xref: /freebsd/sys/arm/allwinner/if_awg.c (revision afd74c400075d94e01dd3430844bb290834660ef)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
18  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
20  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
21  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 /*
27  * Allwinner Gigabit Ethernet MAC (EMAC) controller
28  */
29 
30 #include "opt_device_polling.h"
31 
32 #include <sys/cdefs.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/rman.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 #include <sys/mbuf.h>
40 #include <sys/socket.h>
41 #include <sys/sockio.h>
42 #include <sys/module.h>
43 #include <sys/gpio.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/if_var.h>
52 
53 #include <machine/bus.h>
54 
55 #include <dev/ofw/ofw_bus.h>
56 #include <dev/ofw/ofw_bus_subr.h>
57 
58 #include <arm/allwinner/if_awgreg.h>
59 #include <arm/allwinner/aw_sid.h>
60 #include <dev/mii/mii.h>
61 #include <dev/mii/miivar.h>
62 
63 #include <dev/extres/clk/clk.h>
64 #include <dev/extres/hwreset/hwreset.h>
65 #include <dev/extres/regulator/regulator.h>
66 #include <dev/extres/syscon/syscon.h>
67 
68 #include "syscon_if.h"
69 #include "miibus_if.h"
70 #include "gpio_if.h"
71 
72 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
73 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
74 
75 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
76 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
77 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
78 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
79 
80 #define	DESC_ALIGN		4
81 #define	TX_DESC_COUNT		1024
82 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
83 #define	RX_DESC_COUNT		256
84 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
85 
86 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
87 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
88 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
89 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
90 
91 #define	TX_MAX_SEGS		20
92 
93 #define	SOFT_RST_RETRY		1000
94 #define	MII_BUSY_RETRY		1000
95 #define	MDIO_FREQ		2500000
96 
97 #define	BURST_LEN_DEFAULT	8
98 #define	RX_TX_PRI_DEFAULT	0
99 #define	PAUSE_TIME_DEFAULT	0x400
100 #define	TX_INTERVAL_DEFAULT	64
101 #define	RX_BATCH_DEFAULT	64
102 
103 /* syscon EMAC clock register */
104 #define	EMAC_CLK_REG		0x30
105 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
106 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
107 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
108 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
109 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
110 #define	EMAC_CLK_RMII_EN	(1 << 13)
111 #define	EMAC_CLK_ETXDC		(0x7 << 10)
112 #define	EMAC_CLK_ETXDC_SHIFT	10
113 #define	EMAC_CLK_ERXDC		(0x1f << 5)
114 #define	EMAC_CLK_ERXDC_SHIFT	5
115 #define	EMAC_CLK_PIT		(0x1 << 2)
116 #define	 EMAC_CLK_PIT_MII	(0 << 2)
117 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
118 #define	EMAC_CLK_SRC		(0x3 << 0)
119 #define	 EMAC_CLK_SRC_MII	(0 << 0)
120 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
121 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
122 
123 /* Burst length of RX and TX DMA transfers */
124 static int awg_burst_len = BURST_LEN_DEFAULT;
125 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
126 
127 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
128 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
129 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
130 
131 /* Pause time field in the transmitted control frame */
132 static int awg_pause_time = PAUSE_TIME_DEFAULT;
133 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
134 
135 /* Request a TX interrupt every <n> descriptors */
136 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
137 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
138 
139 /* Maximum number of mbufs to send to if_input */
140 static int awg_rx_batch = RX_BATCH_DEFAULT;
141 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
142 
143 enum awg_type {
144 	EMAC_A83T = 1,
145 	EMAC_H3,
146 	EMAC_A64,
147 };
148 
149 static struct ofw_compat_data compat_data[] = {
150 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
151 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
152 	{ "allwinner,sun50i-a64-emac",		EMAC_A64 },
153 	{ NULL,					0 }
154 };
155 
156 struct awg_bufmap {
157 	bus_dmamap_t		map;
158 	struct mbuf		*mbuf;
159 };
160 
161 struct awg_txring {
162 	bus_dma_tag_t		desc_tag;
163 	bus_dmamap_t		desc_map;
164 	struct emac_desc	*desc_ring;
165 	bus_addr_t		desc_ring_paddr;
166 	bus_dma_tag_t		buf_tag;
167 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
168 	u_int			cur, next, queued;
169 	u_int			segs;
170 };
171 
172 struct awg_rxring {
173 	bus_dma_tag_t		desc_tag;
174 	bus_dmamap_t		desc_map;
175 	struct emac_desc	*desc_ring;
176 	bus_addr_t		desc_ring_paddr;
177 	bus_dma_tag_t		buf_tag;
178 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
179 	bus_dmamap_t		buf_spare_map;
180 	u_int			cur;
181 };
182 
183 enum {
184 	_RES_EMAC,
185 	_RES_IRQ,
186 	_RES_SYSCON,
187 	_RES_NITEMS
188 };
189 
190 struct awg_softc {
191 	struct resource		*res[_RES_NITEMS];
192 	struct mtx		mtx;
193 	if_t			ifp;
194 	device_t		dev;
195 	device_t		miibus;
196 	struct callout		stat_ch;
197 	void			*ih;
198 	u_int			mdc_div_ratio_m;
199 	int			link;
200 	int			if_flags;
201 	enum awg_type		type;
202 	struct syscon		*syscon;
203 
204 	struct awg_txring	tx;
205 	struct awg_rxring	rx;
206 };
207 
208 static struct resource_spec awg_spec[] = {
209 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
210 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
211 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
212 	{ -1, 0 }
213 };
214 
215 static void awg_txeof(struct awg_softc *sc);
216 static void awg_start_locked(struct awg_softc *sc);
217 
218 static void awg_tick(void *softc);
219 
220 static int awg_parse_delay(device_t dev, uint32_t *tx_delay,
221     uint32_t *rx_delay);
222 static uint32_t syscon_read_emac_clk_reg(device_t dev);
223 static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
224 static phandle_t awg_get_phy_node(device_t dev);
225 static bool awg_has_internal_phy(device_t dev);
226 
227 /*
228  * MII functions
229  */
230 
231 static int
232 awg_miibus_readreg(device_t dev, int phy, int reg)
233 {
234 	struct awg_softc *sc;
235 	int retry, val;
236 
237 	sc = device_get_softc(dev);
238 	val = 0;
239 
240 	WR4(sc, EMAC_MII_CMD,
241 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
242 	    (phy << PHY_ADDR_SHIFT) |
243 	    (reg << PHY_REG_ADDR_SHIFT) |
244 	    MII_BUSY);
245 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
246 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
247 			val = RD4(sc, EMAC_MII_DATA);
248 			break;
249 		}
