xref: /freebsd/sys/arm/allwinner/if_awg.c (revision 54e9e4e72d711fb41f88f793f6c64df1126112f9)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Allwinner Gigabit Ethernet MAC (EMAC) controller
31  */
32 
33 #include "opt_device_polling.h"
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/kernel.h>
43 #include <sys/endian.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/module.h>
48 #include <sys/taskqueue.h>
49 #include <sys/gpio.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 
59 #include <machine/bus.h>
60 
61 #include <dev/ofw/ofw_bus.h>
62 #include <dev/ofw/ofw_bus_subr.h>
63 
64 #include <arm/allwinner/if_awgreg.h>
65 #include <arm/allwinner/aw_sid.h>
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/extres/clk/clk.h>
70 #include <dev/extres/hwreset/hwreset.h>
71 #include <dev/extres/regulator/regulator.h>
72 #include <dev/extres/syscon/syscon.h>
73 
74 #include "syscon_if.h"
75 #include "miibus_if.h"
76 #include "gpio_if.h"
77 
78 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
79 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
80 
81 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
82 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
83 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
84 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
85 
86 #define	DESC_ALIGN		4
87 #define	TX_DESC_COUNT		1024
88 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
89 #define	RX_DESC_COUNT		256
90 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
91 
92 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
93 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
94 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
95 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
96 
97 #define	TX_MAX_SEGS		20
98 
99 #define	SOFT_RST_RETRY		1000
100 #define	MII_BUSY_RETRY		1000
101 #define	MDIO_FREQ		2500000
102 
103 #define	BURST_LEN_DEFAULT	8
104 #define	RX_TX_PRI_DEFAULT	0
105 #define	PAUSE_TIME_DEFAULT	0x400
106 #define	TX_INTERVAL_DEFAULT	64
107 #define	RX_BATCH_DEFAULT	64
108 
109 /* syscon EMAC clock register */
110 #define	EMAC_CLK_REG		0x30
111 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
112 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
113 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
114 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
115 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
116 #define	EMAC_CLK_RMII_EN	(1 << 13)
117 #define	EMAC_CLK_ETXDC		(0x7 << 10)
118 #define	EMAC_CLK_ETXDC_SHIFT	10
119 #define	EMAC_CLK_ERXDC		(0x1f << 5)
120 #define	EMAC_CLK_ERXDC_SHIFT	5
121 #define	EMAC_CLK_PIT		(0x1 << 2)
122 #define	 EMAC_CLK_PIT_MII	(0 << 2)
123 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
124 #define	EMAC_CLK_SRC		(0x3 << 0)
125 #define	 EMAC_CLK_SRC_MII	(0 << 0)
126 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
127 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
128 
129 /* Burst length of RX and TX DMA transfers */
130 static int awg_burst_len = BURST_LEN_DEFAULT;
131 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
132 
133 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
134 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
135 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
136 
137 /* Pause time field in the transmitted control frame */
138 static int awg_pause_time = PAUSE_TIME_DEFAULT;
139 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
140 
141 /* Request a TX interrupt every <n> descriptors */
142 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
143 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
144 
145 /* Maximum number of mbufs to send to if_input */
146 static int awg_rx_batch = RX_BATCH_DEFAULT;
147 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
148 
149 enum awg_type {
150 	EMAC_A83T = 1,
151 	EMAC_H3,
152 	EMAC_A64,
153 };
154 
155 static struct ofw_compat_data compat_data[] = {
156 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
157 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
158 	{ "allwinner,sun50i-a64-emac",		EMAC_A64 },
159 	{ NULL,					0 }
160 };
161 
162 struct awg_bufmap {
163 	bus_dmamap_t		map;
164 	struct mbuf		*mbuf;
165 };
166 
167 struct awg_txring {
168 	bus_dma_tag_t		desc_tag;
169 	bus_dmamap_t		desc_map;
170 	struct emac_desc	*desc_ring;
171 	bus_addr_t		desc_ring_paddr;
172 	bus_dma_tag_t		buf_tag;
173 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
174 	u_int			cur, next, queued;
175 	u_int			segs;
176 };
177 
178 struct awg_rxring {
179 	bus_dma_tag_t		desc_tag;
180 	bus_dmamap_t		desc_map;
181 	struct emac_desc	*desc_ring;
182 	bus_addr_t		desc_ring_paddr;
183 	bus_dma_tag_t		buf_tag;
184 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
185 	bus_dmamap_t		buf_spare_map;
186 	u_int			cur;
187 };
188 
189 enum {
190 	_RES_EMAC,
191 	_RES_IRQ,
192 	_RES_SYSCON,
193 	_RES_NITEMS
194 };
195 
196 struct awg_softc {
197 	struct resource		*res[_RES_NITEMS];
198 	struct mtx		mtx;
199 	if_t			ifp;
200 	device_t		dev;
201 	device_t		miibus;
202 	struct callout		stat_ch;
203 	struct task		link_task;
204 	void			*ih;
205 	u_int			mdc_div_ratio_m;
206 	int			link;
207 	int			if_flags;
208 	enum awg_type		type;
209 	struct syscon		*syscon;
210 
211 	struct awg_txring	tx;
212 	struct awg_rxring	rx;
213 };
214 
215 static struct resource_spec awg_spec[] = {
216 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
217 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
218 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
219 	{ -1, 0 }
220 };
221 
222 static void awg_txeof(struct awg_softc *sc);
223 
224 static int awg_parse_delay(device_t dev, uint32_t *tx_delay,
225     uint32_t *rx_delay);
226 static uint32_t syscon_read_emac_clk_reg(device_t dev);
227 static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
228 static phandle_t awg_get_phy_node(device_t dev);
229 static bool awg_has_internal_phy(device_t dev);
230 
231 static int
232 awg_miibus_readreg(device_t dev, int phy, int reg)
233 {
234 	struct awg_softc *sc;
235 	int retry, val;
236 
237 	sc = device_get_softc(dev);
238 	val = 0;
239 
240 	WR4(sc, EMAC_MII_CMD,
241 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
242 	    (phy << PHY_ADDR_SHIFT) |
243 	    (reg << PHY_REG_ADDR_SHIFT) |
244 	    MII_BUSY);
245 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
246 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
247 			val = RD4(sc, EMAC_MII_DATA);
248 			break;
249 		}
250 		DELAY(10);
