xref: /freebsd/sys/arm/allwinner/if_awg.c (revision ca987d4641cdcd7f27e153db17c5bf064934faf5)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Allwinner Gigabit Ethernet MAC (EMAC) controller
31  */
32 
33 #include "opt_device_polling.h"
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/kernel.h>
43 #include <sys/endian.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/module.h>
48 #include <sys/taskqueue.h>
49 #include <sys/gpio.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 
59 #include <machine/bus.h>
60 
61 #include <dev/ofw/ofw_bus.h>
62 #include <dev/ofw/ofw_bus_subr.h>
63 
64 #include <arm/allwinner/if_awgreg.h>
65 #include <arm/allwinner/aw_sid.h>
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/extres/clk/clk.h>
70 #include <dev/extres/hwreset/hwreset.h>
71 #include <dev/extres/regulator/regulator.h>
72 
73 #include "miibus_if.h"
74 #include "gpio_if.h"
75 
76 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
77 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
78 
79 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
80 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
81 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
82 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
83 
84 #define	DESC_ALIGN		4
85 #define	TX_DESC_COUNT		1024
86 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
87 #define	RX_DESC_COUNT		256
88 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
89 
90 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
91 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
92 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
93 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
94 
95 #define	TX_MAX_SEGS		20
96 
97 #define	SOFT_RST_RETRY		1000
98 #define	MII_BUSY_RETRY		1000
99 #define	MDIO_FREQ		2500000
100 
101 #define	BURST_LEN_DEFAULT	8
102 #define	RX_TX_PRI_DEFAULT	0
103 #define	PAUSE_TIME_DEFAULT	0x400
104 #define	TX_INTERVAL_DEFAULT	64
105 #define	RX_BATCH_DEFAULT	64
106 
107 /* syscon EMAC clock register */
108 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
109 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
110 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
111 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
112 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
113 #define	EMAC_CLK_RMII_EN	(1 << 13)
114 #define	EMAC_CLK_ETXDC		(0x7 << 10)
115 #define	EMAC_CLK_ETXDC_SHIFT	10
116 #define	EMAC_CLK_ERXDC		(0x1f << 5)
117 #define	EMAC_CLK_ERXDC_SHIFT	5
118 #define	EMAC_CLK_PIT		(0x1 << 2)
119 #define	 EMAC_CLK_PIT_MII	(0 << 2)
120 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
121 #define	EMAC_CLK_SRC		(0x3 << 0)
122 #define	 EMAC_CLK_SRC_MII	(0 << 0)
123 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
124 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
125 
126 /* Burst length of RX and TX DMA transfers */
127 static int awg_burst_len = BURST_LEN_DEFAULT;
128 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
129 
130 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
131 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
132 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
133 
134 /* Pause time field in the transmitted control frame */
135 static int awg_pause_time = PAUSE_TIME_DEFAULT;
136 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
137 
138 /* Request a TX interrupt every <n> descriptors */
139 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
140 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
141 
142 /* Maximum number of mbufs to send to if_input */
143 static int awg_rx_batch = RX_BATCH_DEFAULT;
144 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
145 
146 enum awg_type {
147 	EMAC_A83T = 1,
148 	EMAC_H3,
149 	EMAC_A64,
150 };
151 
152 static struct ofw_compat_data compat_data[] = {
153 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
154 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
155 	{ "allwinner,sun50i-a64-emac",		EMAC_A64 },
156 	{ NULL,					0 }
157 };
158 
159 struct awg_bufmap {
160 	bus_dmamap_t		map;
161 	struct mbuf		*mbuf;
162 };
163 
164 struct awg_txring {
165 	bus_dma_tag_t		desc_tag;
166 	bus_dmamap_t		desc_map;
167 	struct emac_desc	*desc_ring;
168 	bus_addr_t		desc_ring_paddr;
169 	bus_dma_tag_t		buf_tag;
170 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
171 	u_int			cur, next, queued;
172 };
173 
174 struct awg_rxring {
175 	bus_dma_tag_t		desc_tag;
176 	bus_dmamap_t		desc_map;
177 	struct emac_desc	*desc_ring;
178 	bus_addr_t		desc_ring_paddr;
179 	bus_dma_tag_t		buf_tag;
180 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
181 	u_int			cur;
182 };
183 
184 enum {
185 	_RES_EMAC,
186 	_RES_IRQ,
187 	_RES_SYSCON,
188 	_RES_NITEMS
189 };
190 
191 struct awg_softc {
192 	struct resource		*res[_RES_NITEMS];
193 	struct mtx		mtx;
194 	if_t			ifp;
195 	device_t		dev;
196 	device_t		miibus;
197 	struct callout		stat_ch;
198 	struct task		link_task;
199 	void			*ih;
200 	u_int			mdc_div_ratio_m;
201 	int			link;
202 	int			if_flags;
203 	enum awg_type		type;
204 
205 	struct awg_txring	tx;
206 	struct awg_rxring	rx;
207 };
208 
209 static struct resource_spec awg_spec[] = {
210 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
211 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
212 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
213 	{ -1, 0 }
214 };
215 
216 static int
217 awg_miibus_readreg(device_t dev, int phy, int reg)
218 {
219 	struct awg_softc *sc;
220 	int retry, val;
221 
222 	sc = device_get_softc(dev);
223 	val = 0;
224 
225 	WR4(sc, EMAC_MII_CMD,
226 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
227 	    (phy << PHY_ADDR_SHIFT) |
228 	    (reg << PHY_REG_ADDR_SHIFT) |
229 	    MII_BUSY);
230 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
231 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
232 			val = RD4(sc, EMAC_MII_DATA);
233 			break;
234 		}
235 		DELAY(10);
