xref: /freebsd/sys/arm/allwinner/if_awg.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Allwinner Gigabit Ethernet MAC (EMAC) controller
31  */
32 
33 #include "opt_device_polling.h"
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/kernel.h>
43 #include <sys/endian.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/module.h>
48 #include <sys/taskqueue.h>
49 #include <sys/gpio.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 
59 #include <machine/bus.h>
60 
61 #include <dev/ofw/ofw_bus.h>
62 #include <dev/ofw/ofw_bus_subr.h>
63 
64 #include <arm/allwinner/if_awgreg.h>
65 #include <arm/allwinner/aw_sid.h>
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/extres/clk/clk.h>
70 #include <dev/extres/hwreset/hwreset.h>
71 #include <dev/extres/regulator/regulator.h>
72 #include <dev/extres/syscon/syscon.h>
73 
74 #include "syscon_if.h"
75 #include "miibus_if.h"
76 #include "gpio_if.h"
77 
78 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
79 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
80 
81 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
82 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
83 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
84 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
85 
86 #define	DESC_ALIGN		4
87 #define	TX_DESC_COUNT		1024
88 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
89 #define	RX_DESC_COUNT		256
90 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
91 
92 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
93 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
94 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
95 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
96 
97 #define	TX_MAX_SEGS		20
98 
99 #define	SOFT_RST_RETRY		1000
100 #define	MII_BUSY_RETRY		1000
101 #define	MDIO_FREQ		2500000
102 
103 #define	BURST_LEN_DEFAULT	8
104 #define	RX_TX_PRI_DEFAULT	0
105 #define	PAUSE_TIME_DEFAULT	0x400
106 #define	TX_INTERVAL_DEFAULT	64
107 #define	RX_BATCH_DEFAULT	64
108 
109 /* syscon EMAC clock register */
110 #define	EMAC_CLK_REG		0x30
111 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
112 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
113 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
114 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
115 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
116 #define	EMAC_CLK_RMII_EN	(1 << 13)
117 #define	EMAC_CLK_ETXDC		(0x7 << 10)
118 #define	EMAC_CLK_ETXDC_SHIFT	10
119 #define	EMAC_CLK_ERXDC		(0x1f << 5)
120 #define	EMAC_CLK_ERXDC_SHIFT	5
121 #define	EMAC_CLK_PIT		(0x1 << 2)
122 #define	 EMAC_CLK_PIT_MII	(0 << 2)
123 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
124 #define	EMAC_CLK_SRC		(0x3 << 0)
125 #define	 EMAC_CLK_SRC_MII	(0 << 0)
126 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
127 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
128 
129 /* Burst length of RX and TX DMA transfers */
130 static int awg_burst_len = BURST_LEN_DEFAULT;
131 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
132 
133 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
134 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
135 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
136 
137 /* Pause time field in the transmitted control frame */
138 static int awg_pause_time = PAUSE_TIME_DEFAULT;
139 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
140 
141 /* Request a TX interrupt every <n> descriptors */
142 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
143 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
144 
145 /* Maximum number of mbufs to send to if_input */
146 static int awg_rx_batch = RX_BATCH_DEFAULT;
147 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
148 
149 enum awg_type {
150 	EMAC_A83T = 1,
151 	EMAC_H3,
152 	EMAC_A64,
153 };
154 
155 static struct ofw_compat_data compat_data[] = {
156 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
157 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
158 	{ "allwinner,sun50i-a64-emac",		EMAC_A64 },
159 	{ NULL,					0 }
160 };
161 
162 struct awg_bufmap {
163 	bus_dmamap_t		map;
164 	struct mbuf		*mbuf;
165 };
166 
167 struct awg_txring {
168 	bus_dma_tag_t		desc_tag;
169 	bus_dmamap_t		desc_map;
170 	struct emac_desc	*desc_ring;
171 	bus_addr_t		desc_ring_paddr;
172 	bus_dma_tag_t		buf_tag;
173 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
174 	u_int			cur, next, queued;
175 	u_int			segs;
176 };
177 
178 struct awg_rxring {
179 	bus_dma_tag_t		desc_tag;
180 	bus_dmamap_t		desc_map;
181 	struct emac_desc	*desc_ring;
182 	bus_addr_t		desc_ring_paddr;
183 	bus_dma_tag_t		buf_tag;
184 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
185 	bus_dmamap_t		buf_spare_map;
186 	u_int			cur;
187 };
188 
189 enum {
190 	_RES_EMAC,
191 	_RES_IRQ,
192 	_RES_SYSCON,
193 	_RES_NITEMS
194 };
195 
196 struct awg_softc {
197 	struct resource		*res[_RES_NITEMS];
198 	struct mtx		mtx;
199 	if_t			ifp;
200 	device_t		dev;
201 	device_t		miibus;
202 	struct callout		stat_ch;
203 	struct task		link_task;
204 	void			*ih;
205 	u_int			mdc_div_ratio_m;
206 	int			link;
207 	int			if_flags;
208 	enum awg_type		type;
209 	struct syscon		*syscon;
210 
211 	struct awg_txring	tx;
212 	struct awg_rxring	rx;
213 };
214 
215 static struct resource_spec awg_spec[] = {
216 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
217 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
218 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
219 	{ -1, 0 }
220 };
221 
222 static void awg_txeof(struct awg_softc *sc);
223 
224 static uint32_t syscon_read_emac_clk_reg(device_t dev);
225 static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
226 static phandle_t awg_get_phy_node(device_t dev);
227 static bool awg_has_internal_phy(device_t dev);
228 
229 static int
230 awg_miibus_readreg(device_t dev, int phy, int reg)
231 {
232 	struct awg_softc *sc;
233 	int retry, val;
234 
235 	sc = device_get_softc(dev);
236 	val = 0;
237 
238 	WR4(sc, EMAC_MII_CMD,
239 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
240 	    (phy << PHY_ADDR_SHIFT) |
241 	    (reg << PHY_REG_ADDR_SHIFT) |
242 	    MII_BUSY);
243 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
244 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
245 			val = RD4(sc, EMAC_MII_DATA);
246 			break;
247 		}
248 		DELAY(10);
249 	}
250 
251 	if (retry == 0)
252 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
