
1145 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1146 #ifdef DEVICE_POLLING
1147 		if (mask & IFCAP_POLLING) {
1148 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1149 				error = ether_poll_register(awg_poll, ifp);
1150 				if (error != 0)
1151 					break;
1152 				AWG_LOCK(sc);
1153 				awg_disable_dma_intr(sc);
1154 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1155 				AWG_UNLOCK(sc);
1156 			} else {
1157 				error = ether_poll_deregister(ifp);
1158 				AWG_LOCK(sc);
1159 				awg_enable_dma_intr(sc);
1160 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1161 				AWG_UNLOCK(sc);
1162 			}
1163 		}
1164 #endif
1165 		if (mask & IFCAP_VLAN_MTU)
1166 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1167 		if (mask & IFCAP_RXCSUM)
1168 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1169 		if (mask & IFCAP_TXCSUM)
1170 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1171 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1172 			if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
1173 		else
1174 			if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
1175 		break;
1176 	default:
1177 		error = ether_ioctl(ifp, cmd, data);
1178 		break;
1179 	}
1180 
1181 	return (error);
1182 }
1183 
1184 /*
1185  * Interrupts functions
1186  */
1187 
1188 static int
1189 awg_rxintr(struct awg_softc *sc)
1190 {
1191 	if_t ifp;
1192 	struct mbuf *m, *mh, *mt;
1193 	int error, index, len, cnt, npkt;
1194 	uint32_t status;
1195 
1196 	ifp = sc->ifp;
1197 	mh = mt = NULL;
1198 	cnt = 0;
1199 	npkt = 0;
1200 
1201 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1202 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1203 
1204 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
1205 		status = le32toh(sc->rx.desc_ring[index].status);
1206 		if ((status & RX_DESC_CTL) != 0)
1207 			break;
1208 
1209 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
1210 
1211 		if (len == 0) {
1212 			if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
1213 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1214 			awg_reuse_rxdesc(sc, index);
1215 			continue;
1216 		}
1217 
1218 		m = sc->rx.buf_map[index].mbuf;
1219 
1220 		error = awg_newbuf_rx(sc, index);
1221 		if (error != 0) {
1222 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1223 			awg_reuse_rxdesc(sc, index);
1224 			continue;
1225 		}
1226 
1227 		m->m_pkthdr.rcvif = ifp;
1228 		m->m_pkthdr.len = len;
1229 		m->m_len = len;
1230 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1231 
1232 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
1233 		    (status & RX_FRM_TYPE) != 0) {
1234 			m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
1235 			if ((status & RX_HEADER_ERR) == 0)
1236 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1237 			if ((status & RX_PAYLOAD_ERR) == 0) {
1238 				m->m_pkthdr.csum_flags |=
1239 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1240 				m->m_pkthdr.csum_data = 0xffff;
1241 			}
1242 		}
1243 
1244 		m->m_nextpkt = NULL;
1245 		if (mh == NULL)
1246 			mh = m;
1247 		else
1248 			mt->m_nextpkt = m;
1249 		mt = m;
1250 		++cnt;
1251 		++npkt;
1252 
1253 		if (cnt == awg_rx_batch) {
1254 			AWG_UNLOCK(sc);
1255 			if_input(ifp, mh);
1256 			AWG_LOCK(sc);
1257 			mh = mt = NULL;