236 	}
237 
238 	if (retry == 0)
239 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
240 		    phy, reg);
241 
242 	return (val);
243 }
244 
245 static int
246 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
247 {
248 	struct awg_softc *sc;
249 	int retry;
250 
251 	sc = device_get_softc(dev);
252 
253 	WR4(sc, EMAC_MII_DATA, val);
254 	WR4(sc, EMAC_MII_CMD,
255 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
256 	    (phy << PHY_ADDR_SHIFT) |
257 	    (reg << PHY_REG_ADDR_SHIFT) |
258 	    MII_WR | MII_BUSY);
259 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
260 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
261 			break;
262 		DELAY(10);
263 	}
264 
265 	if (retry == 0)
266 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
267 		    phy, reg);
268 
269 	return (0);
270 }
271 
272 static void
273 awg_update_link_locked(struct awg_softc *sc)
274 {
275 	struct mii_data *mii;
276 	uint32_t val;
277 
278 	AWG_ASSERT_LOCKED(sc);
279 
280 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
281 		return;
282 	mii = device_get_softc(sc->miibus);
283 
284 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
285 	    (IFM_ACTIVE | IFM_AVALID)) {
286 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
287 		case IFM_1000_T:
288 		case IFM_1000_SX:
289 		case IFM_100_TX:
290 		case IFM_10_T:
291 			sc->link = 1;
292 			break;
293 		default:
294 			sc->link = 0;
295 			break;
296 		}
297 	} else
298 		sc->link = 0;
299 
300 	if (sc->link == 0)
301 		return;
302 
303 	val = RD4(sc, EMAC_BASIC_CTL_0);
304 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
305 
306 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
307 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
308 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
309 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
310 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
311 	else
312 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
313 
314 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
315 		val |= BASIC_CTL_DUPLEX;
316 
317 	WR4(sc, EMAC_BASIC_CTL_0, val);
318 
319 	val = RD4(sc, EMAC_RX_CTL_0);
320 	val &= ~RX_FLOW_CTL_EN;
321 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
322 		val |= RX_FLOW_CTL_EN;
323 	WR4(sc, EMAC_RX_CTL_0, val);
324 
325 	val = RD4(sc, EMAC_TX_FLOW_CTL);
326 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
327 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
328 		val |= TX_FLOW_CTL_EN;
329 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
330 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
331 	WR4(sc, EMAC_TX_FLOW_CTL, val);
332 }
333 
334 static void
335 awg_link_task(void *arg, int pending)
336 {
337 	struct awg_softc *sc;
338 
339 	sc = arg;
340 
341 	AWG_LOCK(sc);
342 	awg_update_link_locked(sc);
343 	AWG_UNLOCK(sc);
344 }
345 
346 static void
347 awg_miibus_statchg(device_t dev)
348 {
349 	struct awg_softc *sc;
350 
351 	sc = device_get_softc(dev);
352 
353 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
354 }
355 
356 static void
357 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
358 {
359 	struct awg_softc *sc;
360 	struct mii_data *mii;
361 
362 	sc = if_getsoftc(ifp);
363 	mii = device_get_softc(sc->miibus);
364 
365 	AWG_LOCK(sc);
366 	mii_pollstat(mii);
367 	ifmr->ifm_active = mii->mii_media_active;
368 	ifmr->ifm_status = mii->mii_media_status;
369 	AWG_UNLOCK(sc);
370 }
371 
372 static int
373 awg_media_change(if_t ifp)
374 {
375 	struct awg_softc *sc;
376 	struct mii_data *mii;
377 	int error;
378 
379 	sc = if_getsoftc(ifp);
380 	mii = device_get_softc(sc->miibus);
381 
382 	AWG_LOCK(sc);
383 	error = mii_mediachg(mii);
384 	AWG_UNLOCK(sc);
385 
386 	return (error);
387 }
388 
389 static void
390 awg_setup_txdesc(struct awg_softc *sc, int index, int flags, bus_addr_t paddr,
391     u_int len)
392 {
393 	uint32_t status, size;
394 
395 	if (paddr == 0 || len == 0) {
396 		status = 0;
397 		size = 0;
398 		--sc->tx.queued;
399 	} else {
400 		status = TX_DESC_CTL;
401 		size = flags | len;
402 		if ((index & (awg_tx_interval - 1)) == 0)
403 			size |= TX_INT_CTL;
404 		++sc->tx.queued;
405 	}
406 
407 	sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
408 	sc->tx.desc_ring[index].size = htole32(size);
409 	sc->tx.desc_ring[index].status = htole32(status);
410 }
411 
412 static int
413 awg_setup_txbuf(struct awg_softc *sc, int index, struct mbuf **mp)
414 {
415 	bus_dma_segment_t segs[TX_MAX_SEGS];
416 	int error, nsegs, cur, i, flags;
417 	u_int csum_flags;
418 	struct mbuf *m;
419 
420 	m = *mp;
421 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag,
422 	    sc->tx.buf_map[index].map, m, segs, &nsegs, BUS_DMA_NOWAIT);
423 	if (error == EFBIG) {
424 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
425 		if (m == NULL) {
426 			device_printf(sc->dev, "awg_setup_txbuf: m_collapse failed\n");
427 			return (0);
428 		}
429 		*mp = m;
430 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag,
431 		    sc->tx.buf_map[index].map, m, segs, &nsegs, BUS_DMA_NOWAIT);
432 	}
433 	if (error != 0) {
434 		device_printf(sc->dev, "awg_setup_txbuf: bus_dmamap_load_mbuf_sg failed\n");
435 		return (0);
436 	}
437 
438 	bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
439 	    BUS_DMASYNC_PREWRITE);
440 
441 	flags = TX_FIR_DESC;
442 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
443 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
444 			csum_flags = TX_CHECKSUM_CTL_FULL;
445 		else
446 			csum_flags = TX_CHECKSUM_CTL_IP;
447 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
448 	}
449 
450 	for (cur = index, i = 0; i < nsegs; i++) {
451 		sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
452 		if (i == nsegs - 1)
453 			flags |= TX_LAST_DESC;
454 		awg_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
455 		    segs[i].ds_len);
456 		flags &= ~TX_FIR_DESC;
457 		cur = TX_NEXT(cur);
458 	}
459 