253 		    phy, reg);
254 
255 	return (val);
256 }
257 
258 static int
259 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
260 {
261 	struct awg_softc *sc;
262 	int retry;
263 
264 	sc = device_get_softc(dev);
265 
266 	WR4(sc, EMAC_MII_DATA, val);
267 	WR4(sc, EMAC_MII_CMD,
268 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
269 	    (phy << PHY_ADDR_SHIFT) |
270 	    (reg << PHY_REG_ADDR_SHIFT) |
271 	    MII_WR | MII_BUSY);
272 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
273 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
274 			break;
275 		DELAY(10);
276 	}
277 
278 	if (retry == 0)
279 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
280 		    phy, reg);
281 
282 	return (0);
283 }
284 
285 static void
286 awg_update_link_locked(struct awg_softc *sc)
287 {
288 	struct mii_data *mii;
289 	uint32_t val;
290 
291 	AWG_ASSERT_LOCKED(sc);
292 
293 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
294 		return;
295 	mii = device_get_softc(sc->miibus);
296 
297 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
298 	    (IFM_ACTIVE | IFM_AVALID)) {
299 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
300 		case IFM_1000_T:
301 		case IFM_1000_SX:
302 		case IFM_100_TX:
303 		case IFM_10_T:
304 			sc->link = 1;
305 			break;
306 		default:
307 			sc->link = 0;
308 			break;
309 		}
310 	} else
311 		sc->link = 0;
312 
313 	if (sc->link == 0)
314 		return;
315 
316 	val = RD4(sc, EMAC_BASIC_CTL_0);
317 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
318 
319 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
320 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
321 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
322 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
323 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
324 	else
325 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
326 
327 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
328 		val |= BASIC_CTL_DUPLEX;
329 
330 	WR4(sc, EMAC_BASIC_CTL_0, val);
331 
332 	val = RD4(sc, EMAC_RX_CTL_0);
333 	val &= ~RX_FLOW_CTL_EN;
334 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
335 		val |= RX_FLOW_CTL_EN;
336 	WR4(sc, EMAC_RX_CTL_0, val);
337 
338 	val = RD4(sc, EMAC_TX_FLOW_CTL);
339 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
340 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
341 		val |= TX_FLOW_CTL_EN;
342 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
343 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
344 	WR4(sc, EMAC_TX_FLOW_CTL, val);
345 }
346 
347 static void
348 awg_link_task(void *arg, int pending)
349 {
350 	struct awg_softc *sc;
351 
352 	sc = arg;
353 
354 	AWG_LOCK(sc);
355 	awg_update_link_locked(sc);
356 	AWG_UNLOCK(sc);
357 }
358 
359 static void
360 awg_miibus_statchg(device_t dev)
361 {
362 	struct awg_softc *sc;
363 
364 	sc = device_get_softc(dev);
365 
366 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
367 }
368 
369 static void
370 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
371 {
372 	struct awg_softc *sc;
373 	struct mii_data *mii;
374 
375 	sc = if_getsoftc(ifp);
376 	mii = device_get_softc(sc->miibus);
377 
378 	AWG_LOCK(sc);
379 	mii_pollstat(mii);
380 	ifmr->ifm_active = mii->mii_media_active;
381 	ifmr->ifm_status = mii->mii_media_status;
382 	AWG_UNLOCK(sc);
383 }
384 
385 static int
386 awg_media_change(if_t ifp)
387 {
388 	struct awg_softc *sc;
389 	struct mii_data *mii;
390 	int error;
391 
392 	sc = if_getsoftc(ifp);
393 	mii = device_get_softc(sc->miibus);
394 
395 	AWG_LOCK(sc);
396 	error = mii_mediachg(mii);
397 	AWG_UNLOCK(sc);
398 
399 	return (error);
400 }
401 
402 static int
403 awg_encap(struct awg_softc *sc, struct mbuf **mp)
404 {
405 	bus_dmamap_t map;
406 	bus_dma_segment_t segs[TX_MAX_SEGS];
407 	int error, nsegs, cur, first, last, i;
408 	u_int csum_flags;
409 	uint32_t flags, status;
410 	struct mbuf *m;
411 
412 	cur = first = sc->tx.cur;
413 	map = sc->tx.buf_map[first].map;
414 
415 	m = *mp;
416 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
417 	    &nsegs, BUS_DMA_NOWAIT);
418 	if (error == EFBIG) {
419 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
420 		if (m == NULL) {
421 			device_printf(sc->dev, "awg_encap: m_collapse failed\n");
422 			m_freem(*mp);
423 			*mp = NULL;
424 			return (ENOMEM);
425 		}
426 		*mp = m;
427 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
428 		    segs, &nsegs, BUS_DMA_NOWAIT);
429 		if (error != 0) {
430 			m_freem(*mp);
431 			*mp = NULL;
432 		}
433 	}
434 	if (error != 0) {
435 		device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
436 		return (error);
437 	}
438 	if (nsegs == 0) {
439 		m_freem(*mp);
440 		*mp = NULL;
441 		return (EIO);
442 	}
443 
444 	if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
445 		bus_dmamap_unload(sc->tx.buf_tag, map);
446 		return (ENOBUFS);
447 	}
448 
449 	bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
450 
451 	flags = TX_FIR_DESC;
452 	status = 0;
453 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
454 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
455 			csum_flags = TX_CHECKSUM_CTL_FULL;
456 		else
457 			csum_flags = TX_CHECKSUM_CTL_IP;
458 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
459 	}
460 
461 	for (i = 0; i < nsegs; i++) {
462 		sc->tx.segs++;
463 		if (i == nsegs - 1) {
464 			flags |= TX_LAST_DESC;
465 			/*
466 			 * Can only request TX completion
467 			 * interrupt on last descriptor.
468 			 */
469 			if (sc->tx.segs >= awg_tx_interval) {
470 				sc->tx.segs = 0;
471 				flags |= TX_INT_CTL;
472 			}
473 		}
474 
475 		sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
476 		sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
477 		sc->tx.desc_ring[cur].status = htole32(status);
478 
479 		flags &= ~TX_FIR_DESC;
480 		/*
481 		 * Setting of the valid bit in the first descriptor is
482 		 * deferred until the whole chain is fully set up.
483 		 */
484 		status = TX_DESC_CTL;
485 
486 		++sc->tx.queued;
487 		cur = TX_NEXT(cur);
488 	}
489 
490 	sc->tx.cur = cur;
491 
492 	/* Store mapping and mbuf in the last segment */
493 	last = TX_SKIP(cur, TX_DESC_COUNT - 1);
494 	sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
495 	sc->tx.buf_map[last].map = map;
496 	sc->tx.buf_map[last].mbuf = m;
497 
498 	/*
499 	 * The whole mbuf chain has been DMA mapped,
500 	 * fix the first descriptor.