1258 			cnt = 0;
1259 		}
1260 	}
1261 
1262 	if (index != sc->rx.cur) {
1263 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1264 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1265 	}
1266 
1267 	if (mh != NULL) {
1268 		AWG_UNLOCK(sc);
1269 		if_input(ifp, mh);
1270 		AWG_LOCK(sc);
1271 	}
1272 
1273 	sc->rx.cur = index;
1274 
1275 	return (npkt);
1276 }
1277 
1278 static void
1279 awg_txeof(struct awg_softc *sc)
1280 {
1281 	struct emac_desc *desc;
1282 	uint32_t status, size;
1283 	if_t ifp;
1284 	int i, prog;
1285 
1286 	AWG_ASSERT_LOCKED(sc);
1287 
1288 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
1289 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1290 
1291 	ifp = sc->ifp;
1292 
1293 	prog = 0;
1294 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
1295 		desc = &sc->tx.desc_ring[i];
1296 		status = le32toh(desc->status);
1297 		if ((status & TX_DESC_CTL) != 0)
1298 			break;
1299 		size = le32toh(desc->size);
1300 		if (size & TX_LAST_DESC) {
1301 			if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
1302 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1303 			else
1304 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1305 		}
1306 		prog++;
1307 		awg_clean_txbuf(sc, i);
1308 	}
1309 
1310 	if (prog > 0) {
1311 		sc->tx.next = i;
1312 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1313 	}
1314 }
1315 
1316 static void
1317 awg_intr(void *arg)
1318 {
1319 	struct awg_softc *sc;
1320 	uint32_t val;
1321 
1322 	sc = arg;
1323 
1324 	AWG_LOCK(sc);
1325 	val = RD4(sc, EMAC_INT_STA);
1326 	WR4(sc, EMAC_INT_STA, val);
1327 
1328 	if (val & RX_INT)
1329 		awg_rxintr(sc);
1330 
1331 	if (val & TX_INT)
1332 		awg_txeof(sc);
1333 
1334 	if (val & (TX_INT | TX_BUF_UA_INT)) {
1335 		if (!if_sendq_empty(sc->ifp))
1336 			awg_start_locked(sc);
1337 	}
1338 
1339 	AWG_UNLOCK(sc);
1340 }
1341 
1342 #ifdef DEVICE_POLLING
1343 static int
1344 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
1345 {
1346 	struct awg_softc *sc;
1347 	uint32_t val;
1348 	int rx_npkts;
1349 
1350 	sc = if_getsoftc(ifp);
1351 	rx_npkts = 0;
1352 
1353 	AWG_LOCK(sc);
1354 
1355 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1356 		AWG_UNLOCK(sc);
1357 		return (0);
1358 	}
1359 
1360 	rx_npkts = awg_rxintr(sc);
1361 	awg_txeof(sc);
1362 	if (!if_sendq_empty(ifp))
1363 		awg_start_locked(sc);
1364 
1365 	if (cmd == POLL_AND_CHECK_STATUS) {
1366 		val = RD4(sc, EMAC_INT_STA);
1367 		if (val != 0)
1368 			WR4(sc, EMAC_INT_STA, val);
1369 	}
1370 
1371 	AWG_UNLOCK(sc);
1372 
1373 	return (rx_npkts);
1374 }
1375 #endif
1376 
1377 /*
1378  * syscon functions
1379  */
1380 static uint32_t
1381 syscon_read_emac_clk_reg(device_t dev)
1382 {
1383 	struct awg_softc *sc;
1384 
1385 	sc = device_get_softc(dev);
1386 	if (sc->syscon != NULL)
1387 		return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
1388 	else if (sc->res[_RES_SYSCON] != NULL)
1389 		return (bus_read_4(sc->res[_RES_SYSCON], 0));
1390 
1391 	return (0);
1392 }
1393 
1394 static void
1395 syscon_write_emac_clk_reg(device_t dev, uint32_t val)
1396 {
1397 	struct awg_softc *sc;
1398 
1399 	sc = device_get_softc(dev);
1400 	if (sc->syscon != NULL)
1401 		SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
1402 	else if (sc->res[_RES_SYSCON] != NULL)