460 	return (nsegs);
461 }
462 
463 static void
464 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
465 {
466 	uint32_t status, size;
467 
468 	status = RX_DESC_CTL;
469 	size = MCLBYTES - 1;
470 
471 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
472 	sc->rx.desc_ring[index].size = htole32(size);
473 	sc->rx.desc_ring[index].next =
474 	    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
475 	sc->rx.desc_ring[index].status = htole32(status);
476 }
477 
478 static int
479 awg_setup_rxbuf(struct awg_softc *sc, int index, struct mbuf *m)
480 {
481 	bus_dma_segment_t seg;
482 	int error, nsegs;
483 
484 	m_adj(m, ETHER_ALIGN);
485 
486 	error = bus_dmamap_load_mbuf_sg(sc->rx.buf_tag,
487 	    sc->rx.buf_map[index].map, m, &seg, &nsegs, 0);
488 	if (error != 0)
489 		return (error);
490 
491 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
492 	    BUS_DMASYNC_PREREAD);
493 
494 	sc->rx.buf_map[index].mbuf = m;
495 	awg_setup_rxdesc(sc, index, seg.ds_addr);
496 
497 	return (0);
498 }
499 
500 static struct mbuf *
501 awg_alloc_mbufcl(struct awg_softc *sc)
502 {
503 	struct mbuf *m;
504 
505 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
506 	if (m != NULL)
507 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
508 
509 	return (m);
510 }
511 
512 static void
513 awg_start_locked(struct awg_softc *sc)
514 {
515 	struct mbuf *m;
516 	uint32_t val;
517 	if_t ifp;
518 	int cnt, nsegs;
519 
520 	AWG_ASSERT_LOCKED(sc);
521 
522 	if (!sc->link)
523 		return;
524 
525 	ifp = sc->ifp;
526 
527 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
528 	    IFF_DRV_RUNNING)
529 		return;
530 
531 	for (cnt = 0; ; cnt++) {
532 		if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
533 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
534 			break;
535 		}
536 
537 		m = if_dequeue(ifp);
538 		if (m == NULL)
539 			break;
540 
541 		nsegs = awg_setup_txbuf(sc, sc->tx.cur, &m);
542 		if (nsegs == 0) {
543 			if_sendq_prepend(ifp, m);
544 			break;
545 		}
546 		if_bpfmtap(ifp, m);
547 		sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
548 	}
549 
550 	if (cnt != 0) {
551 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
552 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
553 
554 		/* Start and run TX DMA */
555 		val = RD4(sc, EMAC_TX_CTL_1);
556 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
557 	}
558 }
559 
560 static void
561 awg_start(if_t ifp)
562 {
563 	struct awg_softc *sc;
564 
565 	sc = if_getsoftc(ifp);
566 
567 	AWG_LOCK(sc);
568 	awg_start_locked(sc);
569 	AWG_UNLOCK(sc);
570 }
571 
572 static void
573 awg_tick(void *softc)
574 {
575 	struct awg_softc *sc;
576 	struct mii_data *mii;
577 	if_t ifp;
578 	int link;
579 
580 	sc = softc;
581 	ifp = sc->ifp;
582 	mii = device_get_softc(sc->miibus);
583 
584 	AWG_ASSERT_LOCKED(sc);
585 
586 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
587 		return;
588 
589 	link = sc->link;
590 	mii_tick(mii);
591 	if (sc->link && !link)
592 		awg_start_locked(sc);
593 
594 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
595 }
596 
597 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
598 static uint32_t
599 bitrev32(uint32_t x)
600 {
601 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
602 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
603 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
604 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
605 
606 	return (x >> 16) | (x << 16);
607 }
608 
609 static void
610 awg_setup_rxfilter(struct awg_softc *sc)
611 {
612 	uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
613 	int mc_count, mcnt, i;
614 	uint8_t *eaddr, *mta;
615 	if_t ifp;
616 
617 	AWG_ASSERT_LOCKED(sc);
618 
619 	ifp = sc->ifp;
620 	val = 0;
621 	hash[0] = hash[1] = 0;
622 
623 	mc_count = if_multiaddr_count(ifp, -1);
624 
625 	if (if_getflags(ifp) & IFF_PROMISC)
626 		val |= DIS_ADDR_FILTER;
627 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
628 		val |= RX_ALL_MULTICAST;
629 		hash[0] = hash[1] = ~0;
630 	} else if (mc_count > 0) {
631 		val |= HASH_MULTICAST;
632 
633 		mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count,
634 		    M_DEVBUF, M_NOWAIT);
635 		if (mta == NULL) {
636 			if_printf(ifp,
637 			    "failed to allocate temporary multicast list\n");
638 			return;
639 		}
640 
641 		if_multiaddr_array(ifp, mta, &mcnt, mc_count);
642 		for (i = 0; i < mcnt; i++) {
643 			crc = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
644 			    ETHER_ADDR_LEN) & 0x7f;
645 			crc = bitrev32(~crc) >> 26;
646 			hashreg = (crc >> 5);
647 			hashbit = (crc & 0x1f);
648 			hash[hashreg] |= (1 << hashbit);
649 		}
650 
651 		free(mta, M_DEVBUF);
652 	}
653 
654 	/* Write our unicast address */
655 	eaddr = IF_LLADDR(ifp);
656 	machi = (eaddr[5] << 8) | eaddr[4];
657 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
658 	   (eaddr[0] << 0);
659 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
660 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
661 
662 	/* Multicast hash filters */
663 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
664 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
665 
666 	/* RX frame filter config */
667 	WR4(sc, EMAC_RX_FRM_FLT, val);
668 }
669 
670 static void
671 awg_enable_intr(struct awg_softc *sc)
672 {
673 	/* Enable interrupts */
674 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
675 }
676 
677 static void
678 awg_disable_intr(struct awg_softc *sc)
679 {
680 	/* Disable interrupts */
681 	WR4(sc, EMAC_INT_EN, 0);
682 }
683 
684 static void
685 awg_init_locked(struct awg_softc *sc)
686 {
687 	struct mii_data *mii;
688 	uint32_t val;
689 	if_t ifp;
690 
691 	mii = device_get_softc(sc->miibus);
692 	ifp = sc->ifp;
693 
694 	AWG_ASSERT_LOCKED(sc);
695 
696 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
697 		return;
698 
699 	awg_setup_rxfilter(sc);
700 
701 	/* Configure DMA burst length and priorities */