251 	}
252 
253 	if (retry == 0)
254 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
255 		    phy, reg);
256 
257 	return (val);
258 }
259 
260 static int
261 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
262 {
263 	struct awg_softc *sc;
264 	int retry;
265 
266 	sc = device_get_softc(dev);
267 
268 	WR4(sc, EMAC_MII_DATA, val);
269 	WR4(sc, EMAC_MII_CMD,
270 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
271 	    (phy << PHY_ADDR_SHIFT) |
272 	    (reg << PHY_REG_ADDR_SHIFT) |
273 	    MII_WR | MII_BUSY);
274 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
275 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
276 			break;
277 		DELAY(10);
278 	}
279 
280 	if (retry == 0)
281 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
282 		    phy, reg);
283 
284 	return (0);
285 }
286 
287 static void
288 awg_update_link_locked(struct awg_softc *sc)
289 {
290 	struct mii_data *mii;
291 	uint32_t val;
292 
293 	AWG_ASSERT_LOCKED(sc);
294 
295 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
296 		return;
297 	mii = device_get_softc(sc->miibus);
298 
299 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
300 	    (IFM_ACTIVE | IFM_AVALID)) {
301 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
302 		case IFM_1000_T:
303 		case IFM_1000_SX:
304 		case IFM_100_TX:
305 		case IFM_10_T:
306 			sc->link = 1;
307 			break;
308 		default:
309 			sc->link = 0;
310 			break;
311 		}
312 	} else
313 		sc->link = 0;
314 
315 	if (sc->link == 0)
316 		return;
317 
318 	val = RD4(sc, EMAC_BASIC_CTL_0);
319 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
320 
321 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
322 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
323 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
324 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
325 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
326 	else
327 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
328 
329 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
330 		val |= BASIC_CTL_DUPLEX;
331 
332 	WR4(sc, EMAC_BASIC_CTL_0, val);
333 
334 	val = RD4(sc, EMAC_RX_CTL_0);
335 	val &= ~RX_FLOW_CTL_EN;
336 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
337 		val |= RX_FLOW_CTL_EN;
338 	WR4(sc, EMAC_RX_CTL_0, val);
339 
340 	val = RD4(sc, EMAC_TX_FLOW_CTL);
341 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
342 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
343 		val |= TX_FLOW_CTL_EN;
344 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
345 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
346 	WR4(sc, EMAC_TX_FLOW_CTL, val);
347 }
348 
349 static void
350 awg_link_task(void *arg, int pending)
351 {
352 	struct awg_softc *sc;
353 
354 	sc = arg;
355 
356 	AWG_LOCK(sc);
357 	awg_update_link_locked(sc);
358 	AWG_UNLOCK(sc);
359 }
360 
361 static void
362 awg_miibus_statchg(device_t dev)
363 {
364 	struct awg_softc *sc;
365 
366 	sc = device_get_softc(dev);
367 
368 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
369 }
370 
371 static void
372 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
373 {
374 	struct awg_softc *sc;
375 	struct mii_data *mii;
376 
377 	sc = if_getsoftc(ifp);
378 	mii = device_get_softc(sc->miibus);
379 
380 	AWG_LOCK(sc);
381 	mii_pollstat(mii);
382 	ifmr->ifm_active = mii->mii_media_active;
383 	ifmr->ifm_status = mii->mii_media_status;
384 	AWG_UNLOCK(sc);
385 }
386 
387 static int
388 awg_media_change(if_t ifp)
389 {
390 	struct awg_softc *sc;
391 	struct mii_data *mii;
392 	int error;
393 
394 	sc = if_getsoftc(ifp);
395 	mii = device_get_softc(sc->miibus);
396 
397 	AWG_LOCK(sc);
398 	error = mii_mediachg(mii);
399 	AWG_UNLOCK(sc);
400 
401 	return (error);
402 }
403 
404 static int
405 awg_encap(struct awg_softc *sc, struct mbuf **mp)
406 {
407 	bus_dmamap_t map;
408 	bus_dma_segment_t segs[TX_MAX_SEGS];
409 	int error, nsegs, cur, first, last, i;
410 	u_int csum_flags;
411 	uint32_t flags, status;
412 	struct mbuf *m;
413 
414 	cur = first = sc->tx.cur;
415 	map = sc->tx.buf_map[first].map;
416 
417 	m = *mp;
418 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
419 	    &nsegs, BUS_DMA_NOWAIT);
420 	if (error == EFBIG) {
421 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
422 		if (m == NULL) {
423 			device_printf(sc->dev, "awg_encap: m_collapse failed\n");
424 			m_freem(*mp);
425 			*mp = NULL;
426 			return (ENOMEM);
427 		}
428 		*mp = m;
429 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
430 		    segs, &nsegs, BUS_DMA_NOWAIT);
431 		if (error != 0) {
432 			m_freem(*mp);
433 			*mp = NULL;
434 		}
435 	}
436 	if (error != 0) {
437 		device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
438 		return (error);
439 	}
440 	if (nsegs == 0) {
441 		m_freem(*mp);
442 		*mp = NULL;
443 		return (EIO);
444 	}
445 
446 	if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
447 		bus_dmamap_unload(sc->tx.buf_tag, map);
448 		return (ENOBUFS);
449 	}
450 
451 	bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
452 
453 	flags = TX_FIR_DESC;
454 	status = 0;
455 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
456 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
457 			csum_flags = TX_CHECKSUM_CTL_FULL;
458 		else
459 			csum_flags = TX_CHECKSUM_CTL_IP;
460 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
461 	}
462 
463 	for (i = 0; i < nsegs; i++) {
464 		sc->tx.segs++;
465 		if (i == nsegs - 1) {
466 			flags |= TX_LAST_DESC;
467 			/*
468 			 * Can only request TX completion
469 			 * interrupt on last descriptor.
470 			 */
471 			if (sc->tx.segs >= awg_tx_interval) {
472 				sc->tx.segs = 0;
473 				flags |= TX_INT_CTL;
474 			}
475 		}
476 
477 		sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
478 		sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
479 		sc->tx.desc_ring[cur].status = htole32(status);
480 
481 		flags &= ~TX_FIR_DESC;
482 		/*
483 		 * Setting of the valid bit in the first descriptor is
484 		 * deferred until the whole chain is fully set up.
485 		 */
486 		status = TX_DESC_CTL;
487 
488 		++sc->tx.queued;
489 		cur = TX_NEXT(cur);
490 	}
491 
492 	sc->tx.cur = cur;
493 
494 	/* Store mapping and mbuf in the last segment */
495 	last = TX_SKIP(cur, TX_DESC_COUNT - 1);
496 	sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
497 	sc->tx.buf_map[last].map = map;
498 	sc->tx.buf_map[last].mbuf = m;
499 
500 	/*
501 	 * The whole mbuf chain has been DMA mapped,
502 	 * fix the first descriptor.