1403 		bus_write_4(sc->res[_RES_SYSCON], 0, val);
1404 }
1405 
1406 /*
1407  * PHY functions
1408  */
1409 
1410 static phandle_t
1411 awg_get_phy_node(device_t dev)
1412 {
1413 	phandle_t node;
1414 	pcell_t phy_handle;
1415 
1416 	node = ofw_bus_get_node(dev);
1417 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
1418 	    sizeof(phy_handle)) <= 0)
1419 		return (0);
1420 
1421 	return (OF_node_from_xref(phy_handle));
1422 }
1423 
1424 static bool
1425 awg_has_internal_phy(device_t dev)
1426 {
1427 	phandle_t node, phy_node;
1428 
1429 	node = ofw_bus_get_node(dev);
1430 	/* Legacy binding */
1431 	if (OF_hasprop(node, "allwinner,use-internal-phy"))
1432 		return (true);
1433 
1434 	phy_node = awg_get_phy_node(dev);
1435 	return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
1436 	    "allwinner,sun8i-h3-mdio-internal") != 0);
1437 }
1438 
1439 static int
1440 awg_parse_delay(device_t dev, uint32_t *tx_delay, uint32_t *rx_delay)
1441 {
1442 	phandle_t node;
1443 	uint32_t delay;
1444 
1445 	if (tx_delay == NULL || rx_delay == NULL)
1446 		return (EINVAL);
1447 	*tx_delay = *rx_delay = 0;
1448 	node = ofw_bus_get_node(dev);
1449 
1450 	if (OF_getencprop(node, "tx-delay", &delay, sizeof(delay)) >= 0)
1451 		*tx_delay = delay;
1452 	else if (OF_getencprop(node, "allwinner,tx-delay-ps", &delay,
1453 	    sizeof(delay)) >= 0) {
1454 		if ((delay % 100) != 0) {
1455 			device_printf(dev, "tx-delay-ps is not a multiple of 100\n");
1456 			return (EDOM);
1457 		}
1458 		*tx_delay = delay / 100;
1459 	}
1460 	if (*tx_delay > 7) {
1461 		device_printf(dev, "tx-delay out of range\n");
1462 		return (ERANGE);
1463 	}
1464 
1465 	if (OF_getencprop(node, "rx-delay", &delay, sizeof(delay)) >= 0)
1466 		*rx_delay = delay;
1467 	else if (OF_getencprop(node, "allwinner,rx-delay-ps", &delay,
1468 	    sizeof(delay)) >= 0) {
1469 		if ((delay % 100) != 0) {
1470 			device_printf(dev, "rx-delay-ps is not within documented domain\n");
1471 			return (EDOM);
1472 		}
1473 		*rx_delay = delay / 100;
1474 	}
1475 	if (*rx_delay > 31) {
1476 		device_printf(dev, "rx-delay out of range\n");
1477 		return (ERANGE);
1478 	}
1479 
1480 	return (0);
1481 }
1482 
1483 static int
1484 awg_setup_phy(device_t dev)
1485 {
1486 	struct awg_softc *sc;
1487 	clk_t clk_tx, clk_tx_parent;
1488 	const char *tx_parent_name;
1489 	char *phy_type;
1490 	phandle_t node;
1491 	uint32_t reg, tx_delay, rx_delay;
1492 	int error;
1493 	bool use_syscon;
1494 
1495 	sc = device_get_softc(dev);
1496 	node = ofw_bus_get_node(dev);
1497 	use_syscon = false;
1498 
1499 	if (OF_getprop_alloc(node, "phy-mode", (void **)&phy_type) == 0)
1500 		return (0);
1501 
1502 	if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
1503 		use_syscon = true;
1504 
1505 	if (bootverbose)
1506 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1507 		    use_syscon ? "reg" : "clk");
1508 
1509 	if (use_syscon) {
1510 		/*
1511 		 * Abstract away writing to syscon for devices like the pine64.
1512 		 * For the pine64, we get dtb from U-Boot and it still uses the
1513 		 * legacy setup of specifying syscon register in emac node
1514 		 * rather than as its own node and using an xref in emac.
1515 		 * These abstractions can go away once U-Boot dts is up-to-date.