501 	 */
502 	sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
503 
504 	return (0);
505 }
506 
507 static void
508 awg_clean_txbuf(struct awg_softc *sc, int index)
509 {
510 	struct awg_bufmap *bmap;
511 
512 	--sc->tx.queued;
513 
514 	bmap = &sc->tx.buf_map[index];
515 	if (bmap->mbuf != NULL) {
516 		bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
517 		    BUS_DMASYNC_POSTWRITE);
518 		bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
519 		m_freem(bmap->mbuf);
520 		bmap->mbuf = NULL;
521 	}
522 }
523 
524 static void
525 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
526 {
527 	uint32_t status, size;
528 
529 	status = RX_DESC_CTL;
530 	size = MCLBYTES - 1;
531 
532 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
533 	sc->rx.desc_ring[index].size = htole32(size);
534 	sc->rx.desc_ring[index].status = htole32(status);
535 }
536 
537 static void
538 awg_reuse_rxdesc(struct awg_softc *sc, int index)
539 {
540 
541 	sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
542 }
543 
544 static int
545 awg_newbuf_rx(struct awg_softc *sc, int index)
546 {
547 	struct mbuf *m;
548 	bus_dma_segment_t seg;
549 	bus_dmamap_t map;
550 	int nsegs;
551 
552 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
553 	if (m == NULL)
554 		return (ENOBUFS);
555 
556 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
557 	m_adj(m, ETHER_ALIGN);
558 
559 	if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
560 	    m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
561 		m_freem(m);
562 		return (ENOBUFS);
563 	}
564 
565 	if (sc->rx.buf_map[index].mbuf != NULL) {
566 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
567 		    BUS_DMASYNC_POSTREAD);
568 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
569 	}
570 	map = sc->rx.buf_map[index].map;
571 	sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
572 	sc->rx.buf_spare_map = map;
573 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
574 	    BUS_DMASYNC_PREREAD);
575 
576 	sc->rx.buf_map[index].mbuf = m;
577 	awg_setup_rxdesc(sc, index, seg.ds_addr);
578 
579 	return (0);
580 }
581 
582 static void
583 awg_start_locked(struct awg_softc *sc)
584 {
585 	struct mbuf *m;
586 	uint32_t val;
587 	if_t ifp;
588 	int cnt, err;
589 
590 	AWG_ASSERT_LOCKED(sc);
591 
592 	if (!sc->link)
593 		return;
594 
595 	ifp = sc->ifp;
596 
597 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
598 	    IFF_DRV_RUNNING)
599 		return;
600 
601 	for (cnt = 0; ; cnt++) {
602 		m = if_dequeue(ifp);
603 		if (m == NULL)
604 			break;
605 
606 		err = awg_encap(sc, &m);
607 		if (err != 0) {
608 			if (err == ENOBUFS)
609 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
610 			if (m != NULL)
611 				if_sendq_prepend(ifp, m);
612 			break;
613 		}
614 		if_bpfmtap(ifp, m);
615 	}
616 
617 	if (cnt != 0) {
618 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
619 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
620 
621 		/* Start and run TX DMA */
622 		val = RD4(sc, EMAC_TX_CTL_1);
623 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
624 	}
625 }
626 
627 static void
628 awg_start(if_t ifp)
629 {
630 	struct awg_softc *sc;
631 
632 	sc = if_getsoftc(ifp);
633 
634 	AWG_LOCK(sc);
635 	awg_start_locked(sc);
636 	AWG_UNLOCK(sc);
637 }
638 
639 static void
640 awg_tick(void *softc)
641 {
642 	struct awg_softc *sc;
643 	struct mii_data *mii;
644 	if_t ifp;
645 	int link;
646 
647 	sc = softc;
648 	ifp = sc->ifp;
649 	mii = device_get_softc(sc->miibus);
650 
651 	AWG_ASSERT_LOCKED(sc);
652 
653 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
654 		return;
655 
656 	link = sc->link;
657 	mii_tick(mii);
658 	if (sc->link && !link)
659 		awg_start_locked(sc);
660 
661 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
662 }
663 
664 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
665 static uint32_t
666 bitrev32(uint32_t x)
667 {
668 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
669 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
670 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
671 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
672 
673 	return (x >> 16) | (x << 16);
674 }
675 
676 static void
677 awg_setup_rxfilter(struct awg_softc *sc)
678 {
679 	uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
680 	int mc_count, mcnt, i;
681 	uint8_t *eaddr, *mta;
682 	if_t ifp;
683 
684 	AWG_ASSERT_LOCKED(sc);
685 
686 	ifp = sc->ifp;
687 	val = 0;
688 	hash[0] = hash[1] = 0;
689 
690 	mc_count = if_multiaddr_count(ifp, -1);
691 
692 	if (if_getflags(ifp) & IFF_PROMISC)
693 		val |= DIS_ADDR_FILTER;
694 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
695 		val |= RX_ALL_MULTICAST;
696 		hash[0] = hash[1] = ~0;
697 	} else if (mc_count > 0) {
698 		val |= HASH_MULTICAST;
699 
700 		mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count,
701 		    M_DEVBUF, M_NOWAIT);
702 		if (mta == NULL) {
703 			if_printf(ifp,
704 			    "failed to allocate temporary multicast list\n");
705 			return;
706 		}
707 
708 		if_multiaddr_array(ifp, mta, &mcnt, mc_count);
709 		for (i = 0; i < mcnt; i++) {
710 			crc = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
711 			    ETHER_ADDR_LEN) & 0x7f;
712 			crc = bitrev32(~crc) >> 26;
713 			hashreg = (crc >> 5);
714 			hashbit = (crc & 0x1f);
715 			hash[hashreg] |= (1 << hashbit);
716 		}
717 
718 		free(mta, M_DEVBUF);
719 	}
720 
721 	/* Write our unicast address */
722 	eaddr = IF_LLADDR(ifp);
723 	machi = (eaddr[5] << 8) | eaddr[4];
724 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
725 	   (eaddr[0] << 0);
726 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
727 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
728 
729 	/* Multicast hash filters */
730 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
731 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
732 
733 	/* RX frame filter config */
734 	WR4(sc, EMAC_RX_FRM_FLT, val);
735 }
736 
737 static void
738 awg_enable_intr(struct awg_softc *sc)
739 {
740 	/* Enable interrupts */
741 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
742 }
743 
744 static void
745 awg_disable_intr(struct awg_softc *sc)
746 {
747 	/* Disable interrupts */
748 	WR4(sc, EMAC_INT_EN, 0);
749 }
750 
751 static void
752 awg_init_locked(struct awg_softc *sc)
753 {
754 	struct mii_data *mii;
755 	uint32_t val;
756 	if_t ifp;
757 
758 	mii = device_get_softc(sc->miibus);
759 	ifp = sc->ifp;
760 
761 	AWG_ASSERT_LOCKED(sc);
762 
763 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