503 	 */
504 	sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
505 
506 	return (0);
507 }
508 
509 static void
510 awg_clean_txbuf(struct awg_softc *sc, int index)
511 {
512 	struct awg_bufmap *bmap;
513 
514 	--sc->tx.queued;
515 
516 	bmap = &sc->tx.buf_map[index];
517 	if (bmap->mbuf != NULL) {
518 		bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
519 		    BUS_DMASYNC_POSTWRITE);
520 		bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
521 		m_freem(bmap->mbuf);
522 		bmap->mbuf = NULL;
523 	}
524 }
525 
526 static void
527 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
528 {
529 	uint32_t status, size;
530 
531 	status = RX_DESC_CTL;
532 	size = MCLBYTES - 1;
533 
534 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
535 	sc->rx.desc_ring[index].size = htole32(size);
536 	sc->rx.desc_ring[index].status = htole32(status);
537 }
538 
539 static void
540 awg_reuse_rxdesc(struct awg_softc *sc, int index)
541 {
542 
543 	sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
544 }
545 
546 static int
547 awg_newbuf_rx(struct awg_softc *sc, int index)
548 {
549 	struct mbuf *m;
550 	bus_dma_segment_t seg;
551 	bus_dmamap_t map;
552 	int nsegs;
553 
554 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
555 	if (m == NULL)
556 		return (ENOBUFS);
557 
558 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
559 	m_adj(m, ETHER_ALIGN);
560 
561 	if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
562 	    m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
563 		m_freem(m);
564 		return (ENOBUFS);
565 	}
566 
567 	if (sc->rx.buf_map[index].mbuf != NULL) {
568 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
569 		    BUS_DMASYNC_POSTREAD);
570 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
571 	}
572 	map = sc->rx.buf_map[index].map;
573 	sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
574 	sc->rx.buf_spare_map = map;
575 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
576 	    BUS_DMASYNC_PREREAD);
577 
578 	sc->rx.buf_map[index].mbuf = m;
579 	awg_setup_rxdesc(sc, index, seg.ds_addr);
580 
581 	return (0);
582 }
583 
584 static void
585 awg_start_locked(struct awg_softc *sc)
586 {
587 	struct mbuf *m;
588 	uint32_t val;
589 	if_t ifp;
590 	int cnt, err;
591 
592 	AWG_ASSERT_LOCKED(sc);
593 
594 	if (!sc->link)
595 		return;
596 
597 	ifp = sc->ifp;
598 
599 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
600 	    IFF_DRV_RUNNING)
601 		return;
602 
603 	for (cnt = 0; ; cnt++) {
604 		m = if_dequeue(ifp);
605 		if (m == NULL)
606 			break;
607 
608 		err = awg_encap(sc, &m);
609 		if (err != 0) {
610 			if (err == ENOBUFS)
611 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
612 			if (m != NULL)
613 				if_sendq_prepend(ifp, m);
614 			break;
615 		}
616 		if_bpfmtap(ifp, m);
617 	}
618 
619 	if (cnt != 0) {
620 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
621 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
622 
623 		/* Start and run TX DMA */
624 		val = RD4(sc, EMAC_TX_CTL_1);
625 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
626 	}
627 }
628 
629 static void
630 awg_start(if_t ifp)
631 {
632 	struct awg_softc *sc;
633 
634 	sc = if_getsoftc(ifp);
635 
636 	AWG_LOCK(sc);
637 	awg_start_locked(sc);
638 	AWG_UNLOCK(sc);
639 }
640 
641 static void
642 awg_tick(void *softc)
643 {
644 	struct awg_softc *sc;
645 	struct mii_data *mii;
646 	if_t ifp;
647 	int link;
648 
649 	sc = softc;
650 	ifp = sc->ifp;
651 	mii = device_get_softc(sc->miibus);
652 
653 	AWG_ASSERT_LOCKED(sc);
654 
655 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
656 		return;
657 
658 	link = sc->link;
659 	mii_tick(mii);
660 	if (sc->link && !link)
661 		awg_start_locked(sc);
662 
663 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
664 }
665 
666 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
667 static uint32_t
668 bitrev32(uint32_t x)
669 {
670 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
671 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
672 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
673 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
674 
675 	return (x >> 16) | (x << 16);
676 }
677 
678 static void
679 awg_setup_rxfilter(struct awg_softc *sc)
680 {
681 	uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
682 	int mc_count, mcnt, i;
683 	uint8_t *eaddr, *mta;
684 	if_t ifp;
685 
686 	AWG_ASSERT_LOCKED(sc);
687 
688 	ifp = sc->ifp;
689 	val = 0;
690 	hash[0] = hash[1] = 0;
691 
692 	mc_count = if_multiaddr_count(ifp, -1);
693 
694 	if (if_getflags(ifp) & IFF_PROMISC)
695 		val |= DIS_ADDR_FILTER;
696 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
697 		val |= RX_ALL_MULTICAST;
698 		hash[0] = hash[1] = ~0;
699 	} else if (mc_count > 0) {
700 		val |= HASH_MULTICAST;
701 
702 		mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count,
703 		    M_DEVBUF, M_NOWAIT);
704 		if (mta == NULL) {
705 			if_printf(ifp,
706 			    "failed to allocate temporary multicast list\n");
707 			return;
708 		}
709 
710 		if_multiaddr_array(ifp, mta, &mcnt, mc_count);
711 		for (i = 0; i < mcnt; i++) {
712 			crc = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
713 			    ETHER_ADDR_LEN) & 0x7f;
714 			crc = bitrev32(~crc) >> 26;
715 			hashreg = (crc >> 5);
716 			hashbit = (crc & 0x1f);
717 			hash[hashreg] |= (1 << hashbit);
718 		}
719 
720 		free(mta, M_DEVBUF);
721 	}
722 
723 	/* Write our unicast address */
724 	eaddr = IF_LLADDR(ifp);
725 	machi = (eaddr[5] << 8) | eaddr[4];
726 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
727 	   (eaddr[0] << 0);
728 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
729 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
730 
731 	/* Multicast hash filters */
732 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
733 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
734 
735 	/* RX frame filter config */
736 	WR4(sc, EMAC_RX_FRM_FLT, val);
737 }
738 
739 static void
740 awg_enable_intr(struct awg_softc *sc)
741 {
742 	/* Enable interrupts */
743 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
744 }
745 
746 static void
747 awg_disable_intr(struct awg_softc *sc)
748 {
749 	/* Disable interrupts */
750 	WR4(sc, EMAC_INT_EN, 0);
751 }
752 
753 static void
754 awg_init_locked(struct awg_softc *sc)
755 {
756 	struct mii_data *mii;
757 	uint32_t val;
758 	if_t ifp;
759 
760 	mii = device_get_softc(sc->miibus);
761 	ifp = sc->ifp;
762 
763 	AWG_ASSERT_LOCKED(sc);
764 
765 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
766 		return;
767 
768 	awg_setup_rxfilter(sc);
769 
770 	/* Configure DMA burst length and priorities */
771 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
772 	if (awg_rx_tx_pri)
773 		val |= BASIC_CTL_RX_TX_PRI;
774 	WR4(sc, EMAC_BASIC_CTL_1, val);
775 
776 	/* Enable interrupts */
777 #ifdef DEVICE_POLLING
778 	if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
779 		awg_enable_intr(sc);
780 	else