1516 		 */
1517 		reg = syscon_read_emac_clk_reg(dev);
1518 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1519 		if (strncmp(phy_type, "rgmii", 5) == 0)
1520 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1521 		else if (strcmp(phy_type, "rmii") == 0)
1522 			reg |= EMAC_CLK_RMII_EN;
1523 		else
1524 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1525 
1526 		/*
1527 		 * Fail attach if we fail to parse either of the delay
1528 		 * parameters. If we don't have the proper delay to write to
1529 		 * syscon, then awg likely won't function properly anyways.
1530 		 * Lack of delay is not an error!
1531 		 */
1532 		error = awg_parse_delay(dev, &tx_delay, &rx_delay);
1533 		if (error != 0)
1534 			goto fail;
1535 
1536 		/* Default to 0 and we'll increase it if we need to. */
1537 		reg &= ~(EMAC_CLK_ETXDC | EMAC_CLK_ERXDC);
1538 		if (tx_delay > 0)
1539 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1540 		if (rx_delay > 0)
1541 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1542 
1543 		if (sc->type == EMAC_H3) {
1544 			if (awg_has_internal_phy(dev)) {
1545 				reg |= EMAC_CLK_EPHY_SELECT;
1546 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1547 				if (OF_hasprop(node,
1548 				    "allwinner,leds-active-low"))
1549 					reg |= EMAC_CLK_EPHY_LED_POL;
1550 				else
1551 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1552 
1553 				/* Set internal PHY addr to 1 */
1554 				reg &= ~EMAC_CLK_EPHY_ADDR;
1555 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1556 			} else {
1557 				reg &= ~EMAC_CLK_EPHY_SELECT;
1558 			}
1559 		}
1560 
1561 		if (bootverbose)
1562 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1563 		syscon_write_emac_clk_reg(dev, reg);
1564 	} else {
1565 		if (strncmp(phy_type, "rgmii", 5) == 0)
1566 			tx_parent_name = "emac_int_tx";
1567 		else
1568 			tx_parent_name = "mii_phy_tx";
1569 
1570 		/* Get the TX clock */
1571 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1572 		if (error != 0) {
1573 			device_printf(dev, "cannot get tx clock\n");
1574 			goto fail;
1575 		}
1576 
1577 		/* Find the desired parent clock based on phy-mode property */
1578 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1579 		if (error != 0) {
1580 			device_printf(dev, "cannot get clock '%s'\n",
1581 			    tx_parent_name);
1582 			goto fail;
1583 		}
1584 
1585 		/* Set TX clock parent */
1586 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1587 		if (error != 0) {
1588 			device_printf(dev, "cannot set tx clock parent\n");
1589 			goto fail;
1590 		}
1591 
1592 		/* Enable TX clock */
1593 		error = clk_enable(clk_tx);
1594 		if (error != 0) {
1595 			device_printf(dev, "cannot enable tx clock\n");
1596 			goto fail;
1597 		}
1598 	}
1599 
1600 	error = 0;
1601 
1602 fail:
1603 	OF_prop_free(phy_type);
1604 	return (error);
1605 }
1606 
1607 static int
1608 awg_setup_extres(device_t dev)
1609 {
1610 	struct awg_softc *sc;
1611 	phandle_t node, phy_node;
1612 	hwreset_t rst_ahb, rst_ephy;
1613 	clk_t clk_ahb, clk_ephy;
1614 	regulator_t reg;
1615 	uint64_t freq;
1616 	int error, div;
1617 
1618 	sc = device_get_softc(dev);
1619 	rst_ahb = rst_ephy = NULL;
1620 	clk_ahb = clk_ephy = NULL;
1621 	reg = NULL;
1622 	node = ofw_bus_get_node(dev);
1623 	phy_node = awg_get_phy_node(dev);
1624 
1625 	if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
1626 		error = ENXIO;
1627 		device_printf(dev, "cannot get phy handle\n");
1628 		goto fail;
1629 	}
1630 
1631 	/* Get AHB clock and reset resources */
1632 	error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
1633 	if (error != 0)
1634 		error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1635 	if (error != 0) {
1636 		device_printf(dev, "cannot get ahb reset\n");
1637 		goto fail;
1638 	}