702 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
703 	if (awg_rx_tx_pri)
704 		val |= BASIC_CTL_RX_TX_PRI;
705 	WR4(sc, EMAC_BASIC_CTL_1, val);
706 
707 	/* Enable interrupts */
708 #ifdef DEVICE_POLLING
709 	if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
710 		awg_enable_intr(sc);
711 	else
712 		awg_disable_intr(sc);
713 #else
714 	awg_enable_intr(sc);
715 #endif
716 
717 	/* Enable transmit DMA */
718 	val = RD4(sc, EMAC_TX_CTL_1);
719 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
720 
721 	/* Enable receive DMA */
722 	val = RD4(sc, EMAC_RX_CTL_1);
723 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
724 
725 	/* Enable transmitter */
726 	val = RD4(sc, EMAC_TX_CTL_0);
727 	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
728 
729 	/* Enable receiver */
730 	val = RD4(sc, EMAC_RX_CTL_0);
731 	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
732 
733 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
734 
735 	mii_mediachg(mii);
736 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
737 }
738 
739 static void
740 awg_init(void *softc)
741 {
742 	struct awg_softc *sc;
743 
744 	sc = softc;
745 
746 	AWG_LOCK(sc);
747 	awg_init_locked(sc);
748 	AWG_UNLOCK(sc);
749 }
750 
751 static void
752 awg_stop(struct awg_softc *sc)
753 {
754 	if_t ifp;
755 	uint32_t val;
756 
757 	AWG_ASSERT_LOCKED(sc);
758 
759 	ifp = sc->ifp;
760 
761 	callout_stop(&sc->stat_ch);
762 
763 	/* Stop transmit DMA and flush data in the TX FIFO */
764 	val = RD4(sc, EMAC_TX_CTL_1);
765 	val &= ~TX_DMA_EN;
766 	val |= FLUSH_TX_FIFO;
767 	WR4(sc, EMAC_TX_CTL_1, val);
768 
769 	/* Disable transmitter */
770 	val = RD4(sc, EMAC_TX_CTL_0);
771 	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
772 
773 	/* Disable receiver */
774 	val = RD4(sc, EMAC_RX_CTL_0);
775 	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
776 
777 	/* Disable interrupts */
778 	awg_disable_intr(sc);
779 
780 	/* Disable transmit DMA */
781 	val = RD4(sc, EMAC_TX_CTL_1);
782 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
783 
784 	/* Disable receive DMA */
785 	val = RD4(sc, EMAC_RX_CTL_1);
786 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
787 
788 	sc->link = 0;
789 
790 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
791 }
792 
793 static int
794 awg_rxintr(struct awg_softc *sc)
795 {
796 	if_t ifp;
797 	struct mbuf *m, *m0, *mh, *mt;
798 	int error, index, len, cnt, npkt;
799 	uint32_t status;
800 
801 	ifp = sc->ifp;
802 	mh = mt = NULL;
803 	cnt = 0;
804 	npkt = 0;
805 
806 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
807 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
808 
809 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
810 		status = le32toh(sc->rx.desc_ring[index].status);
811 		if ((status & RX_DESC_CTL) != 0)
812 			break;
813 
814 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
815 		    BUS_DMASYNC_POSTREAD);
816 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
817 
818 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
819 		if (len != 0) {
820 			m = sc->rx.buf_map[index].mbuf;
821 			m->m_pkthdr.rcvif = ifp;
822 			m->m_pkthdr.len = len;
823 			m->m_len = len;
824 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
825 
826 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
827 			    (status & RX_FRM_TYPE) != 0) {
828 				m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
829 				if ((status & RX_HEADER_ERR) == 0)
830 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
831 				if ((status & RX_PAYLOAD_ERR) == 0) {
832 					m->m_pkthdr.csum_flags |=
833 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
834 					m->m_pkthdr.csum_data = 0xffff;
835 				}
836 			}
837 
838 			m->m_nextpkt = NULL;
839 			if (mh == NULL)
840 				mh = m;
841 			else
842 				mt->m_nextpkt = m;
843 			mt = m;
844 			++cnt;
845 			++npkt;
846 
847 			if (cnt == awg_rx_batch) {
848 				AWG_UNLOCK(sc);
849 				if_input(ifp, mh);
850 				AWG_LOCK(sc);
851 				mh = mt = NULL;
852 				cnt = 0;
853 			}
854 
855 		}
856 
857 		if ((m0 = awg_alloc_mbufcl(sc)) != NULL) {
858 			error = awg_setup_rxbuf(sc, index, m0);
859 			if (error != 0) {
860 				/* XXX hole in RX ring */
861 			}
862 		} else
863 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
864 	}
865 
866 	if (index != sc->rx.cur) {
867 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
868 		    BUS_DMASYNC_PREWRITE);
869 	}
870 
871 	if (mh != NULL) {
872 		AWG_UNLOCK(sc);
873 		if_input(ifp, mh);
874 		AWG_LOCK(sc);
875 	}
876 
877 	sc->rx.cur = index;
878 
879 	return (npkt);
880 }
881 
882 static void
883 awg_txintr(struct awg_softc *sc)
884 {
885 	struct awg_bufmap *bmap;
886 	struct emac_desc *desc;
887 	uint32_t status;
888 	if_t ifp;
889 	int i;
890 
891 	AWG_ASSERT_LOCKED(sc);
892 
893 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
894 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
895 
896 	ifp = sc->ifp;
897 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
898 		desc = &sc->tx.desc_ring[i];
899 		status = le32toh(desc->status);
900 		if ((status & TX_DESC_CTL) != 0)
901 			break;
902 		bmap = &sc->tx.buf_map[i];
903 		if (bmap->mbuf != NULL) {
904 			bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
905 			    BUS_DMASYNC_POSTWRITE);
906 			bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
907 			m_freem(bmap->mbuf);
908 			bmap->mbuf = NULL;
909 		}
910 		awg_setup_txdesc(sc, i, 0, 0, 0);
911 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
912 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
913 	}
914 
915 	sc->tx.next = i;
916 
917 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
918 	    BUS_DMASYNC_PREWRITE);
919 }
920 
921 static void
922 awg_intr(void *arg)
923 {
924 	struct awg_softc *sc;
925 	uint32_t val;
926 
927 	sc = arg;
928 
929 	AWG_LOCK(sc);
930 	val = RD4(sc, EMAC_INT_STA);
931 	WR4(sc, EMAC_INT_STA, val);
932 
933 	if (val & RX_INT)