781 		awg_disable_intr(sc);
782 #else
783 	awg_enable_intr(sc);
784 #endif
785 
786 	/* Enable transmit DMA */
787 	val = RD4(sc, EMAC_TX_CTL_1);
788 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
789 
790 	/* Enable receive DMA */
791 	val = RD4(sc, EMAC_RX_CTL_1);
792 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
793 
794 	/* Enable transmitter */
795 	val = RD4(sc, EMAC_TX_CTL_0);
796 	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
797 
798 	/* Enable receiver */
799 	val = RD4(sc, EMAC_RX_CTL_0);
800 	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
801 
802 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
803 
804 	mii_mediachg(mii);
805 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
806 }
807 
808 static void
809 awg_init(void *softc)
810 {
811 	struct awg_softc *sc;
812 
813 	sc = softc;
814 
815 	AWG_LOCK(sc);
816 	awg_init_locked(sc);
817 	AWG_UNLOCK(sc);
818 }
819 
820 static void
821 awg_stop(struct awg_softc *sc)
822 {
823 	if_t ifp;
824 	uint32_t val;
825 	int i;
826 
827 	AWG_ASSERT_LOCKED(sc);
828 
829 	ifp = sc->ifp;
830 
831 	callout_stop(&sc->stat_ch);
832 
833 	/* Stop transmit DMA and flush data in the TX FIFO */
834 	val = RD4(sc, EMAC_TX_CTL_1);
835 	val &= ~TX_DMA_EN;
836 	val |= FLUSH_TX_FIFO;
837 	WR4(sc, EMAC_TX_CTL_1, val);
838 
839 	/* Disable transmitter */
840 	val = RD4(sc, EMAC_TX_CTL_0);
841 	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
842 
843 	/* Disable receiver */
844 	val = RD4(sc, EMAC_RX_CTL_0);
845 	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
846 
847 	/* Disable interrupts */
848 	awg_disable_intr(sc);
849 
850 	/* Disable transmit DMA */
851 	val = RD4(sc, EMAC_TX_CTL_1);
852 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
853 
854 	/* Disable receive DMA */
855 	val = RD4(sc, EMAC_RX_CTL_1);
856 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
857 
858 	sc->link = 0;
859 
860 	/* Finish handling transmitted buffers */
861 	awg_txeof(sc);
862 
863 	/* Release any untransmitted buffers. */
864 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
865 		val = le32toh(sc->tx.desc_ring[i].status);
866 		if ((val & TX_DESC_CTL) != 0)
867 			break;
868 		awg_clean_txbuf(sc, i);
869 	}
870 	sc->tx.next = i;
871 	for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
872 		sc->tx.desc_ring[i].status = 0;
873 		awg_clean_txbuf(sc, i);
874 	}
875 	sc->tx.cur = sc->tx.next;
876 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
877 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
878 
879 	/* Setup RX buffers for reuse */
880 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
881 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
882 
883 	for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
884 		val = le32toh(sc->rx.desc_ring[i].status);
885 		if ((val & RX_DESC_CTL) != 0)
886 			break;
887 		awg_reuse_rxdesc(sc, i);
888 	}
889 	sc->rx.cur = i;
890 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
891 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
892 
893 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
894 }
895 
896 static int
897 awg_rxintr(struct awg_softc *sc)
898 {
899 	if_t ifp;
900 	struct mbuf *m, *mh, *mt;
901 	int error, index, len, cnt, npkt;
902 	uint32_t status;
903 
904 	ifp = sc->ifp;
905 	mh = mt = NULL;
906 	cnt = 0;
907 	npkt = 0;
908 
909 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
910 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
911 
912 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
913 		status = le32toh(sc->rx.desc_ring[index].status);
914 		if ((status & RX_DESC_CTL) != 0)
915 			break;
916 
917 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
918 
919 		if (len == 0) {
920 			if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
921 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
922 			awg_reuse_rxdesc(sc, index);
923 			continue;
924 		}
925 
926 		m = sc->rx.buf_map[index].mbuf;
927 
928 		error = awg_newbuf_rx(sc, index);
929 		if (error != 0) {
930 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
931 			awg_reuse_rxdesc(sc, index);
932 			continue;
933 		}
934 
935 		m->m_pkthdr.rcvif = ifp;
936 		m->m_pkthdr.len = len;
937 		m->m_len = len;
938 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
939 
940 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
941 		    (status & RX_FRM_TYPE) != 0) {
942 			m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
943 			if ((status & RX_HEADER_ERR) == 0)
944 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
945 			if ((status & RX_PAYLOAD_ERR) == 0) {
946 				m->m_pkthdr.csum_flags |=
947 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
948 				m->m_pkthdr.csum_data = 0xffff;
949 			}
950 		}
951 
952 		m->m_nextpkt = NULL;
953 		if (mh == NULL)
954 			mh = m;
955 		else
956 			mt->m_nextpkt = m;
957 		mt = m;
958 		++cnt;
959 		++npkt;
960 
961 		if (cnt == awg_rx_batch) {
962 			AWG_UNLOCK(sc);
963 			if_input(ifp, mh);
964 			AWG_LOCK(sc);
965 			mh = mt = NULL;
966 			cnt = 0;
967 		}
968 	}
969 
970 	if (index != sc->rx.cur) {
971 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
972 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
973 	}
974 
975 	if (mh != NULL) {
976 		AWG_UNLOCK(sc);
977 		if_input(ifp, mh);
978 		AWG_LOCK(sc);
979 	}
980 
981 	sc->rx.cur = index;
982 
983 	return (npkt);
984 }
985 
986 static void
987 awg_txeof(struct awg_softc *sc)
988 {
989 	struct emac_desc *desc;
990 	uint32_t status, size;
991 	if_t ifp;
992 	int i, prog;
993 
994 	AWG_ASSERT_LOCKED(sc);
995 
996 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
997 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
998 
999 	ifp = sc->ifp;
1000 
1001 	prog = 0;
1002 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
1003 		desc = &sc->tx.desc_ring[i];
1004 		status = le32toh(desc->status);
1005 		if ((status & TX_DESC_CTL) != 0)
1006 			break;
1007 		size = le32toh(desc->size);
1008 		if (size & TX_LAST_DESC) {
1009 			if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
1010 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1011 			else
1012 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1013 		}
1014 		prog++;
1015 		awg_clean_txbuf(sc, i);
1016 	}
1017 
1018 	if (prog > 0) {
1019 		sc->tx.next = i;
1020 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1021 	}
1022 }
1023 
1024 static void
1025 awg_intr(void *arg)
1026 {
1027 	struct awg_softc *sc;
1028 	uint32_t val;
1029 
1030 	sc = arg;
1031 
1032 	AWG_LOCK(sc);
1033 	val = RD4(sc, EMAC_INT_STA);
1034 	WR4(sc, EMAC_INT_STA, val);
1035 
1036 	if (val & RX_INT)
1037 		awg_rxintr(sc);
1038 
1039 	if (val & TX_INT)
1040 		awg_txeof(sc);
1041 
1042 	if (val & (TX_INT | TX_BUF_UA_INT)) {
1043 		if (!if_sendq_empty(sc->ifp))
1044 			awg_start_locked(sc);
1045 	}
1046 
1047 	AWG_UNLOCK(sc);
1048 }
1049 
1050 #ifdef DEVICE_POLLING
1051 static int
1052 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
1053 {