250 		DELAY(10);
251 	}
252 
253 	if (retry == 0)
254 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
255 		    phy, reg);
256 
257 	return (val);
258 }
259 
260 static int
261 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
262 {
263 	struct awg_softc *sc;
264 	int retry;
265 
266 	sc = device_get_softc(dev);
267 
268 	WR4(sc, EMAC_MII_DATA, val);
269 	WR4(sc, EMAC_MII_CMD,
270 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
271 	    (phy << PHY_ADDR_SHIFT) |
272 	    (reg << PHY_REG_ADDR_SHIFT) |
273 	    MII_WR | MII_BUSY);
274 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
275 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
276 			break;
277 		DELAY(10);
278 	}
279 
280 	if (retry == 0)
281 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
282 		    phy, reg);
283 
284 	return (0);
285 }
286 
287 static void
288 awg_miibus_statchg(device_t dev)
289 {
290 	struct awg_softc *sc;
291 	struct mii_data *mii;
292 	uint32_t val;
293 
294 	sc = device_get_softc(dev);
295 
296 	AWG_ASSERT_LOCKED(sc);
297 
298 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
299 		return;
300 	mii = device_get_softc(sc->miibus);
301 
302 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
303 	    (IFM_ACTIVE | IFM_AVALID)) {
304 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
305 		case IFM_1000_T:
306 		case IFM_1000_SX:
307 		case IFM_100_TX:
308 		case IFM_10_T:
309 			sc->link = 1;
310 			break;
311 		default:
312 			sc->link = 0;
313 			break;
314 		}
315 	} else
316 		sc->link = 0;
317 
318 	if (sc->link == 0)
319 		return;
320 
321 	val = RD4(sc, EMAC_BASIC_CTL_0);
322 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
323 
324 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
325 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
326 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
327 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
328 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
329 	else
330 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
331 
332 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
333 		val |= BASIC_CTL_DUPLEX;
334 
335 	WR4(sc, EMAC_BASIC_CTL_0, val);
336 
337 	val = RD4(sc, EMAC_RX_CTL_0);
338 	val &= ~RX_FLOW_CTL_EN;
339 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
340 		val |= RX_FLOW_CTL_EN;
341 	WR4(sc, EMAC_RX_CTL_0, val);
342 
343 	val = RD4(sc, EMAC_TX_FLOW_CTL);
344 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
345 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
346 		val |= TX_FLOW_CTL_EN;
347 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
348 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
349 	WR4(sc, EMAC_TX_FLOW_CTL, val);
350 }
351 
352 /*
353  * Media functions
354  */
355 
356 static void
357 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
358 {
359 	struct awg_softc *sc;
360 	struct mii_data *mii;
361 
362 	sc = if_getsoftc(ifp);
363 	mii = device_get_softc(sc->miibus);
364 
365 	AWG_LOCK(sc);
366 	mii_pollstat(mii);
367 	ifmr->ifm_active = mii->mii_media_active;
368 	ifmr->ifm_status = mii->mii_media_status;
369 	AWG_UNLOCK(sc);
370 }
371 
372 static int
373 awg_media_change(if_t ifp)
374 {
375 	struct awg_softc *sc;
376 	struct mii_data *mii;
377 	int error;
378 
379 	sc = if_getsoftc(ifp);
380 	mii = device_get_softc(sc->miibus);
381 
382 	AWG_LOCK(sc);
383 	error = mii_mediachg(mii);
384 	AWG_UNLOCK(sc);
385 
386 	return (error);
387 }
388 
389 /*
390  * Core functions
391  */
392 
393 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
394 static uint32_t
395 bitrev32(uint32_t x)
396 {
397 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
398 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
399 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
400 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
401 
402 	return (x >> 16) | (x << 16);
403 }
404 
405 static u_int
406 awg_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
407 {
408 	uint32_t crc, hashreg, hashbit, *hash = arg;
409 
410 	crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7f;
411 	crc = bitrev32(~crc) >> 26;
412 	hashreg = (crc >> 5);
413 	hashbit = (crc & 0x1f);
414 	hash[hashreg] |= (1 << hashbit);
415 
416 	return (1);
417 }
418 
419 static void
420 awg_setup_rxfilter(struct awg_softc *sc)
421 {
422 	uint32_t val, hash[2], machi, maclo;
423 	uint8_t *eaddr;
424 	if_t ifp;
425 
426 	AWG_ASSERT_LOCKED(sc);
427 
428 	ifp = sc->ifp;
429 	val = 0;
430 	hash[0] = hash[1] = 0;
431 
432 	if (if_getflags(ifp) & IFF_PROMISC)
433 		val |= DIS_ADDR_FILTER;
434 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
435 		val |= RX_ALL_MULTICAST;
436 		hash[0] = hash[1] = ~0;
437 	} else if (if_foreach_llmaddr(ifp, awg_hash_maddr, hash) > 0)
438 		val |= HASH_MULTICAST;
439 
440 	/* Write our unicast address */
441 	eaddr = if_getlladdr(ifp);
442 	machi = (eaddr[5] << 8) | eaddr[4];
443 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
444 	   (eaddr[0] << 0);
445 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
446 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
447 
448 	/* Multicast hash filters */
449 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
450 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
451 
452 	/* RX frame filter config */
453 	WR4(sc, EMAC_RX_FRM_FLT, val);
454 }
455 
456 static void
457 awg_setup_core(struct awg_softc *sc)
458 {
459 	uint32_t val;
460 
461 	AWG_ASSERT_LOCKED(sc);
462 	/* Configure DMA burst length and priorities */
463 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
464 	if (awg_rx_tx_pri)
465 		val |= BASIC_CTL_RX_TX_PRI;
466 	WR4(sc, EMAC_BASIC_CTL_1, val);
467 
468 }
469 
470 static void
471 awg_enable_mac(struct awg_softc *sc, bool enable)
472 {
473 	uint32_t tx, rx;
474 
475 	AWG_ASSERT_LOCKED(sc);
476 
477 	tx = RD4(sc, EMAC_TX_CTL_0);
478 	rx = RD4(sc, EMAC_RX_CTL_0);
479 	if (enable) {
480 		tx |= TX_EN;
481 		rx |= RX_EN | CHECK_CRC;
482 	} else {
483 		tx &= ~TX_EN;
484 		rx &= ~(RX_EN | CHECK_CRC);
485 	}
486 
487 	WR4(sc, EMAC_TX_CTL_0, tx);
488 	WR4(sc, EMAC_RX_CTL_0, rx);
489 }
490 
491 static void
492 awg_get_eaddr(device_t dev, uint8_t *eaddr)
493 {
494 	struct awg_softc *sc;
495 	uint32_t maclo, machi, rnd;
496 	u_char rootkey[16];
497 	uint32_t rootkey_size;
498 
499 	sc = device_get_softc(dev);
500 
501 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
502 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
503 
504 	rootkey_size = sizeof(rootkey);
505 	if (maclo == 0xffffffff && machi == 0xffff) {
506 		/* MAC address in hardware is invalid, create one */
507 		if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
508 		    &rootkey_size) == 0 &&
509 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
510 		     rootkey[15]) != 0) {
511 			/* MAC address is derived from the root key in SID */