934 		awg_rxintr(sc);
935 
936 	if (val & (TX_INT|TX_BUF_UA_INT)) {
937 		awg_txintr(sc);
938 		if (!if_sendq_empty(sc->ifp))
939 			awg_start_locked(sc);
940 	}
941 
942 	AWG_UNLOCK(sc);
943 }
944 
945 #ifdef DEVICE_POLLING
946 static int
947 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
948 {
949 	struct awg_softc *sc;
950 	uint32_t val;
951 	int rx_npkts;
952 
953 	sc = if_getsoftc(ifp);
954 	rx_npkts = 0;
955 
956 	AWG_LOCK(sc);
957 
958 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
959 		AWG_UNLOCK(sc);
960 		return (0);
961 	}
962 
963 	rx_npkts = awg_rxintr(sc);
964 	awg_txintr(sc);
965 	if (!if_sendq_empty(ifp))
966 		awg_start_locked(sc);
967 
968 	if (cmd == POLL_AND_CHECK_STATUS) {
969 		val = RD4(sc, EMAC_INT_STA);
970 		if (val != 0)
971 			WR4(sc, EMAC_INT_STA, val);
972 	}
973 
974 	AWG_UNLOCK(sc);
975 
976 	return (rx_npkts);
977 }
978 #endif
979 
980 static int
981 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
982 {
983 	struct awg_softc *sc;
984 	struct mii_data *mii;
985 	struct ifreq *ifr;
986 	int flags, mask, error;
987 
988 	sc = if_getsoftc(ifp);
989 	mii = device_get_softc(sc->miibus);
990 	ifr = (struct ifreq *)data;
991 	error = 0;
992 
993 	switch (cmd) {
994 	case SIOCSIFFLAGS:
995 		AWG_LOCK(sc);
996 		if (if_getflags(ifp) & IFF_UP) {
997 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
998 				flags = if_getflags(ifp) ^ sc->if_flags;
999 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
1000 					awg_setup_rxfilter(sc);
1001 			} else
1002 				awg_init_locked(sc);
1003 		} else {
1004 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1005 				awg_stop(sc);
1006 		}
1007 		sc->if_flags = if_getflags(ifp);
1008 		AWG_UNLOCK(sc);
1009 		break;
1010 	case SIOCADDMULTI:
1011 	case SIOCDELMULTI:
1012 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1013 			AWG_LOCK(sc);
1014 			awg_setup_rxfilter(sc);
1015 			AWG_UNLOCK(sc);
1016 		}
1017 		break;
1018 	case SIOCSIFMEDIA:
1019 	case SIOCGIFMEDIA:
1020 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1021 		break;
1022 	case SIOCSIFCAP:
1023 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1024 #ifdef DEVICE_POLLING
1025 		if (mask & IFCAP_POLLING) {
1026 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1027 				error = ether_poll_register(awg_poll, ifp);
1028 				if (error != 0)
1029 					break;
1030 				AWG_LOCK(sc);
1031 				awg_disable_intr(sc);
1032 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1033 				AWG_UNLOCK(sc);
1034 			} else {
1035 				error = ether_poll_deregister(ifp);
1036 				AWG_LOCK(sc);
1037 				awg_enable_intr(sc);
1038 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1039 				AWG_UNLOCK(sc);
1040 			}
1041 		}
1042 #endif
1043 		if (mask & IFCAP_VLAN_MTU)
1044 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1045 		if (mask & IFCAP_RXCSUM)
1046 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1047 		if (mask & IFCAP_TXCSUM)
1048 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1049 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1050 			if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
1051 		else
1052 			if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
1053 		break;
1054 	default:
1055 		error = ether_ioctl(ifp, cmd, data);
1056 		break;
1057 	}
1058 
1059 	return (error);
1060 }
1061 
1062 static int
1063 awg_setup_phy(device_t dev)
1064 {
1065 	struct awg_softc *sc;
1066 	clk_t clk_tx, clk_tx_parent;
1067 	const char *tx_parent_name;
1068 	char *phy_type;
1069 	phandle_t node;
1070 	uint32_t reg, tx_delay, rx_delay;
1071 	int error;
1072 
1073 	sc = device_get_softc(dev);
1074 	node = ofw_bus_get_node(dev);
1075 
1076 	if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type) == 0)
1077 		return (0);
1078 
1079 	if (bootverbose)
1080 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1081 		    sc->res[_RES_SYSCON] != NULL ? "reg" : "clk");
1082 
1083 	if (sc->res[_RES_SYSCON] != NULL) {
1084 		reg = bus_read_4(sc->res[_RES_SYSCON], 0);
1085 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1086 		if (strcmp(phy_type, "rgmii") == 0)
1087 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1088 		else if (strcmp(phy_type, "rmii") == 0)
1089 			reg |= EMAC_CLK_RMII_EN;
1090 		else
1091 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1092 
1093 		if (OF_getencprop(node, "tx-delay", &tx_delay,
1094 		    sizeof(tx_delay)) > 0) {
1095 			reg &= ~EMAC_CLK_ETXDC;
1096 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1097 		}
1098 		if (OF_getencprop(node, "rx-delay", &rx_delay,
1099 		    sizeof(rx_delay)) > 0) {
1100 			reg &= ~EMAC_CLK_ERXDC;
1101 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1102 		}
1103 
1104 		if (sc->type == EMAC_H3) {
1105 			if (OF_hasprop(node, "allwinner,use-internal-phy")) {
1106 				reg |= EMAC_CLK_EPHY_SELECT;
1107 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1108 				if (OF_hasprop(node,
1109 				    "allwinner,leds-active-low"))
1110 					reg |= EMAC_CLK_EPHY_LED_POL;
1111 				else
1112 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1113 
1114 				/* Set internal PHY addr to 1 */
1115 				reg &= ~EMAC_CLK_EPHY_ADDR;
1116 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1117 			} else {
1118 				reg &= ~EMAC_CLK_EPHY_SELECT;
1119 			}
1120 		}
1121 
1122 		if (bootverbose)
1123 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1124 		bus_write_4(sc->res[_RES_SYSCON], 0, reg);
1125 	} else {
1126 		if (strcmp(phy_type, "rgmii") == 0)
1127 			tx_parent_name = "emac_int_tx";
1128 		else
1129 			tx_parent_name = "mii_phy_tx";
1130 
1131 		/* Get the TX clock */
1132 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1133 		if (error != 0) {
1134 			device_printf(dev, "cannot get tx clock\n");
1135 			goto fail;
1136 		}
1137 
1138 		/* Find the desired parent clock based on phy-mode property */
1139 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1140 		if (error != 0) {