1054 	struct awg_softc *sc;
1055 	uint32_t val;
1056 	int rx_npkts;
1057 
1058 	sc = if_getsoftc(ifp);
1059 	rx_npkts = 0;
1060 
1061 	AWG_LOCK(sc);
1062 
1063 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1064 		AWG_UNLOCK(sc);
1065 		return (0);
1066 	}
1067 
1068 	rx_npkts = awg_rxintr(sc);
1069 	awg_txeof(sc);
1070 	if (!if_sendq_empty(ifp))
1071 		awg_start_locked(sc);
1072 
1073 	if (cmd == POLL_AND_CHECK_STATUS) {
1074 		val = RD4(sc, EMAC_INT_STA);
1075 		if (val != 0)
1076 			WR4(sc, EMAC_INT_STA, val);
1077 	}
1078 
1079 	AWG_UNLOCK(sc);
1080 
1081 	return (rx_npkts);
1082 }
1083 #endif
1084 
1085 static int
1086 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
1087 {
1088 	struct awg_softc *sc;
1089 	struct mii_data *mii;
1090 	struct ifreq *ifr;
1091 	int flags, mask, error;
1092 
1093 	sc = if_getsoftc(ifp);
1094 	mii = device_get_softc(sc->miibus);
1095 	ifr = (struct ifreq *)data;
1096 	error = 0;
1097 
1098 	switch (cmd) {
1099 	case SIOCSIFFLAGS:
1100 		AWG_LOCK(sc);
1101 		if (if_getflags(ifp) & IFF_UP) {
1102 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1103 				flags = if_getflags(ifp) ^ sc->if_flags;
1104 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
1105 					awg_setup_rxfilter(sc);
1106 			} else
1107 				awg_init_locked(sc);
1108 		} else {
1109 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1110 				awg_stop(sc);
1111 		}
1112 		sc->if_flags = if_getflags(ifp);
1113 		AWG_UNLOCK(sc);
1114 		break;
1115 	case SIOCADDMULTI:
1116 	case SIOCDELMULTI:
1117 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1118 			AWG_LOCK(sc);
1119 			awg_setup_rxfilter(sc);
1120 			AWG_UNLOCK(sc);
1121 		}
1122 		break;
1123 	case SIOCSIFMEDIA:
1124 	case SIOCGIFMEDIA:
1125 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1126 		break;
1127 	case SIOCSIFCAP:
1128 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1129 #ifdef DEVICE_POLLING
1130 		if (mask & IFCAP_POLLING) {
1131 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1132 				error = ether_poll_register(awg_poll, ifp);
1133 				if (error != 0)
1134 					break;
1135 				AWG_LOCK(sc);
1136 				awg_disable_intr(sc);
1137 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1138 				AWG_UNLOCK(sc);
1139 			} else {
1140 				error = ether_poll_deregister(ifp);
1141 				AWG_LOCK(sc);
1142 				awg_enable_intr(sc);
1143 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1144 				AWG_UNLOCK(sc);
1145 			}
1146 		}
1147 #endif
1148 		if (mask & IFCAP_VLAN_MTU)
1149 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1150 		if (mask & IFCAP_RXCSUM)
1151 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1152 		if (mask & IFCAP_TXCSUM)
1153 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1154 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1155 			if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
1156 		else
1157 			if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
1158 		break;
1159 	default:
1160 		error = ether_ioctl(ifp, cmd, data);
1161 		break;
1162 	}
1163 
1164 	return (error);
1165 }
1166 
1167 static uint32_t
1168 syscon_read_emac_clk_reg(device_t dev)
1169 {
1170 	struct awg_softc *sc;
1171 
1172 	sc = device_get_softc(dev);
1173 	if (sc->syscon != NULL)
1174 		return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
1175 	else if (sc->res[_RES_SYSCON] != NULL)
1176 		return (bus_read_4(sc->res[_RES_SYSCON], 0));
1177 
1178 	return (0);
1179 }
1180 
1181 static void
1182 syscon_write_emac_clk_reg(device_t dev, uint32_t val)
1183 {
1184 	struct awg_softc *sc;
1185 
1186 	sc = device_get_softc(dev);
1187 	if (sc->syscon != NULL)
1188 		SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
1189 	else if (sc->res[_RES_SYSCON] != NULL)
1190 		bus_write_4(sc->res[_RES_SYSCON], 0, val);
1191 }
1192 
1193 static phandle_t
1194 awg_get_phy_node(device_t dev)
1195 {
1196 	phandle_t node;
1197 	pcell_t phy_handle;
1198 
1199 	node = ofw_bus_get_node(dev);
1200 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
1201 	    sizeof(phy_handle)) <= 0)
1202 		return (0);
1203 
1204 	return (OF_node_from_xref(phy_handle));
1205 }
1206 
1207 static bool
1208 awg_has_internal_phy(device_t dev)
1209 {
1210 	phandle_t node, phy_node;
1211 
1212 	node = ofw_bus_get_node(dev);
1213 	/* Legacy binding */
1214 	if (OF_hasprop(node, "allwinner,use-internal-phy"))
1215 		return (true);
1216 
1217 	phy_node = awg_get_phy_node(dev);
1218 	return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
1219 	    "allwinner,sun8i-h3-mdio-internal") != 0);
1220 }
1221 
1222 static int
1223 awg_parse_delay(device_t dev, uint32_t *tx_delay, uint32_t *rx_delay)
1224 {
1225 	phandle_t node;
1226 	uint32_t delay;
1227 
1228 	if (tx_delay == NULL || rx_delay == NULL)
1229 		return (EINVAL);
1230 	*tx_delay = *rx_delay = 0;
1231 	node = ofw_bus_get_node(dev);
1232 
1233 	if (OF_getencprop(node, "tx-delay", &delay, sizeof(delay)) >= 0)
1234 		*tx_delay = delay;
1235 	else if (OF_getencprop(node, "allwinner,tx-delay-ps", &delay,
1236 	    sizeof(delay)) >= 0) {
1237 		if ((delay % 100) != 0) {
1238 			device_printf(dev, "tx-delay-ps is not a multiple of 100\n");
1239 			return (EDOM);
1240 		}
1241 		*tx_delay = delay / 100;
1242 	}
1243 	if (*tx_delay > 7) {
1244 		device_printf(dev, "tx-delay out of range\n");
1245 		return (ERANGE);
1246 	}
1247 
1248 	if (OF_getencprop(node, "rx-delay", &delay, sizeof(delay)) >= 0)
1249 		*rx_delay = delay;
1250 	else if (OF_getencprop(node, "allwinner,rx-delay-ps", &delay,
1251 	    sizeof(delay)) >= 0) {
1252 		if ((delay % 100) != 0) {
1253 			device_printf(dev, "rx-delay-ps is not within documented domain\n");
1254 			return (EDOM);
1255 		}
1256 		*rx_delay = delay / 100;
1257 	}
1258 	if (*rx_delay > 31) {
1259 		device_printf(dev, "rx-delay out of range\n");
1260 		return (ERANGE);
1261 	}
1262 
1263 	return (0);
1264 }
1265 
1266 static int
1267 awg_setup_phy(device_t dev)
1268 {
1269 	struct awg_softc *sc;
1270 	clk_t clk_tx, clk_tx_parent;
1271 	const char *tx_parent_name;
1272 	char *phy_type;
1273 	phandle_t node;
1274 	uint32_t reg, tx_delay, rx_delay;
1275 	int error;
1276 	bool use_syscon;
1277 
1278 	sc = device_get_softc(dev);
1279 	node = ofw_bus_get_node(dev);
1280 	use_syscon = false;
1281 
1282 	if (OF_getprop_alloc(node, "phy-mode", (void **)&phy_type) == 0)
1283 		return (0);
1284 
1285 	if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
1286 		use_syscon = true;
1287 
1288 	if (bootverbose)
1289 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1290 		    use_syscon ? "reg" : "clk");
1291 
1292 	if (use_syscon) {
1293 		/*
1294 		 * Abstract away writing to syscon for devices like the pine64.
1295 		 * For the pine64, we get dtb from U-Boot and it still uses the
1296 		 * legacy setup of specifying syscon register in emac node
1297 		 * rather than as its own node and using an xref in emac.
1298 		 * These abstractions can go away once U-Boot dts is up-to-date.