764 		return;
765 
766 	awg_setup_rxfilter(sc);
767 
768 	/* Configure DMA burst length and priorities */
769 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
770 	if (awg_rx_tx_pri)
771 		val |= BASIC_CTL_RX_TX_PRI;
772 	WR4(sc, EMAC_BASIC_CTL_1, val);
773 
774 	/* Enable interrupts */
775 #ifdef DEVICE_POLLING
776 	if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
777 		awg_enable_intr(sc);
778 	else
779 		awg_disable_intr(sc);
780 #else
781 	awg_enable_intr(sc);
782 #endif
783 
784 	/* Enable transmit DMA */
785 	val = RD4(sc, EMAC_TX_CTL_1);
786 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
787 
788 	/* Enable receive DMA */
789 	val = RD4(sc, EMAC_RX_CTL_1);
790 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
791 
792 	/* Enable transmitter */
793 	val = RD4(sc, EMAC_TX_CTL_0);
794 	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
795 
796 	/* Enable receiver */
797 	val = RD4(sc, EMAC_RX_CTL_0);
798 	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
799 
800 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
801 
802 	mii_mediachg(mii);
803 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
804 }
805 
806 static void
807 awg_init(void *softc)
808 {
809 	struct awg_softc *sc;
810 
811 	sc = softc;
812 
813 	AWG_LOCK(sc);
814 	awg_init_locked(sc);
815 	AWG_UNLOCK(sc);
816 }
817 
818 static void
819 awg_stop(struct awg_softc *sc)
820 {
821 	if_t ifp;
822 	uint32_t val;
823 	int i;
824 
825 	AWG_ASSERT_LOCKED(sc);
826 
827 	ifp = sc->ifp;
828 
829 	callout_stop(&sc->stat_ch);
830 
831 	/* Stop transmit DMA and flush data in the TX FIFO */
832 	val = RD4(sc, EMAC_TX_CTL_1);
833 	val &= ~TX_DMA_EN;
834 	val |= FLUSH_TX_FIFO;
835 	WR4(sc, EMAC_TX_CTL_1, val);
836 
837 	/* Disable transmitter */
838 	val = RD4(sc, EMAC_TX_CTL_0);
839 	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
840 
841 	/* Disable receiver */
842 	val = RD4(sc, EMAC_RX_CTL_0);
843 	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
844 
845 	/* Disable interrupts */
846 	awg_disable_intr(sc);
847 
848 	/* Disable transmit DMA */
849 	val = RD4(sc, EMAC_TX_CTL_1);
850 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
851 
852 	/* Disable receive DMA */
853 	val = RD4(sc, EMAC_RX_CTL_1);
854 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
855 
856 	sc->link = 0;
857 
858 	/* Finish handling transmitted buffers */
859 	awg_txeof(sc);
860 
861 	/* Release any untransmitted buffers. */
862 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
863 		val = le32toh(sc->tx.desc_ring[i].status);
864 		if ((val & TX_DESC_CTL) != 0)
865 			break;
866 		awg_clean_txbuf(sc, i);
867 	}
868 	sc->tx.next = i;
869 	for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
870 		sc->tx.desc_ring[i].status = 0;
871 		awg_clean_txbuf(sc, i);
872 	}
873 	sc->tx.cur = sc->tx.next;
874 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
875 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
876 
877 	/* Setup RX buffers for reuse */
878 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
879 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
880 
881 	for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
882 		val = le32toh(sc->rx.desc_ring[i].status);
883 		if ((val & RX_DESC_CTL) != 0)
884 			break;
885 		awg_reuse_rxdesc(sc, i);
886 	}
887 	sc->rx.cur = i;
888 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
889 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
890 
891 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
892 }
893 
894 static int
895 awg_rxintr(struct awg_softc *sc)
896 {
897 	if_t ifp;
898 	struct mbuf *m, *mh, *mt;
899 	int error, index, len, cnt, npkt;
900 	uint32_t status;
901 
902 	ifp = sc->ifp;
903 	mh = mt = NULL;
904 	cnt = 0;
905 	npkt = 0;
906 
907 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
908 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
909 
910 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
911 		status = le32toh(sc->rx.desc_ring[index].status);
912 		if ((status & RX_DESC_CTL) != 0)
913 			break;
914 
915 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
916 
917 		if (len == 0) {
918 			if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
919 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
920 			awg_reuse_rxdesc(sc, index);
921 			continue;
922 		}
923 
924 		m = sc->rx.buf_map[index].mbuf;
925 
926 		error = awg_newbuf_rx(sc, index);
927 		if (error != 0) {
928 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
929 			awg_reuse_rxdesc(sc, index);
930 			continue;
931 		}
932 
933 		m->m_pkthdr.rcvif = ifp;
934 		m->m_pkthdr.len = len;
935 		m->m_len = len;
936 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
937 
938 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
939 		    (status & RX_FRM_TYPE) != 0) {
940 			m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
941 			if ((status & RX_HEADER_ERR) == 0)
942 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
943 			if ((status & RX_PAYLOAD_ERR) == 0) {
944 				m->m_pkthdr.csum_flags |=
945 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
946 				m->m_pkthdr.csum_data = 0xffff;
947 			}
948 		}
949 
950 		m->m_nextpkt = NULL;
951 		if (mh == NULL)
952 			mh = m;
953 		else
954 			mt->m_nextpkt = m;
955 		mt = m;
956 		++cnt;
957 		++npkt;
958 
959 		if (cnt == awg_rx_batch) {
960 			AWG_UNLOCK(sc);
961 			if_input(ifp, mh);
962 			AWG_LOCK(sc);
963 			mh = mt = NULL;
964 			cnt = 0;
965 		}
966 	}
967 
968 	if (index != sc->rx.cur) {
969 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
970 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
971 	}
972 
973 	if (mh != NULL) {
974 		AWG_UNLOCK(sc);
975 		if_input(ifp, mh);
976 		AWG_LOCK(sc);
977 	}
978 
979 	sc->rx.cur = index;
980 
981 	return (npkt);
982 }
983 
984 static void
985 awg_txeof(struct awg_softc *sc)
986 {
987 	struct emac_desc *desc;
988 	uint32_t status, size;
989 	if_t ifp;
990 	int i, prog;
991 
992 	AWG_ASSERT_LOCKED(sc);
993 
994 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
995 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
996 
997 	ifp = sc->ifp;
998 
999 	prog = 0;
1000 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
1001 		desc = &sc->tx.desc_ring[i];
1002 		status = le32toh(desc->status);
1003 		if ((status & TX_DESC_CTL) != 0)
1004 			break;
1005 		size = le32toh(desc->size);
1006 		if (size & TX_LAST_DESC) {
1007 			if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
1008 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1009 			else