1141 			device_printf(dev, "cannot get clock '%s'\n",
1142 			    tx_parent_name);
1143 			goto fail;
1144 		}
1145 
1146 		/* Set TX clock parent */
1147 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1148 		if (error != 0) {
1149 			device_printf(dev, "cannot set tx clock parent\n");
1150 			goto fail;
1151 		}
1152 
1153 		/* Enable TX clock */
1154 		error = clk_enable(clk_tx);
1155 		if (error != 0) {
1156 			device_printf(dev, "cannot enable tx clock\n");
1157 			goto fail;
1158 		}
1159 	}
1160 
1161 	error = 0;
1162 
1163 fail:
1164 	OF_prop_free(phy_type);
1165 	return (error);
1166 }
1167 
1168 static int
1169 awg_setup_extres(device_t dev)
1170 {
1171 	struct awg_softc *sc;
1172 	hwreset_t rst_ahb, rst_ephy;
1173 	clk_t clk_ahb, clk_ephy;
1174 	regulator_t reg;
1175 	phandle_t node;
1176 	uint64_t freq;
1177 	int error, div;
1178 
1179 	sc = device_get_softc(dev);
1180 	node = ofw_bus_get_node(dev);
1181 	rst_ahb = rst_ephy = NULL;
1182 	clk_ahb = clk_ephy = NULL;
1183 	reg = NULL;
1184 
1185 	/* Get AHB clock and reset resources */
1186 	error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1187 	if (error != 0) {
1188 		device_printf(dev, "cannot get ahb reset\n");
1189 		goto fail;
1190 	}
1191 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1192 		rst_ephy = NULL;
1193 	error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1194 	if (error != 0) {
1195 		device_printf(dev, "cannot get ahb clock\n");
1196 		goto fail;
1197 	}
1198 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1199 		clk_ephy = NULL;
1200 
1201 	/* Configure PHY for MII or RGMII mode */
1202 	if (awg_setup_phy(dev) != 0)
1203 		goto fail;
1204 
1205 	/* Enable clocks */
1206 	error = clk_enable(clk_ahb);
1207 	if (error != 0) {
1208 		device_printf(dev, "cannot enable ahb clock\n");
1209 		goto fail;
1210 	}
1211 	if (clk_ephy != NULL) {
1212 		error = clk_enable(clk_ephy);
1213 		if (error != 0) {
1214 			device_printf(dev, "cannot enable ephy clock\n");
1215 			goto fail;
1216 		}
1217 	}
1218 
1219 	/* De-assert reset */
1220 	error = hwreset_deassert(rst_ahb);
1221 	if (error != 0) {
1222 		device_printf(dev, "cannot de-assert ahb reset\n");
1223 		goto fail;
1224 	}
1225 	if (rst_ephy != NULL) {
1226 		error = hwreset_deassert(rst_ephy);
1227 		if (error != 0) {
1228 			device_printf(dev, "cannot de-assert ephy reset\n");
1229 			goto fail;
1230 		}
1231 	}
1232 
1233 	/* Enable PHY regulator if applicable */
1234 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1235 		error = regulator_enable(reg);
1236 		if (error != 0) {
1237 			device_printf(dev, "cannot enable PHY regulator\n");
1238 			goto fail;
1239 		}
1240 	}
1241 
1242 	/* Determine MDC clock divide ratio based on AHB clock */
1243 	error = clk_get_freq(clk_ahb, &freq);
1244 	if (error != 0) {
1245 		device_printf(dev, "cannot get AHB clock frequency\n");
1246 		goto fail;
1247 	}
1248 	div = freq / MDIO_FREQ;
1249 	if (div <= 16)
1250 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1251 	else if (div <= 32)
1252 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1253 	else if (div <= 64)
1254 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1255 	else if (div <= 128)
1256 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1257 	else {
1258 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1259 		error = ENXIO;
1260 		goto fail;
1261 	}
1262 
1263 	if (bootverbose)
1264 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1265 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1266 
1267 	return (0);
1268 
1269 fail:
1270 	if (reg != NULL)
1271 		regulator_release(reg);
1272 	if (clk_ephy != NULL)
1273 		clk_release(clk_ephy);
1274 	if (clk_ahb != NULL)
1275 		clk_release(clk_ahb);
1276 	if (rst_ephy != NULL)
1277 		hwreset_release(rst_ephy);
1278 	if (rst_ahb != NULL)
1279 		hwreset_release(rst_ahb);
1280 	return (error);
1281 }
1282 
1283 static void
1284 awg_get_eaddr(device_t dev, uint8_t *eaddr)
1285 {
1286 	struct awg_softc *sc;
1287 	uint32_t maclo, machi, rnd;
1288 	u_char rootkey[16];
1289 
1290 	sc = device_get_softc(dev);
1291 
1292 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1293 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1294 
1295 	if (maclo == 0xffffffff && machi == 0xffff) {
1296 		/* MAC address in hardware is invalid, create one */
1297 		if (aw_sid_get_rootkey(rootkey) == 0 &&
1298 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1299 		     rootkey[15]) != 0) {
1300 			/* MAC address is derived from the root key in SID */
1301 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1302 				(rootkey[3] << 8) | 0x02;
1303 			machi = (rootkey[15] << 8) | rootkey[14];
1304 		} else {
1305 			/* Create one */
1306 			rnd = arc4random();
1307 			maclo = 0x00f2 | (rnd & 0xffff0000);
1308 			machi = rnd & 0xffff;
1309 		}
1310 	}
1311 
1312 	eaddr[0] = maclo & 0xff;
1313 	eaddr[1] = (maclo >> 8) & 0xff;
1314 	eaddr[2] = (maclo >> 16) & 0xff;
1315 	eaddr[3] = (maclo >> 24) & 0xff;
1316 	eaddr[4] = machi & 0xff;
1317 	eaddr[5] = (machi >> 8) & 0xff;
1318 }
1319 
1320 #ifdef AWG_DEBUG
1321 static void
1322 awg_dump_regs(device_t dev)
1323 {
1324 	static const struct {
1325 		const char *name;
1326 		u_int reg;
1327 	} regs[] = {
1328 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1329 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1330 		{ "INT_STA", EMAC_INT_STA },
1331 		{ "INT_EN", EMAC_INT_EN },
1332 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1333 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1334 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1335 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1336 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1337 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1338 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1339 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1340 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1341 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1342 		{ "MII_CMD", EMAC_MII_CMD },