1639 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1640 		if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
1641 		    &rst_ephy) != 0)
1642 			rst_ephy = NULL;
1643 	error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
1644 	if (error != 0)
1645 		error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1646 	if (error != 0) {
1647 		device_printf(dev, "cannot get ahb clock\n");
1648 		goto fail;
1649 	}
1650 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1651 		if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
1652 		    &clk_ephy) != 0)
1653 			clk_ephy = NULL;
1654 
1655 	if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
1656 	    "syscon", &sc->syscon) != 0) {
1657 		device_printf(dev, "cannot get syscon driver handle\n");
1658 		goto fail;
1659 	}
1660 
1661 	/* Configure PHY for MII or RGMII mode */
1662 	if (awg_setup_phy(dev) != 0)
1663 		goto fail;
1664 
1665 	/* Enable clocks */
1666 	error = clk_enable(clk_ahb);
1667 	if (error != 0) {
1668 		device_printf(dev, "cannot enable ahb clock\n");
1669 		goto fail;
1670 	}
1671 	if (clk_ephy != NULL) {
1672 		error = clk_enable(clk_ephy);
1673 		if (error != 0) {
1674 			device_printf(dev, "cannot enable ephy clock\n");
1675 			goto fail;
1676 		}
1677 	}
1678 
1679 	/* De-assert reset */
1680 	error = hwreset_deassert(rst_ahb);
1681 	if (error != 0) {
1682 		device_printf(dev, "cannot de-assert ahb reset\n");
1683 		goto fail;
1684 	}
1685 	if (rst_ephy != NULL) {
1686 		/*
1687 		 * The ephy reset is left de-asserted by U-Boot.  Assert it
1688 		 * here to make sure that we're in a known good state going
1689 		 * into the PHY reset.
1690 		 */
1691 		hwreset_assert(rst_ephy);
1692 		error = hwreset_deassert(rst_ephy);
1693 		if (error != 0) {
1694 			device_printf(dev, "cannot de-assert ephy reset\n");
1695 			goto fail;
1696 		}
1697 	}
1698 
1699 	/* Enable PHY regulator if applicable */
1700 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1701 		error = regulator_enable(reg);
1702 		if (error != 0) {
1703 			device_printf(dev, "cannot enable PHY regulator\n");
1704 			goto fail;
1705 		}
1706 	}
1707 
1708 	/* Determine MDC clock divide ratio based on AHB clock */
1709 	error = clk_get_freq(clk_ahb, &freq);
1710 	if (error != 0) {
1711 		device_printf(dev, "cannot get AHB clock frequency\n");
1712 		goto fail;
1713 	}
1714 	div = freq / MDIO_FREQ;
1715 	if (div <= 16)
1716 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1717 	else if (div <= 32)
1718 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1719 	else if (div <= 64)
1720 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1721 	else if (div <= 128)
1722 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1723 	else {
1724 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1725 		error = ENXIO;
1726 		goto fail;
1727 	}
1728 
1729 	if (bootverbose)
1730 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1731 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1732 
1733 	return (0);
1734 
1735 fail:
1736 	if (reg != NULL)
1737 		regulator_release(reg);
1738 	if (clk_ephy != NULL)
1739 		clk_release(clk_ephy);
1740 	if (clk_ahb != NULL)
1741 		clk_release(clk_ahb);
1742 	if (rst_ephy != NULL)
1743 		hwreset_release(rst_ephy);
1744 	if (rst_ahb != NULL)
1745 		hwreset_release(rst_ahb);
1746 	return (error);
1747 }
1748 
1749 #ifdef AWG_DEBUG
1750 static void
1751 awg_dump_regs(device_t dev)
1752 {
1753 	static const struct {
1754 		const char *name;
1755 		u_int reg;
1756 	} regs[] = {
1757 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1758 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1759 		{ "INT_STA", EMAC_INT_STA },
1760 		{ "INT_EN", EMAC_INT_EN },