1299 		 */
1300 		reg = syscon_read_emac_clk_reg(dev);
1301 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1302 		if (strncmp(phy_type, "rgmii", 5) == 0)
1303 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1304 		else if (strcmp(phy_type, "rmii") == 0)
1305 			reg |= EMAC_CLK_RMII_EN;
1306 		else
1307 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1308 
1309 		/*
1310 		 * Fail attach if we fail to parse either of the delay
1311 		 * parameters. If we don't have the proper delay to write to
1312 		 * syscon, then awg likely won't function properly anyways.
1313 		 * Lack of delay is not an error!
1314 		 */
1315 		error = awg_parse_delay(dev, &tx_delay, &rx_delay);
1316 		if (error != 0)
1317 			goto fail;
1318 
1319 		/* Default to 0 and we'll increase it if we need to. */
1320 		reg &= ~(EMAC_CLK_ETXDC | EMAC_CLK_ERXDC);
1321 		if (tx_delay > 0)
1322 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1323 		if (rx_delay > 0)
1324 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1325 
1326 		if (sc->type == EMAC_H3) {
1327 			if (awg_has_internal_phy(dev)) {
1328 				reg |= EMAC_CLK_EPHY_SELECT;
1329 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1330 				if (OF_hasprop(node,
1331 				    "allwinner,leds-active-low"))
1332 					reg |= EMAC_CLK_EPHY_LED_POL;
1333 				else
1334 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1335 
1336 				/* Set internal PHY addr to 1 */
1337 				reg &= ~EMAC_CLK_EPHY_ADDR;
1338 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1339 			} else {
1340 				reg &= ~EMAC_CLK_EPHY_SELECT;
1341 			}
1342 		}
1343 
1344 		if (bootverbose)
1345 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1346 		syscon_write_emac_clk_reg(dev, reg);
1347 	} else {
1348 		if (strncmp(phy_type, "rgmii", 5) == 0)
1349 			tx_parent_name = "emac_int_tx";
1350 		else
1351 			tx_parent_name = "mii_phy_tx";
1352 
1353 		/* Get the TX clock */
1354 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1355 		if (error != 0) {
1356 			device_printf(dev, "cannot get tx clock\n");
1357 			goto fail;
1358 		}
1359 
1360 		/* Find the desired parent clock based on phy-mode property */
1361 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1362 		if (error != 0) {
1363 			device_printf(dev, "cannot get clock '%s'\n",
1364 			    tx_parent_name);
1365 			goto fail;
1366 		}
1367 
1368 		/* Set TX clock parent */
1369 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1370 		if (error != 0) {
1371 			device_printf(dev, "cannot set tx clock parent\n");
1372 			goto fail;
1373 		}
1374 
1375 		/* Enable TX clock */
1376 		error = clk_enable(clk_tx);
1377 		if (error != 0) {
1378 			device_printf(dev, "cannot enable tx clock\n");
1379 			goto fail;
1380 		}
1381 	}
1382 
1383 	error = 0;
1384 
1385 fail:
1386 	OF_prop_free(phy_type);
1387 	return (error);
1388 }
1389 
1390 static int
1391 awg_setup_extres(device_t dev)
1392 {
1393 	struct awg_softc *sc;
1394 	phandle_t node, phy_node;
1395 	hwreset_t rst_ahb, rst_ephy;
1396 	clk_t clk_ahb, clk_ephy;
1397 	regulator_t reg;
1398 	uint64_t freq;
1399 	int error, div;
1400 
1401 	sc = device_get_softc(dev);
1402 	rst_ahb = rst_ephy = NULL;
1403 	clk_ahb = clk_ephy = NULL;
1404 	reg = NULL;
1405 	node = ofw_bus_get_node(dev);
1406 	phy_node = awg_get_phy_node(dev);
1407 
1408 	if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
1409 		error = ENXIO;
1410 		device_printf(dev, "cannot get phy handle\n");
1411 		goto fail;
1412 	}
1413 
1414 	/* Get AHB clock and reset resources */
1415 	error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
1416 	if (error != 0)
1417 		error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1418 	if (error != 0) {
1419 		device_printf(dev, "cannot get ahb reset\n");
1420 		goto fail;
1421 	}
1422 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1423 		if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
1424 		    &rst_ephy) != 0)
1425 			rst_ephy = NULL;
1426 	error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
1427 	if (error != 0)
1428 		error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1429 	if (error != 0) {
1430 		device_printf(dev, "cannot get ahb clock\n");
1431 		goto fail;
1432 	}
1433 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1434 		if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
1435 		    &clk_ephy) != 0)
1436 			clk_ephy = NULL;
1437 
1438 	if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
1439 	    "syscon", &sc->syscon) != 0) {
1440 		device_printf(dev, "cannot get syscon driver handle\n");
1441 		goto fail;
1442 	}
1443 
1444 	/* Configure PHY for MII or RGMII mode */
1445 	if (awg_setup_phy(dev) != 0)
1446 		goto fail;
1447 
1448 	/* Enable clocks */
1449 	error = clk_enable(clk_ahb);
1450 	if (error != 0) {
1451 		device_printf(dev, "cannot enable ahb clock\n");
1452 		goto fail;
1453 	}
1454 	if (clk_ephy != NULL) {
1455 		error = clk_enable(clk_ephy);
1456 		if (error != 0) {
1457 			device_printf(dev, "cannot enable ephy clock\n");
1458 			goto fail;
1459 		}
1460 	}
1461 
1462 	/* De-assert reset */
1463 	error = hwreset_deassert(rst_ahb);
1464 	if (error != 0) {
1465 		device_printf(dev, "cannot de-assert ahb reset\n");
1466 		goto fail;
1467 	}
1468 	if (rst_ephy != NULL) {
1469 		/*
1470 		 * The ephy reset is left de-asserted by U-Boot.  Assert it
1471 		 * here to make sure that we're in a known good state going
1472 		 * into the PHY reset.