1343 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1344 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1345 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1346 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1347 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1348 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1349 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1350 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1351 		{ "RGMII_STA", EMAC_RGMII_STA },
1352 	};
1353 	struct awg_softc *sc;
1354 	unsigned int n;
1355 
1356 	sc = device_get_softc(dev);
1357 
1358 	for (n = 0; n < nitems(regs); n++)
1359 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1360 		    RD4(sc, regs[n].reg));
1361 }
1362 #endif
1363 
1364 #define	GPIO_ACTIVE_LOW		1
1365 
1366 static int
1367 awg_phy_reset(device_t dev)
1368 {
1369 	pcell_t gpio_prop[4], delay_prop[3];
1370 	phandle_t node, gpio_node;
1371 	device_t gpio;
1372 	uint32_t pin, flags;
1373 	uint32_t pin_value;
1374 
1375 	node = ofw_bus_get_node(dev);
1376 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1377 	    sizeof(gpio_prop)) <= 0)
1378 		return (0);
1379 
1380 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1381 	    sizeof(delay_prop)) <= 0)
1382 		return (ENXIO);
1383 
1384 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1385 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1386 		return (ENXIO);
1387 
1388 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1389 	    gpio_prop + 1, &pin, &flags) != 0)
1390 		return (ENXIO);
1391 
1392 	pin_value = GPIO_PIN_LOW;
1393 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1394 		pin_value = GPIO_PIN_HIGH;
1395 
1396 	if (flags & GPIO_ACTIVE_LOW)
1397 		pin_value = !pin_value;
1398 
1399 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1400 	GPIO_PIN_SET(gpio, pin, pin_value);
1401 	DELAY(delay_prop[0]);
1402 	GPIO_PIN_SET(gpio, pin, !pin_value);
1403 	DELAY(delay_prop[1]);
1404 	GPIO_PIN_SET(gpio, pin, pin_value);
1405 	DELAY(delay_prop[2]);
1406 
1407 	return (0);
1408 }
1409 
1410 static int
1411 awg_reset(device_t dev)
1412 {
1413 	struct awg_softc *sc;
1414 	int retry;
1415 
1416 	sc = device_get_softc(dev);
1417 
1418 	/* Reset PHY if necessary */
1419 	if (awg_phy_reset(dev) != 0) {
1420 		device_printf(dev, "failed to reset PHY\n");
1421 		return (ENXIO);
1422 	}
1423 
1424 	/* Soft reset all registers and logic */
1425 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1426 
1427 	/* Wait for soft reset bit to self-clear */
1428 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1429 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1430 			break;
1431 		DELAY(10);
1432 	}
1433 	if (retry == 0) {
1434 		device_printf(dev, "soft reset timed out\n");
1435 #ifdef AWG_DEBUG
1436 		awg_dump_regs(dev);
1437 #endif
1438 		return (ETIMEDOUT);
1439 	}
1440 
1441 	return (0);
1442 }
1443 
1444 static void
1445 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1446 {
1447 	if (error != 0)
1448 		return;
1449 	*(bus_addr_t *)arg = segs[0].ds_addr;
1450 }
1451 
1452 static int
1453 awg_setup_dma(device_t dev)
1454 {
1455 	struct awg_softc *sc;
1456 	struct mbuf *m;
1457 	int error, i;
1458 
1459 	sc = device_get_softc(dev);
1460 
1461 	/* Setup TX ring */
1462 	error = bus_dma_tag_create(
1463 	    bus_get_dma_tag(dev),	/* Parent tag */
1464 	    DESC_ALIGN, 0,		/* alignment, boundary */
1465 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1466 	    BUS_SPACE_MAXADDR,		/* highaddr */
1467 	    NULL, NULL,			/* filter, filterarg */
1468 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
1469 	    TX_DESC_SIZE,		/* maxsegsize */
1470 	    0,				/* flags */
1471 	    NULL, NULL,			/* lockfunc, lockarg */
1472 	    &sc->tx.desc_tag);
1473 	if (error != 0) {
1474 		device_printf(dev, "cannot create TX descriptor ring tag\n");
1475 		return (error);
1476 	}
1477 
1478 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
1479 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
1480 	if (error != 0) {
1481 		device_printf(dev, "cannot allocate TX descriptor ring\n");
1482 		return (error);
1483 	}
1484 
1485 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
1486 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
1487 	    &sc->tx.desc_ring_paddr, 0);
1488 	if (error != 0) {
1489 		device_printf(dev, "cannot load TX descriptor ring\n");
1490 		return (error);
1491 	}
1492 
1493 	for (i = 0; i < TX_DESC_COUNT; i++)
1494 		sc->tx.desc_ring[i].next =
1495 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1496 
1497 	error = bus_dma_tag_create(
1498 	    bus_get_dma_tag(dev),	/* Parent tag */
1499 	    1, 0,			/* alignment, boundary */
1500 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1501 	    BUS_SPACE_MAXADDR,		/* highaddr */
1502 	    NULL, NULL,			/* filter, filterarg */
1503 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
1504 	    MCLBYTES,			/* maxsegsize */
1505 	    0,				/* flags */
1506 	    NULL, NULL,			/* lockfunc, lockarg */
1507 	    &sc->tx.buf_tag);
1508 	if (error != 0) {
1509 		device_printf(dev, "cannot create TX buffer tag\n");
1510 		return (error);
1511 	}
1512 
1513 	sc->tx.queued = TX_DESC_COUNT;
1514 	for (i = 0; i < TX_DESC_COUNT; i++) {
1515 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
1516 		    &sc->tx.buf_map[i].map);
1517 		if (error != 0) {
1518 			device_printf(dev, "cannot create TX buffer map\n");
1519 			return (error);
1520 		}
1521 		awg_setup_txdesc(sc, i, 0, 0, 0);
1522 	}
1523 
1524 	/* Setup RX ring */
1525 	error = bus_dma_tag_create(
1526 	    bus_get_dma_tag(dev),	/* Parent tag */
1527 	    DESC_ALIGN, 0,		/* alignment, boundary */
1528 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1529 	    BUS_SPACE_MAXADDR,		/* highaddr */
1530 	    NULL, NULL,			/* filter, filterarg */