1761 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1762 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1763 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1764 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1765 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1766 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1767 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1768 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1769 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1770 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1771 		{ "MII_CMD", EMAC_MII_CMD },
1772 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1773 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1774 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1775 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1776 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1777 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1778 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1779 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1780 		{ "RGMII_STA", EMAC_RGMII_STA },
1781 	};
1782 	struct awg_softc *sc;
1783 	unsigned int n;
1784 
1785 	sc = device_get_softc(dev);
1786 
1787 	for (n = 0; n < nitems(regs); n++)
1788 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1789 		    RD4(sc, regs[n].reg));
1790 }
1791 #endif
1792 
1793 #define	GPIO_ACTIVE_LOW		1
1794 
1795 static int
1796 awg_phy_reset(device_t dev)
1797 {
1798 	pcell_t gpio_prop[4], delay_prop[3];
1799 	phandle_t node, gpio_node;
1800 	device_t gpio;
1801 	uint32_t pin, flags;
1802 	uint32_t pin_value;
1803 
1804 	node = ofw_bus_get_node(dev);
1805 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1806 	    sizeof(gpio_prop)) <= 0)
1807 		return (0);
1808 
1809 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1810 	    sizeof(delay_prop)) <= 0)
1811 		return (ENXIO);
1812 
1813 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1814 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1815 		return (ENXIO);
1816 
1817 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1818 	    gpio_prop + 1, &pin, &flags) != 0)
1819 		return (ENXIO);
1820 
1821 	pin_value = GPIO_PIN_LOW;
1822 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1823 		pin_value = GPIO_PIN_HIGH;
1824 
1825 	if (flags & GPIO_ACTIVE_LOW)
1826 		pin_value = !pin_value;
1827 
1828 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1829 	GPIO_PIN_SET(gpio, pin, pin_value);
1830 	DELAY(delay_prop[0]);
1831 	GPIO_PIN_SET(gpio, pin, !pin_value);
1832 	DELAY(delay_prop[1]);
1833 	GPIO_PIN_SET(gpio, pin, pin_value);
1834 	DELAY(delay_prop[2]);
1835 
1836 	return (0);
1837 }
1838 
1839 static int
1840 awg_reset(device_t dev)
1841 {
1842 	struct awg_softc *sc;
1843 	int retry;
1844 
1845 	sc = device_get_softc(dev);
1846 
1847 	/* Reset PHY if necessary */
1848 	if (awg_phy_reset(dev) != 0) {
1849 		device_printf(dev, "failed to reset PHY\n");
1850 		return (ENXIO);
1851 	}
1852 
1853 	/* Soft reset all registers and logic */
1854 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1855 
1856 	/* Wait for soft reset bit to self-clear */
1857 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1858 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1859 			break;
1860 		DELAY(10);
1861 	}
1862 	if (retry == 0) {
1863 		device_printf(dev, "soft reset timed out\n");
1864 #ifdef AWG_DEBUG
1865 		awg_dump_regs(dev);
1866 #endif
1867 		return (ETIMEDOUT);
1868 	}
1869 
1870 	return (0);
1871 }
1872 
1873 /*
1874  * Stats
1875  */
1876 
1877 static void
1878 awg_tick(void *softc)
1879 {
1880 	struct awg_softc *sc;
1881 	struct mii_data *mii;
1882 	if_t ifp;
1883 	int link;
1884 
1885 	sc = softc;
1886 	ifp = sc->ifp;
1887 	mii = device_get_softc(sc->miibus);
1888 
1889 	AWG_ASSERT_LOCKED(sc);
1890 