1010 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1011 		}
1012 		prog++;
1013 		awg_clean_txbuf(sc, i);
1014 	}
1015 
1016 	if (prog > 0) {
1017 		sc->tx.next = i;
1018 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1019 	}
1020 }
1021 
1022 static void
1023 awg_intr(void *arg)
1024 {
1025 	struct awg_softc *sc;
1026 	uint32_t val;
1027 
1028 	sc = arg;
1029 
1030 	AWG_LOCK(sc);
1031 	val = RD4(sc, EMAC_INT_STA);
1032 	WR4(sc, EMAC_INT_STA, val);
1033 
1034 	if (val & RX_INT)
1035 		awg_rxintr(sc);
1036 
1037 	if (val & TX_INT)
1038 		awg_txeof(sc);
1039 
1040 	if (val & (TX_INT | TX_BUF_UA_INT)) {
1041 		if (!if_sendq_empty(sc->ifp))
1042 			awg_start_locked(sc);
1043 	}
1044 
1045 	AWG_UNLOCK(sc);
1046 }
1047 
1048 #ifdef DEVICE_POLLING
1049 static int
1050 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
1051 {
1052 	struct awg_softc *sc;
1053 	uint32_t val;
1054 	int rx_npkts;
1055 
1056 	sc = if_getsoftc(ifp);
1057 	rx_npkts = 0;
1058 
1059 	AWG_LOCK(sc);
1060 
1061 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1062 		AWG_UNLOCK(sc);
1063 		return (0);
1064 	}
1065 
1066 	rx_npkts = awg_rxintr(sc);
1067 	awg_txeof(sc);
1068 	if (!if_sendq_empty(ifp))
1069 		awg_start_locked(sc);
1070 
1071 	if (cmd == POLL_AND_CHECK_STATUS) {
1072 		val = RD4(sc, EMAC_INT_STA);
1073 		if (val != 0)
1074 			WR4(sc, EMAC_INT_STA, val);
1075 	}
1076 
1077 	AWG_UNLOCK(sc);
1078 
1079 	return (rx_npkts);
1080 }
1081 #endif
1082 
1083 static int
1084 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
1085 {
1086 	struct awg_softc *sc;
1087 	struct mii_data *mii;
1088 	struct ifreq *ifr;
1089 	int flags, mask, error;
1090 
1091 	sc = if_getsoftc(ifp);
1092 	mii = device_get_softc(sc->miibus);
1093 	ifr = (struct ifreq *)data;
1094 	error = 0;
1095 
1096 	switch (cmd) {
1097 	case SIOCSIFFLAGS:
1098 		AWG_LOCK(sc);
1099 		if (if_getflags(ifp) & IFF_UP) {
1100 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1101 				flags = if_getflags(ifp) ^ sc->if_flags;
1102 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
1103 					awg_setup_rxfilter(sc);
1104 			} else
1105 				awg_init_locked(sc);
1106 		} else {
1107 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1108 				awg_stop(sc);
1109 		}
1110 		sc->if_flags = if_getflags(ifp);
1111 		AWG_UNLOCK(sc);
1112 		break;
1113 	case SIOCADDMULTI:
1114 	case SIOCDELMULTI:
1115 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1116 			AWG_LOCK(sc);
1117 			awg_setup_rxfilter(sc);
1118 			AWG_UNLOCK(sc);
1119 		}
1120 		break;
1121 	case SIOCSIFMEDIA:
1122 	case SIOCGIFMEDIA:
1123 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1124 		break;
1125 	case SIOCSIFCAP:
1126 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1127 #ifdef DEVICE_POLLING
1128 		if (mask & IFCAP_POLLING) {
1129 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1130 				error = ether_poll_register(awg_poll, ifp);
1131 				if (error != 0)
1132 					break;
1133 				AWG_LOCK(sc);
1134 				awg_disable_intr(sc);
1135 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1136 				AWG_UNLOCK(sc);
1137 			} else {
1138 				error = ether_poll_deregister(ifp);
1139 				AWG_LOCK(sc);
1140 				awg_enable_intr(sc);
1141 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1142 				AWG_UNLOCK(sc);
1143 			}
1144 		}
1145 #endif
1146 		if (mask & IFCAP_VLAN_MTU)
1147 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1148 		if (mask & IFCAP_RXCSUM)
1149 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1150 		if (mask & IFCAP_TXCSUM)
1151 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1152 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1153 			if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
1154 		else
1155 			if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
1156 		break;
1157 	default:
1158 		error = ether_ioctl(ifp, cmd, data);
1159 		break;
1160 	}
1161 
1162 	return (error);
1163 }
1164 
1165 static uint32_t
1166 syscon_read_emac_clk_reg(device_t dev)
1167 {
1168 	struct awg_softc *sc;
1169 
1170 	sc = device_get_softc(dev);
1171 	if (sc->syscon != NULL)
1172 		return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
1173 	else if (sc->res[_RES_SYSCON] != NULL)
1174 		return (bus_read_4(sc->res[_RES_SYSCON], 0));
1175 
1176 	return (0);
1177 }
1178 
1179 static void
1180 syscon_write_emac_clk_reg(device_t dev, uint32_t val)
1181 {
1182 	struct awg_softc *sc;
1183 
1184 	sc = device_get_softc(dev);
1185 	if (sc->syscon != NULL)
1186 		SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
1187 	else if (sc->res[_RES_SYSCON] != NULL)
1188 		bus_write_4(sc->res[_RES_SYSCON], 0, val);
1189 }
1190 
1191 static phandle_t
1192 awg_get_phy_node(device_t dev)
1193 {
1194 	phandle_t node;
1195 	pcell_t phy_handle;
1196 
1197 	node = ofw_bus_get_node(dev);
1198 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
1199 	    sizeof(phy_handle)) <= 0)
1200 		return (0);
1201 
1202 	return (OF_node_from_xref(phy_handle));
1203 }
1204 
1205 static bool
1206 awg_has_internal_phy(device_t dev)
1207 {
1208 	phandle_t node, phy_node;
1209 
1210 	node = ofw_bus_get_node(dev);
1211 	/* Legacy binding */
1212 	if (OF_hasprop(node, "allwinner,use-internal-phy"))
1213 		return (true);
1214 
1215 	phy_node = awg_get_phy_node(dev);
1216 	return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
1217 	    "allwinner,sun8i-h3-mdio-internal") != 0);
1218 }
1219 
1220 static int
1221 awg_setup_phy(device_t dev)
1222 {
1223 	struct awg_softc *sc;
1224 	clk_t clk_tx, clk_tx_parent;
1225 	const char *tx_parent_name;
1226 	char *phy_type;
1227 	phandle_t node;
1228 	uint32_t reg, tx_delay, rx_delay;
1229 	int error;
1230 	bool use_syscon;
1231 
1232 	sc = device_get_softc(dev);
1233 	node = ofw_bus_get_node(dev);
1234 	use_syscon = false;
1235 
1236 	if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type) == 0)
1237 		return (0);
1238 
1239 	if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
1240 		use_syscon = true;
1241 
1242 	if (bootverbose)
1243 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1244 		    use_syscon ? "reg" : "clk");
1245 
1246 	if (use_syscon) {
1247 		/*
1248 		 * Abstract away writing to syscon for devices like the pine64.
1249 		 * For the pine64, we get dtb from U-Boot and it still uses the
1250 		 * legacy setup of specifying syscon register in emac node
1251 		 * rather than as its own node and using an xref in emac.
1252 		 * These abstractions can go away once U-Boot dts is up-to-date.