1531 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
1532 	    RX_DESC_SIZE,		/* maxsegsize */
1533 	    0,				/* flags */
1534 	    NULL, NULL,			/* lockfunc, lockarg */
1535 	    &sc->rx.desc_tag);
1536 	if (error != 0) {
1537 		device_printf(dev, "cannot create RX descriptor ring tag\n");
1538 		return (error);
1539 	}
1540 
1541 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
1542 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
1543 	if (error != 0) {
1544 		device_printf(dev, "cannot allocate RX descriptor ring\n");
1545 		return (error);
1546 	}
1547 
1548 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
1549 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
1550 	    &sc->rx.desc_ring_paddr, 0);
1551 	if (error != 0) {
1552 		device_printf(dev, "cannot load RX descriptor ring\n");
1553 		return (error);
1554 	}
1555 
1556 	error = bus_dma_tag_create(
1557 	    bus_get_dma_tag(dev),	/* Parent tag */
1558 	    1, 0,			/* alignment, boundary */
1559 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1560 	    BUS_SPACE_MAXADDR,		/* highaddr */
1561 	    NULL, NULL,			/* filter, filterarg */
1562 	    MCLBYTES, 1,		/* maxsize, nsegs */
1563 	    MCLBYTES,			/* maxsegsize */
1564 	    0,				/* flags */
1565 	    NULL, NULL,			/* lockfunc, lockarg */
1566 	    &sc->rx.buf_tag);
1567 	if (error != 0) {
1568 		device_printf(dev, "cannot create RX buffer tag\n");
1569 		return (error);
1570 	}
1571 
1572 	for (i = 0; i < RX_DESC_COUNT; i++) {
1573 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
1574 		    &sc->rx.buf_map[i].map);
1575 		if (error != 0) {
1576 			device_printf(dev, "cannot create RX buffer map\n");
1577 			return (error);
1578 		}
1579 		if ((m = awg_alloc_mbufcl(sc)) == NULL) {
1580 			device_printf(dev, "cannot allocate RX mbuf\n");
1581 			return (ENOMEM);
1582 		}
1583 		error = awg_setup_rxbuf(sc, i, m);
1584 		if (error != 0) {
1585 			device_printf(dev, "cannot create RX buffer\n");
1586 			return (error);
1587 		}
1588 	}
1589 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1590 	    BUS_DMASYNC_PREWRITE);
1591 
1592 	/* Write transmit and receive descriptor base address registers */
1593 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1594 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1595 
1596 	return (0);
1597 }
1598 
1599 static int
1600 awg_probe(device_t dev)
1601 {
1602 	if (!ofw_bus_status_okay(dev))
1603 		return (ENXIO);
1604 
1605 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1606 		return (ENXIO);
1607 
1608 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1609 	return (BUS_PROBE_DEFAULT);
1610 }
1611 
1612 static int
1613 awg_attach(device_t dev)
1614 {
1615 	uint8_t eaddr[ETHER_ADDR_LEN];
1616 	struct awg_softc *sc;
1617 	phandle_t node;
1618 	int error;
1619 
1620 	sc = device_get_softc(dev);
1621 	sc->dev = dev;
1622 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1623 	node = ofw_bus_get_node(dev);
1624 
1625 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1626 		device_printf(dev, "cannot allocate resources for device\n");
1627 		return (ENXIO);
1628 	}
1629 
1630 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1631 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1632 	TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
1633 
1634 	/* Setup clocks and regulators */
1635 	error = awg_setup_extres(dev);
1636 	if (error != 0)
1637 		return (error);
1638 
1639 	/* Read MAC address before resetting the chip */
1640 	awg_get_eaddr(dev, eaddr);
1641 
1642 	/* Soft reset EMAC core */
1643 	error = awg_reset(dev);
1644 	if (error != 0)
1645 		return (error);
1646 
1647 	/* Setup DMA descriptors */
1648 	error = awg_setup_dma(dev);
1649 	if (error != 0)
1650 		return (error);
1651 
1652 	/* Install interrupt handler */
1653 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1654 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1655 	if (error != 0) {
1656 		device_printf(dev, "cannot setup interrupt handler\n");
1657 		return (error);
1658 	}
1659 
1660 	/* Setup ethernet interface */
1661 	sc->ifp = if_alloc(IFT_ETHER);
1662 	if_setsoftc(sc->ifp, sc);
1663 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1664 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1665 	if_setstartfn(sc->ifp, awg_start);
1666 	if_setioctlfn(sc->ifp, awg_ioctl);
1667 	if_setinitfn(sc->ifp, awg_init);
1668 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1669 	if_setsendqready(sc->ifp);
1670 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1671 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1672 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1673 #ifdef DEVICE_POLLING
1674 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1675 #endif
1676 
1677 	/* Attach MII driver */
1678 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1679 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1680 	    MIIF_DOPAUSE);
1681 	if (error != 0) {
1682 		device_printf(dev, "cannot attach PHY\n");
1683 		return (error);
1684 	}
1685 
1686 	/* Attach ethernet interface */
1687 	ether_ifattach(sc->ifp, eaddr);
1688 
1689 	return (0);
1690 }
1691 
1692 static device_method_t awg_methods[] = {
1693 	/* Device interface */
1694 	DEVMETHOD(device_probe,		awg_probe),
1695 	DEVMETHOD(device_attach,	awg_attach),
1696 
1697 	/* MII interface */
1698 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
1699 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
1700 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
1701 
1702 	DEVMETHOD_END
1703 };
1704 
1705 static driver_t awg_driver = {
1706 	"awg",
1707 	awg_methods,
1708 	sizeof(struct awg_softc),
1709 };
1710 
1711 static devclass_t awg_devclass;
1712 
1713 DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
1714 DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
1715 
1716 MODULE_DEPEND(awg, ether, 1, 1, 1);
1717 MODULE_DEPEND(awg, miibus, 1, 1, 1);
1718