1473 		 */
1474 		hwreset_assert(rst_ephy);
1475 		error = hwreset_deassert(rst_ephy);
1476 		if (error != 0) {
1477 			device_printf(dev, "cannot de-assert ephy reset\n");
1478 			goto fail;
1479 		}
1480 	}
1481 
1482 	/* Enable PHY regulator if applicable */
1483 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1484 		error = regulator_enable(reg);
1485 		if (error != 0) {
1486 			device_printf(dev, "cannot enable PHY regulator\n");
1487 			goto fail;
1488 		}
1489 	}
1490 
1491 	/* Determine MDC clock divide ratio based on AHB clock */
1492 	error = clk_get_freq(clk_ahb, &freq);
1493 	if (error != 0) {
1494 		device_printf(dev, "cannot get AHB clock frequency\n");
1495 		goto fail;
1496 	}
1497 	div = freq / MDIO_FREQ;
1498 	if (div <= 16)
1499 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1500 	else if (div <= 32)
1501 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1502 	else if (div <= 64)
1503 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1504 	else if (div <= 128)
1505 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1506 	else {
1507 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1508 		error = ENXIO;
1509 		goto fail;
1510 	}
1511 
1512 	if (bootverbose)
1513 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1514 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1515 
1516 	return (0);
1517 
1518 fail:
1519 	if (reg != NULL)
1520 		regulator_release(reg);
1521 	if (clk_ephy != NULL)
1522 		clk_release(clk_ephy);
1523 	if (clk_ahb != NULL)
1524 		clk_release(clk_ahb);
1525 	if (rst_ephy != NULL)
1526 		hwreset_release(rst_ephy);
1527 	if (rst_ahb != NULL)
1528 		hwreset_release(rst_ahb);
1529 	return (error);
1530 }
1531 
1532 static void
1533 awg_get_eaddr(device_t dev, uint8_t *eaddr)
1534 {
1535 	struct awg_softc *sc;
1536 	uint32_t maclo, machi, rnd;
1537 	u_char rootkey[16];
1538 	uint32_t rootkey_size;
1539 
1540 	sc = device_get_softc(dev);
1541 
1542 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1543 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1544 
1545 	rootkey_size = sizeof(rootkey);
1546 	if (maclo == 0xffffffff && machi == 0xffff) {
1547 		/* MAC address in hardware is invalid, create one */
1548 		if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
1549 		    &rootkey_size) == 0 &&
1550 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1551 		     rootkey[15]) != 0) {
1552 			/* MAC address is derived from the root key in SID */
1553 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1554 				(rootkey[3] << 8) | 0x02;
1555 			machi = (rootkey[15] << 8) | rootkey[14];
1556 		} else {
1557 			/* Create one */
1558 			rnd = arc4random();
1559 			maclo = 0x00f2 | (rnd & 0xffff0000);
1560 			machi = rnd & 0xffff;
1561 		}
1562 	}
1563 
1564 	eaddr[0] = maclo & 0xff;
1565 	eaddr[1] = (maclo >> 8) & 0xff;
1566 	eaddr[2] = (maclo >> 16) & 0xff;
1567 	eaddr[3] = (maclo >> 24) & 0xff;
1568 	eaddr[4] = machi & 0xff;
1569 	eaddr[5] = (machi >> 8) & 0xff;
1570 }
1571 
1572 #ifdef AWG_DEBUG
1573 static void
1574 awg_dump_regs(device_t dev)
1575 {
1576 	static const struct {
1577 		const char *name;
1578 		u_int reg;
1579 	} regs[] = {
1580 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1581 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1582 		{ "INT_STA", EMAC_INT_STA },
1583 		{ "INT_EN", EMAC_INT_EN },
1584 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1585 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1586 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1587 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1588 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1589 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1590 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1591 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1592 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1593 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1594 		{ "MII_CMD", EMAC_MII_CMD },
1595 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1596 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1597 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1598 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1599 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1600 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1601 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1602 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1603 		{ "RGMII_STA", EMAC_RGMII_STA },
1604 	};
1605 	struct awg_softc *sc;
1606 	unsigned int n;
1607 
1608 	sc = device_get_softc(dev);
1609 
1610 	for (n = 0; n < nitems(regs); n++)
1611 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1612 		    RD4(sc, regs[n].reg));
1613 }
1614 #endif
1615 
1616 #define	GPIO_ACTIVE_LOW		1
1617 
1618 static int
1619 awg_phy_reset(device_t dev)
1620 {
1621 	pcell_t gpio_prop[4], delay_prop[3];
1622 	phandle_t node, gpio_node;
1623 	device_t gpio;
1624 	uint32_t pin, flags;
1625 	uint32_t pin_value;
1626 
1627 	node = ofw_bus_get_node(dev);
1628 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1629 	    sizeof(gpio_prop)) <= 0)
1630 		return (0);
1631 
1632 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1633 	    sizeof(delay_prop)) <= 0)
1634 		return (ENXIO);
1635 
1636 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1637 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1638 		return (ENXIO);
1639 
1640 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1641 	    gpio_prop + 1, &pin, &flags) != 0)
1642 		return (ENXIO);
1643 
1644 	pin_value = GPIO_PIN_LOW;
1645 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1646 		pin_value = GPIO_PIN_HIGH;
1647 
1648 	if (flags & GPIO_ACTIVE_LOW)
1649 		pin_value = !pin_value;
1650 
1651 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1652 	GPIO_PIN_SET(gpio, pin, pin_value);
1653 	DELAY(delay_prop[0]);
1654 	GPIO_PIN_SET(gpio, pin, !pin_value);
1655 	DELAY(delay_prop[1]);
1656 	GPIO_PIN_SET(gpio, pin, pin_value);
1657 	DELAY(delay_prop[2]);
1658 
1659 	return (0);
1660 }
1661 
1662 static int
1663 awg_reset(device_t dev)
1664 {
1665 	struct awg_softc *sc;
1666 	int retry;
1667 
1668 	sc = device_get_softc(dev);
1669 
1670 	/* Reset PHY if necessary */
1671 	if (awg_phy_reset(dev) != 0) {
1672 		device_printf(dev, "failed to reset PHY\n");
1673 		return (ENXIO);
1674 	}
1675 
1676 	/* Soft reset all registers and logic */
1677 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1678 
1679 	/* Wait for soft reset bit to self-clear */
1680 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1681 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1682 			break;
1683 		DELAY(10);
1684 	}
1685 	if (retry == 0) {
1686 		device_printf(dev, "soft reset timed out\n");
1687 #ifdef AWG_DEBUG
1688 		awg_dump_regs(dev);
1689 #endif
1690 		return (ETIMEDOUT);
1691 	}
1692 
1693 	return (0);
1694 }
1695 
1696 static void
1697 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1698 {
1699 	if (error != 0)
1700 		return;
1701 	*(bus_addr_t *)arg = segs[0].ds_addr;
1702 }
1703 
1704 static int
1705 awg_setup_dma(device_t dev)
1706 {
1707 	struct awg_softc *sc;
1708 	int error, i;
1709 
1710 	sc = device_get_softc(dev);
1711 
1712 	/* Setup TX ring */
1713 	error = bus_dma_tag_create(
1714 	    bus_get_dma_tag(dev),	/* Parent tag */
1715 	    DESC_ALIGN, 0,		/* alignment, boundary */
1716 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1717 	    BUS_SPACE_MAXADDR,		/* highaddr */
1718 	    NULL, NULL,			/* filter, filterarg */
1719 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
1720 	    TX_DESC_SIZE,		/* maxsegsize */
1721 	    0,				/* flags */
1722 	    NULL, NULL,			/* lockfunc, lockarg */
1723 	    &sc->tx.desc_tag);
1724 	if (error != 0) {
1725 		device_printf(dev, "cannot create TX descriptor ring tag\n");
1726 		return (error);
1727 	}
1728 
1729 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