1253 		 */
1254 		reg = syscon_read_emac_clk_reg(dev);
1255 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1256 		if (strncmp(phy_type, "rgmii", 5) == 0)
1257 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1258 		else if (strcmp(phy_type, "rmii") == 0)
1259 			reg |= EMAC_CLK_RMII_EN;
1260 		else
1261 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1262 
1263 		if (OF_getencprop(node, "tx-delay", &tx_delay,
1264 		    sizeof(tx_delay)) > 0) {
1265 			reg &= ~EMAC_CLK_ETXDC;
1266 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1267 		}
1268 		if (OF_getencprop(node, "rx-delay", &rx_delay,
1269 		    sizeof(rx_delay)) > 0) {
1270 			reg &= ~EMAC_CLK_ERXDC;
1271 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1272 		}
1273 
1274 		if (sc->type == EMAC_H3) {
1275 			if (awg_has_internal_phy(dev)) {
1276 				reg |= EMAC_CLK_EPHY_SELECT;
1277 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1278 				if (OF_hasprop(node,
1279 				    "allwinner,leds-active-low"))
1280 					reg |= EMAC_CLK_EPHY_LED_POL;
1281 				else
1282 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1283 
1284 				/* Set internal PHY addr to 1 */
1285 				reg &= ~EMAC_CLK_EPHY_ADDR;
1286 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1287 			} else {
1288 				reg &= ~EMAC_CLK_EPHY_SELECT;
1289 			}
1290 		}
1291 
1292 		if (bootverbose)
1293 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1294 		syscon_write_emac_clk_reg(dev, reg);
1295 	} else {
1296 		if (strncmp(phy_type, "rgmii", 5) == 0)
1297 			tx_parent_name = "emac_int_tx";
1298 		else
1299 			tx_parent_name = "mii_phy_tx";
1300 
1301 		/* Get the TX clock */
1302 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1303 		if (error != 0) {
1304 			device_printf(dev, "cannot get tx clock\n");
1305 			goto fail;
1306 		}
1307 
1308 		/* Find the desired parent clock based on phy-mode property */
1309 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1310 		if (error != 0) {
1311 			device_printf(dev, "cannot get clock '%s'\n",
1312 			    tx_parent_name);
1313 			goto fail;
1314 		}
1315 
1316 		/* Set TX clock parent */
1317 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1318 		if (error != 0) {
1319 			device_printf(dev, "cannot set tx clock parent\n");
1320 			goto fail;
1321 		}
1322 
1323 		/* Enable TX clock */
1324 		error = clk_enable(clk_tx);
1325 		if (error != 0) {
1326 			device_printf(dev, "cannot enable tx clock\n");
1327 			goto fail;
1328 		}
1329 	}
1330 
1331 	error = 0;
1332 
1333 fail:
1334 	OF_prop_free(phy_type);
1335 	return (error);
1336 }
1337 
1338 static int
1339 awg_setup_extres(device_t dev)
1340 {
1341 	struct awg_softc *sc;
1342 	phandle_t node, phy_node;
1343 	hwreset_t rst_ahb, rst_ephy;
1344 	clk_t clk_ahb, clk_ephy;
1345 	regulator_t reg;
1346 	uint64_t freq;
1347 	int error, div;
1348 
1349 	sc = device_get_softc(dev);
1350 	rst_ahb = rst_ephy = NULL;
1351 	clk_ahb = clk_ephy = NULL;
1352 	reg = NULL;
1353 	node = ofw_bus_get_node(dev);
1354 	phy_node = awg_get_phy_node(dev);
1355 
1356 	if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
1357 		error = ENXIO;
1358 		device_printf(dev, "cannot get phy handle\n");
1359 		goto fail;
1360 	}
1361 
1362 	/* Get AHB clock and reset resources */
1363 	error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
1364 	if (error != 0)
1365 		error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1366 	if (error != 0) {
1367 		device_printf(dev, "cannot get ahb reset\n");
1368 		goto fail;
1369 	}
1370 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1371 		if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
1372 		    &rst_ephy) != 0)
1373 			rst_ephy = NULL;
1374 	error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
1375 	if (error != 0)
1376 		error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1377 	if (error != 0) {
1378 		device_printf(dev, "cannot get ahb clock\n");
1379 		goto fail;
1380 	}
1381 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1382 		if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
1383 		    &clk_ephy) != 0)
1384 			clk_ephy = NULL;
1385 
1386 	if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
1387 	    "syscon", &sc->syscon) != 0) {
1388 		device_printf(dev, "cannot get syscon driver handle\n");
1389 		goto fail;
1390 	}
1391 
1392 	/* Configure PHY for MII or RGMII mode */
1393 	if (awg_setup_phy(dev) != 0)
1394 		goto fail;
1395 
1396 	/* Enable clocks */
1397 	error = clk_enable(clk_ahb);
1398 	if (error != 0) {
1399 		device_printf(dev, "cannot enable ahb clock\n");
1400 		goto fail;
1401 	}
1402 	if (clk_ephy != NULL) {
1403 		error = clk_enable(clk_ephy);
1404 		if (error != 0) {
1405 			device_printf(dev, "cannot enable ephy clock\n");
1406 			goto fail;
1407 		}
1408 	}
1409 
1410 	/* De-assert reset */
1411 	error = hwreset_deassert(rst_ahb);
1412 	if (error != 0) {
1413 		device_printf(dev, "cannot de-assert ahb reset\n");
1414 		goto fail;
1415 	}
1416 	if (rst_ephy != NULL) {
1417 		error = hwreset_deassert(rst_ephy);
1418 		if (error != 0) {
1419 			device_printf(dev, "cannot de-assert ephy reset\n");
1420 			goto fail;
1421 		}
1422 	}
1423 
1424 	/* Enable PHY regulator if applicable */
1425 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1426 		error = regulator_enable(reg);
1427 		if (error != 0) {
1428 			device_printf(dev, "cannot enable PHY regulator\n");
1429 			goto fail;
1430 		}
1431 	}
1432 
1433 	/* Determine MDC clock divide ratio based on AHB clock */
1434 	error = clk_get_freq(clk_ahb, &freq);
1435 	if (error != 0) {
1436 		device_printf(dev, "cannot get AHB clock frequency\n");
1437 		goto fail;
1438 	}
1439 	div = freq / MDIO_FREQ;
1440 	if (div <= 16)
1441 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1442 	else if (div <= 32)
1443 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1444 	else if (div <= 64)
1445 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1446 	else if (div <= 128)
1447 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1448 	else {
1449 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1450 		error = ENXIO;
1451 		goto fail;
1452 	}
1453 
1454 	if (bootverbose)
1455 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1456 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1457 
1458 	return (0);
1459 
1460 fail:
1461 	if (reg != NULL)
1462 		regulator_release(reg);
1463 	if (clk_ephy != NULL)
1464 		clk_release(clk_ephy);
1465 	if (clk_ahb != NULL)
1466 		clk_release(clk_ahb);
1467 	if (rst_ephy != NULL)
1468 		hwreset_release(rst_ephy);
1469 	if (rst_ahb != NULL)
1470 		hwreset_release(rst_ahb);
1471 	return (error);
1472 }
1473 
1474 static void
1475 awg_get_eaddr(device_t dev, uint8_t *eaddr)
1476 {
1477 	struct awg_softc *sc;
1478 	uint32_t maclo, machi, rnd;
1479 	u_char rootkey[16];
1480 
1481 	sc = device_get_softc(dev);
1482 