512 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
513 				(rootkey[3] << 8) | 0x02;
514 			machi = (rootkey[15] << 8) | rootkey[14];
515 		} else {
516 			/* Create one */
517 			rnd = arc4random();
518 			maclo = 0x00f2 | (rnd & 0xffff0000);
519 			machi = rnd & 0xffff;
520 		}
521 	}
522 
523 	eaddr[0] = maclo & 0xff;
524 	eaddr[1] = (maclo >> 8) & 0xff;
525 	eaddr[2] = (maclo >> 16) & 0xff;
526 	eaddr[3] = (maclo >> 24) & 0xff;
527 	eaddr[4] = machi & 0xff;
528 	eaddr[5] = (machi >> 8) & 0xff;
529 }
530 
531 /*
532  * DMA functions
533  */
534 
535 static void
536 awg_enable_dma_intr(struct awg_softc *sc)
537 {
538 	/* Enable interrupts */
539 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
540 }
541 
542 static void
543 awg_disable_dma_intr(struct awg_softc *sc)
544 {
545 	/* Disable interrupts */
546 	WR4(sc, EMAC_INT_EN, 0);
547 }
548 
549 static void
550 awg_init_dma(struct awg_softc *sc)
551 {
552 	uint32_t val;
553 
554 	AWG_ASSERT_LOCKED(sc);
555 
556 	/* Enable interrupts */
557 #ifdef DEVICE_POLLING
558 	if ((if_getcapenable(sc->ifp) & IFCAP_POLLING) == 0)
559 		awg_enable_dma_intr(sc);
560 	else
561 		awg_disable_dma_intr(sc);
562 #else
563 	awg_enable_dma_intr(sc);
564 #endif
565 
566 	/* Enable transmit DMA */
567 	val = RD4(sc, EMAC_TX_CTL_1);
568 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
569 
570 	/* Enable receive DMA */
571 	val = RD4(sc, EMAC_RX_CTL_1);
572 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
573 }
574 
575 static void
576 awg_stop_dma(struct awg_softc *sc)
577 {
578 	uint32_t val;
579 
580 	AWG_ASSERT_LOCKED(sc);
581 
582 	/* Stop transmit DMA and flush data in the TX FIFO */
583 	val = RD4(sc, EMAC_TX_CTL_1);
584 	val &= ~TX_DMA_EN;
585 	val |= FLUSH_TX_FIFO;
586 	WR4(sc, EMAC_TX_CTL_1, val);
587 
588 	/* Disable interrupts */
589 	awg_disable_dma_intr(sc);
590 
591 	/* Disable transmit DMA */
592 	val = RD4(sc, EMAC_TX_CTL_1);
593 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
594 
595 	/* Disable receive DMA */
596 	val = RD4(sc, EMAC_RX_CTL_1);
597 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
598 }
599 
600 static int
601 awg_encap(struct awg_softc *sc, struct mbuf **mp)
602 {
603 	bus_dmamap_t map;
604 	bus_dma_segment_t segs[TX_MAX_SEGS];
605 	int error, nsegs, cur, first, last, i;
606 	u_int csum_flags;
607 	uint32_t flags, status;
608 	struct mbuf *m;
609 
610 	cur = first = sc->tx.cur;
611 	map = sc->tx.buf_map[first].map;
612 
613 	m = *mp;
614 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
615 	    &nsegs, BUS_DMA_NOWAIT);
616 	if (error == EFBIG) {
617 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
618 		if (m == NULL) {
619 			device_printf(sc->dev, "awg_encap: m_collapse failed\n");
620 			m_freem(*mp);
621 			*mp = NULL;
622 			return (ENOMEM);
623 		}
624 		*mp = m;
625 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
626 		    segs, &nsegs, BUS_DMA_NOWAIT);
627 		if (error != 0) {
628 			m_freem(*mp);
629 			*mp = NULL;
630 		}
631 	}
632 	if (error != 0) {
633 		device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
634 		return (error);
635 	}
636 	if (nsegs == 0) {
637 		m_freem(*mp);
638 		*mp = NULL;
639 		return (EIO);
640 	}
641 
642 	if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
643 		bus_dmamap_unload(sc->tx.buf_tag, map);
644 		return (ENOBUFS);
645 	}
646 
647 	bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
648 
649 	flags = TX_FIR_DESC;
650 	status = 0;
651 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
652 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
653 			csum_flags = TX_CHECKSUM_CTL_FULL;
654 		else
655 			csum_flags = TX_CHECKSUM_CTL_IP;
656 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
657 	}
658 
659 	for (i = 0; i < nsegs; i++) {
660 		sc->tx.segs++;
661 		if (i == nsegs - 1) {
662 			flags |= TX_LAST_DESC;
663 			/*
664 			 * Can only request TX completion
665 			 * interrupt on last descriptor.
666 			 */
667 			if (sc->tx.segs >= awg_tx_interval) {
668 				sc->tx.segs = 0;
669 				flags |= TX_INT_CTL;
670 			}
671 		}
672 
673 		sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
674 		sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
675 		sc->tx.desc_ring[cur].status = htole32(status);
676 
677 		flags &= ~TX_FIR_DESC;
678 		/*
679 		 * Setting of the valid bit in the first descriptor is
680 		 * deferred until the whole chain is fully set up.
681 		 */
682 		status = TX_DESC_CTL;
683 
684 		++sc->tx.queued;
685 		cur = TX_NEXT(cur);
686 	}
687 
688 	sc->tx.cur = cur;
689 
690 	/* Store mapping and mbuf in the last segment */
691 	last = TX_SKIP(cur, TX_DESC_COUNT - 1);
692 	sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
693 	sc->tx.buf_map[last].map = map;
694 	sc->tx.buf_map[last].mbuf = m;
695 
696 	/*
697 	 * The whole mbuf chain has been DMA mapped,
698 	 * fix the first descriptor.
699 	 */
700 	sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
701 
702 	return (0);
703 }
704 
705 static void
706 awg_clean_txbuf(struct awg_softc *sc, int index)
707 {
708 	struct awg_bufmap *bmap;
709 
710 	--sc->tx.queued;
711 
712 	bmap = &sc->tx.buf_map[index];
713 	if (bmap->mbuf != NULL) {
714 		bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
715 		    BUS_DMASYNC_POSTWRITE);
716 		bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
717 		m_freem(bmap->mbuf);
718 		bmap->mbuf = NULL;
719 	}
720 }
721 
722 static void
723 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
724 {
725 	uint32_t status, size;
726 
727 	status = RX_DESC_CTL;
728 	size = MCLBYTES - 1;
729 
730 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
731 	sc->rx.desc_ring[index].size = htole32(size);
732 	sc->rx.desc_ring[index].status = htole32(status);
733 }
734 
735 static void
736 awg_reuse_rxdesc(struct awg_softc *sc, int index)
737 {
738 
739 	sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
740 }
741 
742 static int
743 awg_newbuf_rx(struct awg_softc *sc, int index)
744 {
745 	struct mbuf *m;
746 	bus_dma_segment_t seg;
747 	bus_dmamap_t map;
748 	int nsegs;
749 
750 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
751 	if (m == NULL)
752 		return (ENOBUFS);
753 
754 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
755 	m_adj(m, ETHER_ALIGN);
756 
757 	if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
758 	    m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
759 		m_freem(m);
760 		return (ENOBUFS);
761 	}
762 
763 	if (sc->rx.buf_map[index].mbuf != NULL) {
764 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
765 		    BUS_DMASYNC_POSTREAD);
766 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
767 	}
768 	map = sc->rx.buf_map[index].map;
769 	sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
770 	sc->rx.buf_spare_map = map;
771 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
772 	    BUS_DMASYNC_PREREAD);
773 
774 	sc->rx.buf_map[index].mbuf = m;