1730 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
1731 	if (error != 0) {
1732 		device_printf(dev, "cannot allocate TX descriptor ring\n");
1733 		return (error);
1734 	}
1735 
1736 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
1737 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
1738 	    &sc->tx.desc_ring_paddr, 0);
1739 	if (error != 0) {
1740 		device_printf(dev, "cannot load TX descriptor ring\n");
1741 		return (error);
1742 	}
1743 
1744 	for (i = 0; i < TX_DESC_COUNT; i++)
1745 		sc->tx.desc_ring[i].next =
1746 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1747 
1748 	error = bus_dma_tag_create(
1749 	    bus_get_dma_tag(dev),	/* Parent tag */
1750 	    1, 0,			/* alignment, boundary */
1751 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1752 	    BUS_SPACE_MAXADDR,		/* highaddr */
1753 	    NULL, NULL,			/* filter, filterarg */
1754 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
1755 	    MCLBYTES,			/* maxsegsize */
1756 	    0,				/* flags */
1757 	    NULL, NULL,			/* lockfunc, lockarg */
1758 	    &sc->tx.buf_tag);
1759 	if (error != 0) {
1760 		device_printf(dev, "cannot create TX buffer tag\n");
1761 		return (error);
1762 	}
1763 
1764 	sc->tx.queued = 0;
1765 	for (i = 0; i < TX_DESC_COUNT; i++) {
1766 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
1767 		    &sc->tx.buf_map[i].map);
1768 		if (error != 0) {
1769 			device_printf(dev, "cannot create TX buffer map\n");
1770 			return (error);
1771 		}
1772 	}
1773 
1774 	/* Setup RX ring */
1775 	error = bus_dma_tag_create(
1776 	    bus_get_dma_tag(dev),	/* Parent tag */
1777 	    DESC_ALIGN, 0,		/* alignment, boundary */
1778 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1779 	    BUS_SPACE_MAXADDR,		/* highaddr */
1780 	    NULL, NULL,			/* filter, filterarg */
1781 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
1782 	    RX_DESC_SIZE,		/* maxsegsize */
1783 	    0,				/* flags */
1784 	    NULL, NULL,			/* lockfunc, lockarg */
1785 	    &sc->rx.desc_tag);
1786 	if (error != 0) {
1787 		device_printf(dev, "cannot create RX descriptor ring tag\n");
1788 		return (error);
1789 	}
1790 
1791 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
1792 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
1793 	if (error != 0) {
1794 		device_printf(dev, "cannot allocate RX descriptor ring\n");
1795 		return (error);
1796 	}
1797 
1798 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
1799 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
1800 	    &sc->rx.desc_ring_paddr, 0);
1801 	if (error != 0) {
1802 		device_printf(dev, "cannot load RX descriptor ring\n");
1803 		return (error);
1804 	}
1805 
1806 	error = bus_dma_tag_create(
1807 	    bus_get_dma_tag(dev),	/* Parent tag */
1808 	    1, 0,			/* alignment, boundary */
1809 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1810 	    BUS_SPACE_MAXADDR,		/* highaddr */
1811 	    NULL, NULL,			/* filter, filterarg */
1812 	    MCLBYTES, 1,		/* maxsize, nsegs */
1813 	    MCLBYTES,			/* maxsegsize */
1814 	    0,				/* flags */
1815 	    NULL, NULL,			/* lockfunc, lockarg */
1816 	    &sc->rx.buf_tag);
1817 	if (error != 0) {
1818 		device_printf(dev, "cannot create RX buffer tag\n");
1819 		return (error);
1820 	}
1821 
1822 	error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
1823 	if (error != 0) {
1824 		device_printf(dev,
1825 		    "cannot create RX buffer spare map\n");
1826 		return (error);
1827 	}
1828 
1829 	for (i = 0; i < RX_DESC_COUNT; i++) {
1830 		sc->rx.desc_ring[i].next =
1831 		    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
1832 
1833 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
1834 		    &sc->rx.buf_map[i].map);
1835 		if (error != 0) {
1836 			device_printf(dev, "cannot create RX buffer map\n");
1837 			return (error);
1838 		}
1839 		sc->rx.buf_map[i].mbuf = NULL;
1840 		error = awg_newbuf_rx(sc, i);
1841 		if (error != 0) {
1842 			device_printf(dev, "cannot create RX buffer\n");
1843 			return (error);
1844 		}
1845 	}
1846 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1847 	    BUS_DMASYNC_PREWRITE);
1848 
1849 	/* Write transmit and receive descriptor base address registers */
1850 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1851 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1852 
1853 	return (0);
1854 }
1855 
1856 static int
1857 awg_probe(device_t dev)
1858 {
1859 	if (!ofw_bus_status_okay(dev))
1860 		return (ENXIO);
1861 
1862 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1863 		return (ENXIO);
1864 
1865 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1866 	return (BUS_PROBE_DEFAULT);
1867 }
1868 
1869 static int
1870 awg_attach(device_t dev)
1871 {
1872 	uint8_t eaddr[ETHER_ADDR_LEN];
1873 	struct awg_softc *sc;
1874 	int error;
1875 
1876 	sc = device_get_softc(dev);
1877 	sc->dev = dev;
1878 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1879 
1880 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1881 		device_printf(dev, "cannot allocate resources for device\n");
1882 		return (ENXIO);
1883 	}
1884 
1885 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1886 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1887 	TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
1888 
1889 	/* Setup clocks and regulators */
1890 	error = awg_setup_extres(dev);
1891 	if (error != 0)
1892 		return (error);
1893 
1894 	/* Read MAC address before resetting the chip */
1895 	awg_get_eaddr(dev, eaddr);
1896 
1897 	/* Soft reset EMAC core */
1898 	error = awg_reset(dev);
1899 	if (error != 0)
1900 		return (error);
1901 
1902 	/* Setup DMA descriptors */
1903 	error = awg_setup_dma(dev);
1904 	if (error != 0)
1905 		return (error);
1906 
1907 	/* Install interrupt handler */
1908 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1909 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1910 	if (error != 0) {
1911 		device_printf(dev, "cannot setup interrupt handler\n");
1912 		return (error);
1913 	}
1914 
1915 	/* Setup ethernet interface */
1916 	sc->ifp = if_alloc(IFT_ETHER);
1917 	if_setsoftc(sc->ifp, sc);
1918 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1919 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1920 	if_setstartfn(sc->ifp, awg_start);
1921 	if_setioctlfn(sc->ifp, awg_ioctl);
1922 	if_setinitfn(sc->ifp, awg_init);
1923 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1924 	if_setsendqready(sc->ifp);
1925 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1926 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1927 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1928 #ifdef DEVICE_POLLING
1929 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1930 #endif
1931 
1932 	/* Attach MII driver */
1933 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1934 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1935 	    MIIF_DOPAUSE);
1936 	if (error != 0) {
1937 		device_printf(dev, "cannot attach PHY\n");
1938 		return (error);
1939 	}
1940 
1941 	/* Attach ethernet interface */
1942 	ether_ifattach(sc->ifp, eaddr);
1943 
1944 	return (0);
1945 }
1946 
1947 static device_method_t awg_methods[] = {
1948 	/* Device interface */
1949 	DEVMETHOD(device_probe,		awg_probe),
1950 	DEVMETHOD(device_attach,	awg_attach),
1951 
1952 	/* MII interface */
1953 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
1954 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
1955 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
1956 
1957 	DEVMETHOD_END
1958 };
1959 
1960 static driver_t awg_driver = {
1961 	"awg",
1962 	awg_methods,
1963 	sizeof(struct awg_softc),
1964 };
1965 
1966 static devclass_t awg_devclass;
1967 
1968 DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
1969 DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
1970 MODULE_DEPEND(awg, ether, 1, 1, 1);
1971 MODULE_DEPEND(awg, miibus, 1, 1, 1);
1972 MODULE_DEPEND(awg, aw_sid, 1, 1, 1);
1973 SIMPLEBUS_PNP_INFO(compat_data);
1974