1483 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1484 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1485 
1486 	if (maclo == 0xffffffff && machi == 0xffff) {
1487 		/* MAC address in hardware is invalid, create one */
1488 		if (aw_sid_get_rootkey(rootkey) == 0 &&
1489 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1490 		     rootkey[15]) != 0) {
1491 			/* MAC address is derived from the root key in SID */
1492 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1493 				(rootkey[3] << 8) | 0x02;
1494 			machi = (rootkey[15] << 8) | rootkey[14];
1495 		} else {
1496 			/* Create one */
1497 			rnd = arc4random();
1498 			maclo = 0x00f2 | (rnd & 0xffff0000);
1499 			machi = rnd & 0xffff;
1500 		}
1501 	}
1502 
1503 	eaddr[0] = maclo & 0xff;
1504 	eaddr[1] = (maclo >> 8) & 0xff;
1505 	eaddr[2] = (maclo >> 16) & 0xff;
1506 	eaddr[3] = (maclo >> 24) & 0xff;
1507 	eaddr[4] = machi & 0xff;
1508 	eaddr[5] = (machi >> 8) & 0xff;
1509 }
1510 
1511 #ifdef AWG_DEBUG
1512 static void
1513 awg_dump_regs(device_t dev)
1514 {
1515 	static const struct {
1516 		const char *name;
1517 		u_int reg;
1518 	} regs[] = {
1519 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1520 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1521 		{ "INT_STA", EMAC_INT_STA },
1522 		{ "INT_EN", EMAC_INT_EN },
1523 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1524 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1525 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1526 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1527 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1528 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1529 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1530 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1531 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1532 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1533 		{ "MII_CMD", EMAC_MII_CMD },
1534 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1535 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1536 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1537 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1538 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1539 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1540 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1541 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1542 		{ "RGMII_STA", EMAC_RGMII_STA },
1543 	};
1544 	struct awg_softc *sc;
1545 	unsigned int n;
1546 
1547 	sc = device_get_softc(dev);
1548 
1549 	for (n = 0; n < nitems(regs); n++)
1550 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1551 		    RD4(sc, regs[n].reg));
1552 }
1553 #endif
1554 
1555 #define	GPIO_ACTIVE_LOW		1
1556 
1557 static int
1558 awg_phy_reset(device_t dev)
1559 {
1560 	pcell_t gpio_prop[4], delay_prop[3];
1561 	phandle_t node, gpio_node;
1562 	device_t gpio;
1563 	uint32_t pin, flags;
1564 	uint32_t pin_value;
1565 
1566 	node = ofw_bus_get_node(dev);
1567 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1568 	    sizeof(gpio_prop)) <= 0)
1569 		return (0);
1570 
1571 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1572 	    sizeof(delay_prop)) <= 0)
1573 		return (ENXIO);
1574 
1575 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1576 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1577 		return (ENXIO);
1578 
1579 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1580 	    gpio_prop + 1, &pin, &flags) != 0)
1581 		return (ENXIO);
1582 
1583 	pin_value = GPIO_PIN_LOW;
1584 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1585 		pin_value = GPIO_PIN_HIGH;
1586 
1587 	if (flags & GPIO_ACTIVE_LOW)
1588 		pin_value = !pin_value;
1589 
1590 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1591 	GPIO_PIN_SET(gpio, pin, pin_value);
1592 	DELAY(delay_prop[0]);
1593 	GPIO_PIN_SET(gpio, pin, !pin_value);
1594 	DELAY(delay_prop[1]);
1595 	GPIO_PIN_SET(gpio, pin, pin_value);
1596 	DELAY(delay_prop[2]);
1597 
1598 	return (0);
1599 }
1600 
1601 static int
1602 awg_reset(device_t dev)
1603 {
1604 	struct awg_softc *sc;
1605 	int retry;
1606 
1607 	sc = device_get_softc(dev);
1608 
1609 	/* Reset PHY if necessary */
1610 	if (awg_phy_reset(dev) != 0) {
1611 		device_printf(dev, "failed to reset PHY\n");
1612 		return (ENXIO);
1613 	}
1614 
1615 	/* Soft reset all registers and logic */
1616 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1617 
1618 	/* Wait for soft reset bit to self-clear */
1619 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1620 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1621 			break;
1622 		DELAY(10);
1623 	}
1624 	if (retry == 0) {
1625 		device_printf(dev, "soft reset timed out\n");
1626 #ifdef AWG_DEBUG
1627 		awg_dump_regs(dev);
1628 #endif
1629 		return (ETIMEDOUT);
1630 	}
1631 
1632 	return (0);
1633 }
1634 
1635 static void
1636 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1637 {
1638 	if (error != 0)
1639 		return;
1640 	*(bus_addr_t *)arg = segs[0].ds_addr;
1641 }
1642 
1643 static int
1644 awg_setup_dma(device_t dev)
1645 {
1646 	struct awg_softc *sc;
1647 	int error, i;
1648 
1649 	sc = device_get_softc(dev);
1650 
1651 	/* Setup TX ring */
1652 	error = bus_dma_tag_create(
1653 	    bus_get_dma_tag(dev),	/* Parent tag */
1654 	    DESC_ALIGN, 0,		/* alignment, boundary */
1655 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1656 	    BUS_SPACE_MAXADDR,		/* highaddr */
1657 	    NULL, NULL,			/* filter, filterarg */
1658 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
1659 	    TX_DESC_SIZE,		/* maxsegsize */
1660 	    0,				/* flags */
1661 	    NULL, NULL,			/* lockfunc, lockarg */
1662 	    &sc->tx.desc_tag);
1663 	if (error != 0) {
1664 		device_printf(dev, "cannot create TX descriptor ring tag\n");
1665 		return (error);
1666 	}
1667 
1668 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
1669 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
1670 	if (error != 0) {
1671 		device_printf(dev, "cannot allocate TX descriptor ring\n");
1672 		return (error);
1673 	}
1674 
1675 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
1676 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
1677 	    &sc->tx.desc_ring_paddr, 0);
1678 	if (error != 0) {
1679 		device_printf(dev, "cannot load TX descriptor ring\n");
1680 		return (error);
1681 	}
1682 
1683 	for (i = 0; i < TX_DESC_COUNT; i++)
1684 		sc->tx.desc_ring[i].next =
1685 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1686 
1687 	error = bus_dma_tag_create(
1688 	    bus_get_dma_tag(dev),	/* Parent tag */
1689 	    1, 0,			/* alignment, boundary */
1690 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1691 	    BUS_SPACE_MAXADDR,		/* highaddr */
1692 	    NULL, NULL,			/* filter, filterarg */
1693 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
1694 	    MCLBYTES,			/* maxsegsize */
1695 	    0,				/* flags */