775 	awg_setup_rxdesc(sc, index, seg.ds_addr);
776 
777 	return (0);
778 }
779 
780 static void
781 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
782 {
783 	if (error != 0)
784 		return;
785 	*(bus_addr_t *)arg = segs[0].ds_addr;
786 }
787 
788 static int
789 awg_setup_dma(device_t dev)
790 {
791 	struct awg_softc *sc;
792 	int error, i;
793 
794 	sc = device_get_softc(dev);
795 
796 	/* Setup TX ring */
797 	error = bus_dma_tag_create(
798 	    bus_get_dma_tag(dev),	/* Parent tag */
799 	    DESC_ALIGN, 0,		/* alignment, boundary */
800 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
801 	    BUS_SPACE_MAXADDR,		/* highaddr */
802 	    NULL, NULL,			/* filter, filterarg */
803 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
804 	    TX_DESC_SIZE,		/* maxsegsize */
805 	    0,				/* flags */
806 	    NULL, NULL,			/* lockfunc, lockarg */
807 	    &sc->tx.desc_tag);
808 	if (error != 0) {
809 		device_printf(dev, "cannot create TX descriptor ring tag\n");
810 		return (error);
811 	}
812 
813 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
814 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
815 	if (error != 0) {
816 		device_printf(dev, "cannot allocate TX descriptor ring\n");
817 		return (error);
818 	}
819 
820 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
821 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
822 	    &sc->tx.desc_ring_paddr, 0);
823 	if (error != 0) {
824 		device_printf(dev, "cannot load TX descriptor ring\n");
825 		return (error);
826 	}
827 
828 	for (i = 0; i < TX_DESC_COUNT; i++)
829 		sc->tx.desc_ring[i].next =
830 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
831 
832 	error = bus_dma_tag_create(
833 	    bus_get_dma_tag(dev),	/* Parent tag */
834 	    1, 0,			/* alignment, boundary */
835 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
836 	    BUS_SPACE_MAXADDR,		/* highaddr */
837 	    NULL, NULL,			/* filter, filterarg */
838 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
839 	    MCLBYTES,			/* maxsegsize */
840 	    0,				/* flags */
841 	    NULL, NULL,			/* lockfunc, lockarg */
842 	    &sc->tx.buf_tag);
843 	if (error != 0) {
844 		device_printf(dev, "cannot create TX buffer tag\n");
845 		return (error);
846 	}
847 
848 	sc->tx.queued = 0;
849 	for (i = 0; i < TX_DESC_COUNT; i++) {
850 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
851 		    &sc->tx.buf_map[i].map);
852 		if (error != 0) {
853 			device_printf(dev, "cannot create TX buffer map\n");
854 			return (error);
855 		}
856 	}
857 
858 	/* Setup RX ring */
859 	error = bus_dma_tag_create(
860 	    bus_get_dma_tag(dev),	/* Parent tag */
861 	    DESC_ALIGN, 0,		/* alignment, boundary */
862 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
863 	    BUS_SPACE_MAXADDR,		/* highaddr */
864 	    NULL, NULL,			/* filter, filterarg */
865 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
866 	    RX_DESC_SIZE,		/* maxsegsize */
867 	    0,				/* flags */
868 	    NULL, NULL,			/* lockfunc, lockarg */
869 	    &sc->rx.desc_tag);
870 	if (error != 0) {
871 		device_printf(dev, "cannot create RX descriptor ring tag\n");
872 		return (error);
873 	}
874 
875 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
876 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
877 	if (error != 0) {
878 		device_printf(dev, "cannot allocate RX descriptor ring\n");
879 		return (error);
880 	}
881 
882 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
883 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
884 	    &sc->rx.desc_ring_paddr, 0);
885 	if (error != 0) {
886 		device_printf(dev, "cannot load RX descriptor ring\n");
887 		return (error);
888 	}
889 
890 	error = bus_dma_tag_create(
891 	    bus_get_dma_tag(dev),	/* Parent tag */
892 	    1, 0,			/* alignment, boundary */
893 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
894 	    BUS_SPACE_MAXADDR,		/* highaddr */
895 	    NULL, NULL,			/* filter, filterarg */
896 	    MCLBYTES, 1,		/* maxsize, nsegs */
897 	    MCLBYTES,			/* maxsegsize */
898 	    0,				/* flags */
899 	    NULL, NULL,			/* lockfunc, lockarg */
900 	    &sc->rx.buf_tag);
901 	if (error != 0) {
902 		device_printf(dev, "cannot create RX buffer tag\n");
903 		return (error);
904 	}
905 
906 	error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
907 	if (error != 0) {
908 		device_printf(dev,
909 		    "cannot create RX buffer spare map\n");
910 		return (error);
911 	}
912 
913 	for (i = 0; i < RX_DESC_COUNT; i++) {
914 		sc->rx.desc_ring[i].next =
915 		    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
916 
917 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
918 		    &sc->rx.buf_map[i].map);
919 		if (error != 0) {
920 			device_printf(dev, "cannot create RX buffer map\n");
921 			return (error);
922 		}
923 		sc->rx.buf_map[i].mbuf = NULL;
924 		error = awg_newbuf_rx(sc, i);
925 		if (error != 0) {
926 			device_printf(dev, "cannot create RX buffer\n");
927 			return (error);
928 		}
929 	}
930 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
931 	    BUS_DMASYNC_PREWRITE);
932 
933 	/* Write transmit and receive descriptor base address registers */
934 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
935 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
936 
937 	return (0);
938 }
939 
940 static void
941 awg_dma_start_tx(struct awg_softc *sc)
942 {
943 	uint32_t val;
944 
945 	AWG_ASSERT_LOCKED(sc);
946 
947 	/* Start and run TX DMA */
948 	val = RD4(sc, EMAC_TX_CTL_1);
949 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
950 }
951 
952 /*
953  * if_ functions
954  */
955 
956 static void
957 awg_start_locked(struct awg_softc *sc)
958 {
959 	struct mbuf *m;
960 	if_t ifp;
961 	int cnt, err;
962 
963 	AWG_ASSERT_LOCKED(sc);
964 
965 	if (!sc->link)
966 		return;
967 
968 	ifp = sc->ifp;
969 
970 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
971 	    IFF_DRV_RUNNING)
972 		return;
973 
974 	for (cnt = 0; ; cnt++) {
975 		m = if_dequeue(ifp);
976 		if (m == NULL)
977 			break;
978 
979 		err = awg_encap(sc, &m);
980 		if (err != 0) {
981 			if (err == ENOBUFS)
982 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
983 			if (m != NULL)
984 				if_sendq_prepend(ifp, m);
985 			break;
986 		}
987 		bpf_mtap_if(ifp, m);
988 	}
989 
990 	if (cnt != 0) {
991 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
992 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
993 
994 		awg_dma_start_tx(sc);
995 	}
996 }
997 
998 static void
999 awg_start(if_t ifp)
1000 {
1001 	struct awg_softc *sc;
1002 
1003 	sc = if_getsoftc(ifp);
1004 
1005 	AWG_LOCK(sc);
1006 	awg_start_locked(sc);
1007 	AWG_UNLOCK(sc);
1008 }
1009 
1010 static void
1011 awg_init_locked(struct awg_softc *sc)
1012 {
1013 	struct mii_data *mii;
1014 	if_t ifp;
1015 
1016 	mii = device_get_softc(sc->miibus);
1017 	ifp = sc->ifp;
1018 