1891 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1892 		return;
1893 
1894 	link = sc->link;
1895 	mii_tick(mii);
1896 	if (sc->link && !link)
1897 		awg_start_locked(sc);
1898 
1899 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
1900 }
1901 
1902 /*
1903  * Probe/attach functions
1904  */
1905 
1906 static int
1907 awg_probe(device_t dev)
1908 {
1909 	if (!ofw_bus_status_okay(dev))
1910 		return (ENXIO);
1911 
1912 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1913 		return (ENXIO);
1914 
1915 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1916 	return (BUS_PROBE_DEFAULT);
1917 }
1918 
1919 static int
1920 awg_attach(device_t dev)
1921 {
1922 	uint8_t eaddr[ETHER_ADDR_LEN];
1923 	struct awg_softc *sc;
1924 	int error;
1925 
1926 	sc = device_get_softc(dev);
1927 	sc->dev = dev;
1928 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1929 
1930 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1931 		device_printf(dev, "cannot allocate resources for device\n");
1932 		return (ENXIO);
1933 	}
1934 
1935 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1936 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1937 
1938 	/* Setup clocks and regulators */
1939 	error = awg_setup_extres(dev);
1940 	if (error != 0)
1941 		return (error);
1942 
1943 	/* Read MAC address before resetting the chip */
1944 	awg_get_eaddr(dev, eaddr);
1945 
1946 	/* Soft reset EMAC core */
1947 	error = awg_reset(dev);
1948 	if (error != 0)
1949 		return (error);
1950 
1951 	/* Setup DMA descriptors */
1952 	error = awg_setup_dma(dev);
1953 	if (error != 0)
1954 		return (error);
1955 
1956 	/* Install interrupt handler */
1957 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1958 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1959 	if (error != 0) {
1960 		device_printf(dev, "cannot setup interrupt handler\n");
1961 		return (error);
1962 	}
1963 
1964 	/* Setup ethernet interface */
1965 	sc->ifp = if_alloc(IFT_ETHER);
1966 	if_setsoftc(sc->ifp, sc);
1967 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1968 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1969 	if_setstartfn(sc->ifp, awg_start);
1970 	if_setioctlfn(sc->ifp, awg_ioctl);
1971 	if_setinitfn(sc->ifp, awg_init);
1972 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1973 	if_setsendqready(sc->ifp);
1974 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1975 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1976 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1977 #ifdef DEVICE_POLLING
1978 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1979 #endif
1980 
1981 	/* Attach MII driver */
1982 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1983 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1984 	    MIIF_DOPAUSE);
1985 	if (error != 0) {
1986 		device_printf(dev, "cannot attach PHY\n");
1987 		return (error);
1988 	}
1989 
1990 	/* Attach ethernet interface */
1991 	ether_ifattach(sc->ifp, eaddr);
1992 
1993 	return (0);
1994 }
1995 
1996 static device_method_t awg_methods[] = {
1997 	/* Device interface */
1998 	DEVMETHOD(device_probe,		awg_probe),
1999 	DEVMETHOD(device_attach,	awg_attach),
2000 
2001 	/* MII interface */
2002 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
2003 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
2004 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
2005 
2006 	DEVMETHOD_END
2007 };
2008 
2009 static driver_t awg_driver = {
2010 	"awg",
2011 	awg_methods,
2012 	sizeof(struct awg_softc),
2013 };
2014 
2015 DRIVER_MODULE(awg, simplebus, awg_driver, 0, 0);
2016 DRIVER_MODULE(miibus, awg, miibus_driver, 0, 0);
2017 MODULE_DEPEND(awg, ether, 1, 1, 1);
2018 MODULE_DEPEND(awg, miibus, 1, 1, 1);
2019 MODULE_DEPEND(awg, aw_sid, 1, 1, 1);
2020 SIMPLEBUS_PNP_INFO(compat_data);
2021