1696 	    NULL, NULL,			/* lockfunc, lockarg */
1697 	    &sc->tx.buf_tag);
1698 	if (error != 0) {
1699 		device_printf(dev, "cannot create TX buffer tag\n");
1700 		return (error);
1701 	}
1702 
1703 	sc->tx.queued = 0;
1704 	for (i = 0; i < TX_DESC_COUNT; i++) {
1705 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
1706 		    &sc->tx.buf_map[i].map);
1707 		if (error != 0) {
1708 			device_printf(dev, "cannot create TX buffer map\n");
1709 			return (error);
1710 		}
1711 	}
1712 
1713 	/* Setup RX ring */
1714 	error = bus_dma_tag_create(
1715 	    bus_get_dma_tag(dev),	/* Parent tag */
1716 	    DESC_ALIGN, 0,		/* alignment, boundary */
1717 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1718 	    BUS_SPACE_MAXADDR,		/* highaddr */
1719 	    NULL, NULL,			/* filter, filterarg */
1720 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
1721 	    RX_DESC_SIZE,		/* maxsegsize */
1722 	    0,				/* flags */
1723 	    NULL, NULL,			/* lockfunc, lockarg */
1724 	    &sc->rx.desc_tag);
1725 	if (error != 0) {
1726 		device_printf(dev, "cannot create RX descriptor ring tag\n");
1727 		return (error);
1728 	}
1729 
1730 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
1731 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
1732 	if (error != 0) {
1733 		device_printf(dev, "cannot allocate RX descriptor ring\n");
1734 		return (error);
1735 	}
1736 
1737 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
1738 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
1739 	    &sc->rx.desc_ring_paddr, 0);
1740 	if (error != 0) {
1741 		device_printf(dev, "cannot load RX descriptor ring\n");
1742 		return (error);
1743 	}
1744 
1745 	error = bus_dma_tag_create(
1746 	    bus_get_dma_tag(dev),	/* Parent tag */
1747 	    1, 0,			/* alignment, boundary */
1748 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1749 	    BUS_SPACE_MAXADDR,		/* highaddr */
1750 	    NULL, NULL,			/* filter, filterarg */
1751 	    MCLBYTES, 1,		/* maxsize, nsegs */
1752 	    MCLBYTES,			/* maxsegsize */
1753 	    0,				/* flags */
1754 	    NULL, NULL,			/* lockfunc, lockarg */
1755 	    &sc->rx.buf_tag);
1756 	if (error != 0) {
1757 		device_printf(dev, "cannot create RX buffer tag\n");
1758 		return (error);
1759 	}
1760 
1761 	error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
1762 	if (error != 0) {
1763 		device_printf(dev,
1764 		    "cannot create RX buffer spare map\n");
1765 		return (error);
1766 	}
1767 
1768 	for (i = 0; i < RX_DESC_COUNT; i++) {
1769 		sc->rx.desc_ring[i].next =
1770 		    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
1771 
1772 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
1773 		    &sc->rx.buf_map[i].map);
1774 		if (error != 0) {
1775 			device_printf(dev, "cannot create RX buffer map\n");
1776 			return (error);
1777 		}
1778 		sc->rx.buf_map[i].mbuf = NULL;
1779 		error = awg_newbuf_rx(sc, i);
1780 		if (error != 0) {
1781 			device_printf(dev, "cannot create RX buffer\n");
1782 			return (error);
1783 		}
1784 	}
1785 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1786 	    BUS_DMASYNC_PREWRITE);
1787 
1788 	/* Write transmit and receive descriptor base address registers */
1789 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1790 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1791 
1792 	return (0);
1793 }
1794 
1795 static int
1796 awg_probe(device_t dev)
1797 {
1798 	if (!ofw_bus_status_okay(dev))
1799 		return (ENXIO);
1800 
1801 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1802 		return (ENXIO);
1803 
1804 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1805 	return (BUS_PROBE_DEFAULT);
1806 }
1807 
1808 static int
1809 awg_attach(device_t dev)
1810 {
1811 	uint8_t eaddr[ETHER_ADDR_LEN];
1812 	struct awg_softc *sc;
1813 	int error;
1814 
1815 	sc = device_get_softc(dev);
1816 	sc->dev = dev;
1817 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1818 
1819 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1820 		device_printf(dev, "cannot allocate resources for device\n");
1821 		return (ENXIO);
1822 	}
1823 
1824 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1825 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1826 	TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
1827 
1828 	/* Setup clocks and regulators */
1829 	error = awg_setup_extres(dev);
1830 	if (error != 0)
1831 		return (error);
1832 
1833 	/* Read MAC address before resetting the chip */
1834 	awg_get_eaddr(dev, eaddr);
1835 
1836 	/* Soft reset EMAC core */
1837 	error = awg_reset(dev);
1838 	if (error != 0)
1839 		return (error);
1840 
1841 	/* Setup DMA descriptors */
1842 	error = awg_setup_dma(dev);
1843 	if (error != 0)
1844 		return (error);
1845 
1846 	/* Install interrupt handler */
1847 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1848 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1849 	if (error != 0) {
1850 		device_printf(dev, "cannot setup interrupt handler\n");
1851 		return (error);
1852 	}
1853 
1854 	/* Setup ethernet interface */
1855 	sc->ifp = if_alloc(IFT_ETHER);
1856 	if_setsoftc(sc->ifp, sc);
1857 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1858 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1859 	if_setstartfn(sc->ifp, awg_start);
1860 	if_setioctlfn(sc->ifp, awg_ioctl);
1861 	if_setinitfn(sc->ifp, awg_init);
1862 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1863 	if_setsendqready(sc->ifp);
1864 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1865 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1866 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1867 #ifdef DEVICE_POLLING
1868 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1869 #endif
1870 
1871 	/* Attach MII driver */
1872 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1873 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1874 	    MIIF_DOPAUSE);
1875 	if (error != 0) {
1876 		device_printf(dev, "cannot attach PHY\n");
1877 		return (error);
1878 	}
1879 
1880 	/* Attach ethernet interface */
1881 	ether_ifattach(sc->ifp, eaddr);
1882 
1883 	return (0);
1884 }
1885 
1886 static device_method_t awg_methods[] = {
1887 	/* Device interface */
1888 	DEVMETHOD(device_probe,		awg_probe),
1889 	DEVMETHOD(device_attach,	awg_attach),
1890 
1891 	/* MII interface */
1892 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
1893 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
1894 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
1895 
1896 	DEVMETHOD_END
1897 };
1898 
1899 static driver_t awg_driver = {
1900 	"awg",
1901 	awg_methods,
1902 	sizeof(struct awg_softc),
1903 };
1904 
1905 static devclass_t awg_devclass;
1906 
1907 DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
1908 DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
1909 
1910 MODULE_DEPEND(awg, ether, 1, 1, 1);
1911 MODULE_DEPEND(awg, miibus, 1, 1, 1);
1912