1019 	AWG_ASSERT_LOCKED(sc);
1020 
1021 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1022 		return;
1023 
1024 	awg_setup_rxfilter(sc);
1025 	awg_setup_core(sc);
1026 	awg_enable_mac(sc, true);
1027 	awg_init_dma(sc);
1028 
1029 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
1030 
1031 	mii_mediachg(mii);
1032 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
1033 }
1034 
1035 static void
1036 awg_init(void *softc)
1037 {
1038 	struct awg_softc *sc;
1039 
1040 	sc = softc;
1041 
1042 	AWG_LOCK(sc);
1043 	awg_init_locked(sc);
1044 	AWG_UNLOCK(sc);
1045 }
1046 
1047 static void
1048 awg_stop(struct awg_softc *sc)
1049 {
1050 	if_t ifp;
1051 	uint32_t val;
1052 	int i;
1053 
1054 	AWG_ASSERT_LOCKED(sc);
1055 
1056 	ifp = sc->ifp;
1057 
1058 	callout_stop(&sc->stat_ch);
1059 
1060 	awg_stop_dma(sc);
1061 	awg_enable_mac(sc, false);
1062 
1063 	sc->link = 0;
1064 
1065 	/* Finish handling transmitted buffers */
1066 	awg_txeof(sc);
1067 
1068 	/* Release any untransmitted buffers. */
1069 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
1070 		val = le32toh(sc->tx.desc_ring[i].status);
1071 		if ((val & TX_DESC_CTL) != 0)
1072 			break;
1073 		awg_clean_txbuf(sc, i);
1074 	}
1075 	sc->tx.next = i;
1076 	for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
1077 		sc->tx.desc_ring[i].status = 0;
1078 		awg_clean_txbuf(sc, i);
1079 	}
1080 	sc->tx.cur = sc->tx.next;
1081 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
1082 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1083 
1084 	/* Setup RX buffers for reuse */
1085 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1086 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1087 
1088 	for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
1089 		val = le32toh(sc->rx.desc_ring[i].status);
1090 		if ((val & RX_DESC_CTL) != 0)
1091 			break;
1092 		awg_reuse_rxdesc(sc, i);
1093 	}
1094 	sc->rx.cur = i;
1095 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1096 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1097 
1098 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1099 }
1100 
1101 static int
1102 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
1103 {
1104 	struct awg_softc *sc;
1105 	struct mii_data *mii;
1106 	struct ifreq *ifr;
1107 	int flags, mask, error;
1108 
1109 	sc = if_getsoftc(ifp);
1110 	mii = device_get_softc(sc->miibus);
1111 	ifr = (struct ifreq *)data;
1112 	error = 0;
1113 
1114 	switch (cmd) {
1115 	case SIOCSIFFLAGS:
1116 		AWG_LOCK(sc);
1117 		if (if_getflags(ifp) & IFF_UP) {
1118 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1119 				flags = if_getflags(ifp) ^ sc->if_flags;
1120 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
1121 					awg_setup_rxfilter(sc);
1122 			} else
1123 				awg_init_locked(sc);
1124 		} else {
1125 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1126 				awg_stop(sc);
1127 		}
1128 		sc->if_flags = if_getflags(ifp);
1129 		AWG_UNLOCK(sc);
1130 		break;
1131 	case SIOCADDMULTI:
1132 	case SIOCDELMULTI:
1133 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1134 			AWG_LOCK(sc);
1135 			awg_setup_rxfilter(sc);
1136 			AWG_UNLOCK(sc);
1137 		}
1138 		break;
1139 	case SIOCSIFMEDIA:
1140 	case SIOCGIFMEDIA:
1141 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1142 		break;
1143 	case SIOCSIFCAP:
1144 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1145 #ifdef DEVICE_POLLING
1146 		if (mask & IFCAP_POLLING) {
1147 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1148 				error = ether_poll_register(awg_poll, ifp);
1149 				if (error != 0)
1150 					break;
1151 				AWG_LOCK(sc);
1152 				awg_disable_dma_intr(sc);
1153 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1154 				AWG_UNLOCK(sc);
1155 			} else {
1156 				error = ether_poll_deregister(ifp);
1157 				AWG_LOCK(sc);
1158 				awg_enable_dma_intr(sc);
1159 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1160 				AWG_UNLOCK(sc);
1161 			}
1162 		}
1163 #endif
1164 		if (mask & IFCAP_VLAN_MTU)
1165 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1166 		if (mask & IFCAP_RXCSUM)
1167 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1168 		if (mask & IFCAP_TXCSUM)
1169 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1170 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1171 			if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
1172 		else
1173 			if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
1174 		break;
1175 	default:
1176 		error = ether_ioctl(ifp, cmd, data);
1177 		break;
1178 	}
1179 
1180 	return (error);
1181 }
1182 
1183 /*
1184  * Interrupts functions
1185  */
1186 
1187 static int
1188 awg_rxintr(struct awg_softc *sc)
1189 {
1190 	if_t ifp;
1191 	struct mbuf *m, *mh, *mt;
1192 	int error, index, len, cnt, npkt;
1193 	uint32_t status;
1194 
1195 	ifp = sc->ifp;
1196 	mh = mt = NULL;
1197 	cnt = 0;
1198 	npkt = 0;
1199 
1200 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1201 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1202 
1203 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
1204 		status = le32toh(sc->rx.desc_ring[index].status);
1205 		if ((status & RX_DESC_CTL) != 0)
1206 			break;
1207 
1208 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
1209 
1210 		if (len == 0) {
1211 			if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
1212 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1213 			awg_reuse_rxdesc(sc, index);
1214 			continue;
1215 		}
1216 
1217 		m = sc->rx.buf_map[index].mbuf;
1218 
1219 		error = awg_newbuf_rx(sc, index);
1220 		if (error != 0) {
1221 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1222 			awg_reuse_rxdesc(sc, index);
1223 			continue;
1224 		}
1225 
1226 		m->m_pkthdr.rcvif = ifp;
1227 		m->m_pkthdr.len = len;
1228 		m->m_len = len;
1229 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1230 
1231 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
1232 		    (status & RX_FRM_TYPE) != 0) {
1233 			m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
1234 			if ((status & RX_HEADER_ERR) == 0)
1235 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1236 			if ((status & RX_PAYLOAD_ERR) == 0) {
1237 				m->m_pkthdr.csum_flags |=
1238 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1239 				m->m_pkthdr.csum_data = 0xffff;
1240 			}
1241 		}
1242 
1243 		m->m_nextpkt = NULL;
1244 		if (mh == NULL)
1245 			mh = m;
1246 		else
1247 			mt->m_nextpkt = m;
1248 		mt = m;
1249 		++cnt;
1250 		++npkt;
1251 
1252 		if (cnt == awg_rx_batch) {
1253 			AWG_UNLOCK(sc);
1254 			if_input(ifp, mh);
1255 			AWG_LOCK(sc);
1256 			mh = mt = NULL;
1257 			cnt = 0;
1258 		}
1259 	}
1260 
1261 	if (index != sc->rx.cur) {
1262 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1263 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1264 	}
1265 
1266 	if (mh != NULL) {
1267 		AWG_UNLOCK(sc);
1268 		if_input(ifp, mh);
1269 		AWG_LOCK(sc);
1270 	}
1271 
1272 	sc->rx.cur = index;
1273 
1274 	return (npkt);
1275 }
1276 
1277 static void
1278 awg_txeof(struct awg_softc *sc)
1279 {
1280 	struct emac_desc *desc;
1281 	uint32_t status, size;
1282 	if_t ifp;
1283 	int i, prog;
1284 
1285 	AWG_ASSERT_LOCKED(sc);
1286 
1287 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
1288 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1289 
1290 	ifp = sc->ifp;
1291 
1292 	prog = 0;
1293 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
1294 		desc = &sc->tx.desc_ring[i];
1295 		status = le32toh(desc->status);
1296 		if ((status & TX_DESC_CTL) != 0)
1297 			break;
1298 		size = le32toh(desc->size);
1299 		if (size & TX_LAST_DESC) {
1300 			if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
1301 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1302 			else
1303 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1304 		}
1305 		prog++;
1306 		awg_clean_txbuf(sc, i);
1307 	}
1308 
1309 	if (prog > 0) {
1310 		sc->tx.next = i;
1311 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1312 	}
1313 }
1314 
1315 static void
1316 awg_intr(void *arg)
1317 {
1318 	struct awg_softc *sc;
1319 	uint32_t val;
1320 
1321 	sc = arg;
1322 
1323 	AWG_LOCK(sc);
1324 	val = RD4(sc, EMAC_INT_STA);
1325 	WR4(sc, EMAC_INT_STA, val);
1326 
1327 	if (val & RX_INT)
1328 		awg_rxintr(sc);
1329 
1330 	if (val & TX_INT)
1331 		awg_txeof(sc);
1332 
1333 	if (val & (TX_INT | TX_BUF_UA_INT)) {
1334 		if (!if_sendq_empty(sc->ifp))
1335 			awg_start_locked(sc);
1336 	}
1337 
1338 	AWG_UNLOCK(sc);
1339 }
1340 
1341 #ifdef DEVICE_POLLING
1342 static int
1343 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
1344 {
1345 	struct awg_softc *sc;
1346 	uint32_t val;
1347 	int rx_npkts;
1348 
1349 	sc = if_getsoftc(ifp);
1350 	rx_npkts = 0;
1351 
1352 	AWG_LOCK(sc);
1353 
1354 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1355 		AWG_UNLOCK(sc);
1356 		return (0);
1357 	}
1358 
1359 	rx_npkts = awg_rxintr(sc);
1360 	awg_txeof(sc);
1361 	if (!if_sendq_empty(ifp))
1362 		awg_start_locked(sc);
1363 
1364 	if (cmd == POLL_AND_CHECK_STATUS) {
1365 		val = RD4(sc, EMAC_INT_STA);
1366 		if (val != 0)
1367 			WR4(sc, EMAC_INT_STA, val);
1368 	}
1369 
1370 	AWG_UNLOCK(sc);
1371 
1372 	return (rx_npkts);
1373 }
1374 #endif
1375 
1376 /*
1377  * syscon functions
1378  */
1379 static uint32_t
1380 syscon_read_emac_clk_reg(device_t dev)
1381 {
1382 	struct awg_softc *sc;
1383 
1384 	sc = device_get_softc(dev);
1385 	if (sc->syscon != NULL)
1386 		return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
1387 	else if (sc->res[_RES_SYSCON] != NULL)
1388 		return (bus_read_4(sc->res[_RES_SYSCON], 0));
1389 
1390 	return (0);
1391 }
1392 
1393 static void
1394 syscon_write_emac_clk_reg(device_t dev, uint32_t val)
1395 {
1396 	struct awg_softc *sc;
1397 
1398 	sc = device_get_softc(dev);
1399 	if (sc->syscon != NULL)
1400 		SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
1401 	else if (sc->res[_RES_SYSCON] != NULL)
1402 		bus_write_4(sc->res[_RES_SYSCON], 0, val);
1403 }
1404 
1405 /*
1406  * PHY functions
1407  */
1408 
1409 static phandle_t
1410 awg_get_phy_node(device_t dev)
1411 {
1412 	phandle_t node;
1413 	pcell_t phy_handle;
1414 
1415 	node = ofw_bus_get_node(dev);
1416 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
1417 	    sizeof(phy_handle)) <= 0)
1418 		return (0);
1419 
1420 	return (OF_node_from_xref(phy_handle));
1421 }
1422 
1423 static bool
1424 awg_has_internal_phy(device_t dev)
1425 {
1426 	phandle_t node, phy_node;
1427 
1428 	node = ofw_bus_get_node(dev);
1429 	/* Legacy binding */
1430 	if (OF_hasprop(node, "allwinner,use-internal-phy"))
1431 		return (true);
1432 
1433 	phy_node = awg_get_phy_node(dev);
1434 	return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
1435 	    "allwinner,sun8i-h3-mdio-internal") != 0);
1436 }
1437 
1438 static int
1439 awg_parse_delay(device_t dev, uint32_t *tx_delay, uint32_t *rx_delay)
1440 {
1441 	phandle_t node;
1442 	uint32_t delay;
1443 
1444 	if (tx_delay == NULL || rx_delay == NULL)
1445 		return (EINVAL);
1446 	*tx_delay = *rx_delay = 0;
1447 	node = ofw_bus_get_node(dev);
1448 
1449 	if (OF_getencprop(node, "tx-delay", &delay, sizeof(delay)) >= 0)
1450 		*tx_delay = delay;
1451 	else if (OF_getencprop(node, "allwinner,tx-delay-ps", &delay,
1452 	    sizeof(delay)) >= 0) {
1453 		if ((delay % 100) != 0) {
1454 			device_printf(dev, "tx-delay-ps is not a multiple of 100\n");
1455 			return (EDOM);
1456 		}
1457 		*tx_delay = delay / 100;
1458 	}
1459 	if (*tx_delay > 7) {
1460 		device_printf(dev, "tx-delay out of range\n");
1461 		return (ERANGE);
1462 	}
1463 
1464 	if (OF_getencprop(node, "rx-delay", &delay, sizeof(delay)) >= 0)
1465 		*rx_delay = delay;
1466 	else if (OF_getencprop(node, "allwinner,rx-delay-ps", &delay,
1467 	    sizeof(delay)) >= 0) {
1468 		if ((delay % 100) != 0) {
1469 			device_printf(dev, "rx-delay-ps is not within documented domain\n");
1470 			return (EDOM);
1471 		}
1472 		*rx_delay = delay / 100;
1473 	}
1474 	if (*rx_delay > 31) {
1475 		device_printf(dev, "rx-delay out of range\n");
1476 		return (ERANGE);
1477 	}
1478 
1479 	return (0);
1480 }
1481 
1482 static int
1483 awg_setup_phy(device_t dev)
1484 {
1485 	struct awg_softc *sc;
1486 	clk_t clk_tx, clk_tx_parent;
1487 	const char *tx_parent_name;
1488 	char *phy_type;
1489 	phandle_t node;
1490 	uint32_t reg, tx_delay, rx_delay;
1491 	int error;
1492 	bool use_syscon;
1493 
1494 	sc = device_get_softc(dev);
1495 	node = ofw_bus_get_node(dev);
1496 	use_syscon = false;
1497 
1498 	if (OF_getprop_alloc(node, "phy-mode", (void **)&phy_type) == 0)
1499 		return (0);
1500 
1501 	if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
1502 		use_syscon = true;
1503 
1504 	if (bootverbose)
1505 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1506 		    use_syscon ? "reg" : "clk");
1507 
1508 	if (use_syscon) {
1509 		/*
1510 		 * Abstract away writing to syscon for devices like the pine64.
1511 		 * For the pine64, we get dtb from U-Boot and it still uses the
1512 		 * legacy setup of specifying syscon register in emac node
1513 		 * rather than as its own node and using an xref in emac.
1514 		 * These abstractions can go away once U-Boot dts is up-to-date.
1515 		 */
1516 		reg = syscon_read_emac_clk_reg(dev);
1517 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1518 		if (strncmp(phy_type, "rgmii", 5) == 0)
1519 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1520 		else if (strcmp(phy_type, "rmii") == 0)
1521 			reg |= EMAC_CLK_RMII_EN;
1522 		else
1523 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1524 
1525 		/*
1526 		 * Fail attach if we fail to parse either of the delay
1527 		 * parameters. If we don't have the proper delay to write to
1528 		 * syscon, then awg likely won't function properly anyways.
1529 		 * Lack of delay is not an error!
1530 		 */
1531 		error = awg_parse_delay(dev, &tx_delay, &rx_delay);
1532 		if (error != 0)
1533 			goto fail;
1534 
1535 		/* Default to 0 and we'll increase it if we need to. */
1536 		reg &= ~(EMAC_CLK_ETXDC | EMAC_CLK_ERXDC);
1537 		if (tx_delay > 0)
1538 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1539 		if (rx_delay > 0)
1540 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1541 
1542 		if (sc->type == EMAC_H3) {
1543 			if (awg_has_internal_phy(dev)) {
1544 				reg |= EMAC_CLK_EPHY_SELECT;
1545 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1546 				if (OF_hasprop(node,
1547 				    "allwinner,leds-active-low"))
1548 					reg |= EMAC_CLK_EPHY_LED_POL;
1549 				else
1550 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1551 
1552 				/* Set internal PHY addr to 1 */
1553 				reg &= ~EMAC_CLK_EPHY_ADDR;
1554 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1555 			} else {
1556 				reg &= ~EMAC_CLK_EPHY_SELECT;
1557 			}
1558 		}
1559 
1560 		if (bootverbose)
1561 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1562 		syscon_write_emac_clk_reg(dev, reg);
1563 	} else {
1564 		if (strncmp(phy_type, "rgmii", 5) == 0)
1565 			tx_parent_name = "emac_int_tx";
1566 		else
1567 			tx_parent_name = "mii_phy_tx";
1568 
1569 		/* Get the TX clock */
1570 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1571 		if (error != 0) {
1572 			device_printf(dev, "cannot get tx clock\n");
1573 			goto fail;
1574 		}
1575 
1576 		/* Find the desired parent clock based on phy-mode property */
1577 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1578 		if (error != 0) {
1579 			device_printf(dev, "cannot get clock '%s'\n",
1580 			    tx_parent_name);
1581 			goto fail;
1582 		}
1583 
1584 		/* Set TX clock parent */
1585 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1586 		if (error != 0) {
1587 			device_printf(dev, "cannot set tx clock parent\n");
1588 			goto fail;
1589 		}
1590 
1591 		/* Enable TX clock */
1592 		error = clk_enable(clk_tx);
1593 		if (error != 0) {
1594 			device_printf(dev, "cannot enable tx clock\n");
1595 			goto fail;
1596 		}
1597 	}
1598 
1599 	error = 0;
1600 
1601 fail:
1602 	OF_prop_free(phy_type);
1603 	return (error);
1604 }
1605 
1606 static int
1607 awg_setup_extres(device_t dev)
1608 {
1609 	struct awg_softc *sc;
1610 	phandle_t node, phy_node;
1611 	hwreset_t rst_ahb, rst_ephy;
1612 	clk_t clk_ahb, clk_ephy;
1613 	regulator_t reg;
1614 	uint64_t freq;
1615 	int error, div;
1616 
1617 	sc = device_get_softc(dev);
1618 	rst_ahb = rst_ephy = NULL;
1619 	clk_ahb = clk_ephy = NULL;
1620 	reg = NULL;
1621 	node = ofw_bus_get_node(dev);
1622 	phy_node = awg_get_phy_node(dev);
1623 
1624 	if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
1625 		error = ENXIO;
1626 		device_printf(dev, "cannot get phy handle\n");
1627 		goto fail;
1628 	}
1629 
1630 	/* Get AHB clock and reset resources */
1631 	error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
1632 	if (error != 0)
1633 		error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1634 	if (error != 0) {
1635 		device_printf(dev, "cannot get ahb reset\n");
1636 		goto fail;
1637 	}
1638 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1639 		if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
1640 		    &rst_ephy) != 0)
1641 			rst_ephy = NULL;
1642 	error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
1643 	if (error != 0)
1644 		error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1645 	if (error != 0) {
1646 		device_printf(dev, "cannot get ahb clock\n");
1647 		goto fail;
1648 	}
1649 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1650 		if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
1651 		    &clk_ephy) != 0)
1652 			clk_ephy = NULL;
1653 
1654 	if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
1655 	    "syscon", &sc->syscon) != 0) {
1656 		device_printf(dev, "cannot get syscon driver handle\n");
1657 		goto fail;
1658 	}
1659 
1660 	/* Configure PHY for MII or RGMII mode */
1661 	if (awg_setup_phy(dev) != 0)
1662 		goto fail;
1663 
1664 	/* Enable clocks */
1665 	error = clk_enable(clk_ahb);
1666 	if (error != 0) {
1667 		device_printf(dev, "cannot enable ahb clock\n");
1668 		goto fail;
1669 	}
1670 	if (clk_ephy != NULL) {
1671 		error = clk_enable(clk_ephy);
1672 		if (error != 0) {
1673 			device_printf(dev, "cannot enable ephy clock\n");
1674 			goto fail;
1675 		}
1676 	}
1677 
1678 	/* De-assert reset */
1679 	error = hwreset_deassert(rst_ahb);
1680 	if (error != 0) {
1681 		device_printf(dev, "cannot de-assert ahb reset\n");
1682 		goto fail;
1683 	}
1684 	if (rst_ephy != NULL) {
1685 		/*
1686 		 * The ephy reset is left de-asserted by U-Boot.  Assert it
1687 		 * here to make sure that we're in a known good state going
1688 		 * into the PHY reset.
1689 		 */
1690 		hwreset_assert(rst_ephy);
1691 		error = hwreset_deassert(rst_ephy);
1692 		if (error != 0) {
1693 			device_printf(dev, "cannot de-assert ephy reset\n");
1694 			goto fail;
1695 		}
1696 	}
1697 
1698 	/* Enable PHY regulator if applicable */
1699 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1700 		error = regulator_enable(reg);
1701 		if (error != 0) {
1702 			device_printf(dev, "cannot enable PHY regulator\n");
1703 			goto fail;
1704 		}
1705 	}
1706 
1707 	/* Determine MDC clock divide ratio based on AHB clock */
1708 	error = clk_get_freq(clk_ahb, &freq);
1709 	if (error != 0) {
1710 		device_printf(dev, "cannot get AHB clock frequency\n");
1711 		goto fail;
1712 	}
1713 	div = freq / MDIO_FREQ;
1714 	if (div <= 16)
1715 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1716 	else if (div <= 32)
1717 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1718 	else if (div <= 64)
1719 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1720 	else if (div <= 128)
1721 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1722 	else {
1723 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1724 		error = ENXIO;
1725 		goto fail;
1726 	}
1727 
1728 	if (bootverbose)
1729 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1730 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1731 
1732 	return (0);
1733 
1734 fail:
1735 	if (reg != NULL)
1736 		regulator_release(reg);
1737 	if (clk_ephy != NULL)
1738 		clk_release(clk_ephy);
1739 	if (clk_ahb != NULL)
1740 		clk_release(clk_ahb);
1741 	if (rst_ephy != NULL)
1742 		hwreset_release(rst_ephy);
1743 	if (rst_ahb != NULL)
1744 		hwreset_release(rst_ahb);
1745 	return (error);
1746 }
1747 
1748 #ifdef AWG_DEBUG
1749 static void
1750 awg_dump_regs(device_t dev)
1751 {
1752 	static const struct {
1753 		const char *name;
1754 		u_int reg;
1755 	} regs[] = {
1756 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1757 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1758 		{ "INT_STA", EMAC_INT_STA },
1759 		{ "INT_EN", EMAC_INT_EN },
1760 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1761 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1762 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1763 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1764 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1765 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1766 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1767 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1768 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1769 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1770 		{ "MII_CMD", EMAC_MII_CMD },
1771 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1772 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1773 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1774 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1775 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1776 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1777 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1778 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1779 		{ "RGMII_STA", EMAC_RGMII_STA },
1780 	};
1781 	struct awg_softc *sc;
1782 	unsigned int n;
1783 
1784 	sc = device_get_softc(dev);
1785 
1786 	for (n = 0; n < nitems(regs); n++)
1787 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1788 		    RD4(sc, regs[n].reg));
1789 }
1790 #endif
1791 
1792 #define	GPIO_ACTIVE_LOW		1
1793 
1794 static int
1795 awg_phy_reset(device_t dev)
1796 {
1797 	pcell_t gpio_prop[4], delay_prop[3];
1798 	phandle_t node, gpio_node;
1799 	device_t gpio;
1800 	uint32_t pin, flags;
1801 	uint32_t pin_value;
1802 
1803 	node = ofw_bus_get_node(dev);
1804 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1805 	    sizeof(gpio_prop)) <= 0)
1806 		return (0);
1807 
1808 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1809 	    sizeof(delay_prop)) <= 0)
1810 		return (ENXIO);
1811 
1812 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1813 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1814 		return (ENXIO);
1815 
1816 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1817 	    gpio_prop + 1, &pin, &flags) != 0)
1818 		return (ENXIO);
1819 
1820 	pin_value = GPIO_PIN_LOW;
1821 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1822 		pin_value = GPIO_PIN_HIGH;
1823 
1824 	if (flags & GPIO_ACTIVE_LOW)
1825 		pin_value = !pin_value;
1826 
1827 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1828 	GPIO_PIN_SET(gpio, pin, pin_value);
1829 	DELAY(delay_prop[0]);
1830 	GPIO_PIN_SET(gpio, pin, !pin_value);
1831 	DELAY(delay_prop[1]);
1832 	GPIO_PIN_SET(gpio, pin, pin_value);
1833 	DELAY(delay_prop[2]);
1834 
1835 	return (0);
1836 }
1837 
1838 static int
1839 awg_reset(device_t dev)
1840 {
1841 	struct awg_softc *sc;
1842 	int retry;
1843 
1844 	sc = device_get_softc(dev);
1845 
1846 	/* Reset PHY if necessary */
1847 	if (awg_phy_reset(dev) != 0) {
1848 		device_printf(dev, "failed to reset PHY\n");
1849 		return (ENXIO);
1850 	}
1851 
1852 	/* Soft reset all registers and logic */
1853 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1854 
1855 	/* Wait for soft reset bit to self-clear */
1856 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1857 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1858 			break;
1859 		DELAY(10);
1860 	}
1861 	if (retry == 0) {
1862 		device_printf(dev, "soft reset timed out\n");
1863 #ifdef AWG_DEBUG
1864 		awg_dump_regs(dev);
1865 #endif
1866 		return (ETIMEDOUT);
1867 	}
1868 
1869 	return (0);
1870 }
1871 
1872 /*
1873  * Stats
1874  */
1875 
1876 static void
1877 awg_tick(void *softc)
1878 {
1879 	struct awg_softc *sc;
1880 	struct mii_data *mii;
1881 	if_t ifp;
1882 	int link;
1883 
1884 	sc = softc;
1885 	ifp = sc->ifp;
1886 	mii = device_get_softc(sc->miibus);
1887 
1888 	AWG_ASSERT_LOCKED(sc);
1889 
1890 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1891 		return;
1892 
1893 	link = sc->link;
1894 	mii_tick(mii);
1895 	if (sc->link && !link)
1896 		awg_start_locked(sc);
1897 
1898 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
1899 }
1900 
1901 /*
1902  * Probe/attach functions
1903  */
1904 
1905 static int
1906 awg_probe(device_t dev)
1907 {
1908 	if (!ofw_bus_status_okay(dev))
1909 		return (ENXIO);
1910 
1911 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1912 		return (ENXIO);
1913 
1914 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1915 	return (BUS_PROBE_DEFAULT);
1916 }
1917 
1918 static int
1919 awg_attach(device_t dev)
1920 {
1921 	uint8_t eaddr[ETHER_ADDR_LEN];
1922 	struct awg_softc *sc;
1923 	int error;
1924 
1925 	sc = device_get_softc(dev);
1926 	sc->dev = dev;
1927 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1928 
1929 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1930 		device_printf(dev, "cannot allocate resources for device\n");
1931 		return (ENXIO);
1932 	}
1933 
1934 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1935 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1936 
1937 	/* Setup clocks and regulators */
1938 	error = awg_setup_extres(dev);
1939 	if (error != 0)
1940 		return (error);
1941 
1942 	/* Read MAC address before resetting the chip */
1943 	awg_get_eaddr(dev, eaddr);
1944 
1945 	/* Soft reset EMAC core */
1946 	error = awg_reset(dev);
1947 	if (error != 0)
1948 		return (error);
1949 
1950 	/* Setup DMA descriptors */
1951 	error = awg_setup_dma(dev);
1952 	if (error != 0)
1953 		return (error);
1954 
1955 	/* Install interrupt handler */
1956 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1957 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1958 	if (error != 0) {
1959 		device_printf(dev, "cannot setup interrupt handler\n");
1960 		return (error);
1961 	}
1962 
1963 	/* Setup ethernet interface */
1964 	sc->ifp = if_alloc(IFT_ETHER);
1965 	if_setsoftc(sc->ifp, sc);
1966 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1967 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1968 	if_setstartfn(sc->ifp, awg_start);
1969 	if_setioctlfn(sc->ifp, awg_ioctl);
1970 	if_setinitfn(sc->ifp, awg_init);
1971 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1972 	if_setsendqready(sc->ifp);
1973 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1974 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1975 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1976 #ifdef DEVICE_POLLING
1977 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1978 #endif
1979 
1980 	/* Attach MII driver */
1981 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1982 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1983 	    MIIF_DOPAUSE);
1984 	if (error != 0) {
1985 		device_printf(dev, "cannot attach PHY\n");
1986 		return (error);
1987 	}
1988 
1989 	/* Attach ethernet interface */
1990 	ether_ifattach(sc->ifp, eaddr);
1991 
1992 	return (0);
1993 }
1994 
1995 static device_method_t awg_methods[] = {
1996 	/* Device interface */
1997 	DEVMETHOD(device_probe,		awg_probe),
1998 	DEVMETHOD(device_attach,	awg_attach),
1999 
2000 	/* MII interface */
2001 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
2002 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
2003 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
2004 
2005 	DEVMETHOD_END
2006 };
2007 
2008 static driver_t awg_driver = {
2009 	"awg",
2010 	awg_methods,
2011 	sizeof(struct awg_softc),
2012 };
2013 
2014 DRIVER_MODULE(awg, simplebus, awg_driver, 0, 0);
2015 DRIVER_MODULE(miibus, awg, miibus_driver, 0, 0);
2016 MODULE_DEPEND(awg, ether, 1, 1, 1);
2017 MODULE_DEPEND(awg, miibus, 1, 1, 1);
2018 MODULE_DEPEND(awg, aw_sid, 1, 1, 1);
2019 SIMPLEBUS_PNP_INFO(compat_data);
2020