xref: /freebsd/sys/arm/allwinner/if_awg.c (revision 28f6c2f292806bf31230a959bc4b19d7081669a7)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
18  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
20  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
21  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27 
28 /*
29  * Allwinner Gigabit Ethernet MAC (EMAC) controller
30  */
31 
32 #include "opt_device_polling.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/rman.h>
41 #include <sys/kernel.h>
42 #include <sys/endian.h>
43 #include <sys/mbuf.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/module.h>
47 #include <sys/gpio.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_var.h>
56 
57 #include <machine/bus.h>
58 
59 #include <dev/ofw/ofw_bus.h>
60 #include <dev/ofw/ofw_bus_subr.h>
61 
62 #include <arm/allwinner/if_awgreg.h>
63 #include <arm/allwinner/aw_sid.h>
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/extres/clk/clk.h>
68 #include <dev/extres/hwreset/hwreset.h>
69 #include <dev/extres/regulator/regulator.h>
70 #include <dev/extres/syscon/syscon.h>
71 
72 #include "syscon_if.h"
73 #include "miibus_if.h"
74 #include "gpio_if.h"
75 
76 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
77 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
78 
79 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
80 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
81 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
82 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
83 
84 #define	DESC_ALIGN		4
85 #define	TX_DESC_COUNT		1024
86 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
87 #define	RX_DESC_COUNT		256
88 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
89 
90 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
91 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
92 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
93 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
94 
95 #define	TX_MAX_SEGS		20
96 
97 #define	SOFT_RST_RETRY		1000
98 #define	MII_BUSY_RETRY		1000
99 #define	MDIO_FREQ		2500000
100 
101 #define	BURST_LEN_DEFAULT	8
102 #define	RX_TX_PRI_DEFAULT	0
103 #define	PAUSE_TIME_DEFAULT	0x400
104 #define	TX_INTERVAL_DEFAULT	64
105 #define	RX_BATCH_DEFAULT	64
106 
107 /* syscon EMAC clock register */
108 #define	EMAC_CLK_REG		0x30
109 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
110 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
111 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
112 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
113 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
114 #define	EMAC_CLK_RMII_EN	(1 << 13)
115 #define	EMAC_CLK_ETXDC		(0x7 << 10)
116 #define	EMAC_CLK_ETXDC_SHIFT	10
117 #define	EMAC_CLK_ERXDC		(0x1f << 5)
118 #define	EMAC_CLK_ERXDC_SHIFT	5
119 #define	EMAC_CLK_PIT		(0x1 << 2)
120 #define	 EMAC_CLK_PIT_MII	(0 << 2)
121 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
122 #define	EMAC_CLK_SRC		(0x3 << 0)
123 #define	 EMAC_CLK_SRC_MII	(0 << 0)
124 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
125 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
126 
127 /* Burst length of RX and TX DMA transfers */
128 static int awg_burst_len = BURST_LEN_DEFAULT;
129 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
130 
131 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
132 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
133 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
134 
135 /* Pause time field in the transmitted control frame */
136 static int awg_pause_time = PAUSE_TIME_DEFAULT;
137 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
138 
139 /* Request a TX interrupt every <n> descriptors */
140 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
141 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
142 
143 /* Maximum number of mbufs to send to if_input */
144 static int awg_rx_batch = RX_BATCH_DEFAULT;
145 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
146 
147 enum awg_type {
148 	EMAC_A83T = 1,
149 	EMAC_H3,
150 	EMAC_A64,
151 };
152 
153 static struct ofw_compat_data compat_data[] = {
154 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
155 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
156 	{ "allwinner,sun50i-a64-emac",		EMAC_A64 },
157 	{ NULL,					0 }
158 };
159 
160 struct awg_bufmap {
161 	bus_dmamap_t		map;
162 	struct mbuf		*mbuf;
163 };
164 
165 struct awg_txring {
166 	bus_dma_tag_t		desc_tag;
167 	bus_dmamap_t		desc_map;
168 	struct emac_desc	*desc_ring;
169 	bus_addr_t		desc_ring_paddr;
170 	bus_dma_tag_t		buf_tag;
171 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
172 	u_int			cur, next, queued;
173 	u_int			segs;
174 };
175 
176 struct awg_rxring {
177 	bus_dma_tag_t		desc_tag;
178 	bus_dmamap_t		desc_map;
179 	struct emac_desc	*desc_ring;
180 	bus_addr_t		desc_ring_paddr;
181 	bus_dma_tag_t		buf_tag;
182 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
183 	bus_dmamap_t		buf_spare_map;
184 	u_int			cur;
185 };
186 
187 enum {
188 	_RES_EMAC,
189 	_RES_IRQ,
190 	_RES_SYSCON,
191 	_RES_NITEMS
192 };
193 
194 struct awg_softc {
195 	struct resource		*res[_RES_NITEMS];
196 	struct mtx		mtx;
197 	if_t			ifp;
198 	device_t		dev;
199 	device_t		miibus;
200 	struct callout		stat_ch;
201 	void			*ih;
202 	u_int			mdc_div_ratio_m;
203 	int			link;
204 	int			if_flags;
205 	enum awg_type		type;
206 	struct syscon		*syscon;
207 
208 	struct awg_txring	tx;
209 	struct awg_rxring	rx;
210 };
211 
212 static struct resource_spec awg_spec[] = {
213 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
214 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
215 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
216 	{ -1, 0 }
217 };
218 
219 static void awg_txeof(struct awg_softc *sc);
220 static void awg_start_locked(struct awg_softc *sc);
221 
222 static void awg_tick(void *softc);
223 
224 static int awg_parse_delay(device_t dev, uint32_t *tx_delay,
225     uint32_t *rx_delay);
226 static uint32_t syscon_read_emac_clk_reg(device_t dev);
227 static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
228 static phandle_t awg_get_phy_node(device_t dev);
229 static bool awg_has_internal_phy(device_t dev);
230 
231 /*
232  * MII functions
233  */
234 
235 static int
236 awg_miibus_readreg(device_t dev, int phy, int reg)
237 {
238 	struct awg_softc *sc;
239 	int retry, val;
240 
241 	sc = device_get_softc(dev);
242 	val = 0;
243 
244 	WR4(sc, EMAC_MII_CMD,
245 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
246 	    (phy << PHY_ADDR_SHIFT) |
247 	    (reg << PHY_REG_ADDR_SHIFT) |
248 	    MII_BUSY);
249 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
250 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
251 			val = RD4(sc, EMAC_MII_DATA);
252 			break;
253 		}
254 		DELAY(10);
255 	}
256 
257 	if (retry == 0)
258 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
259 		    phy, reg);
260 
261 	return (val);
262 }
263 
264 static int
265 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
266 {
267 	struct awg_softc *sc;
268 	int retry;
269 
270 	sc = device_get_softc(dev);
271 
272 	WR4(sc, EMAC_MII_DATA, val);
273 	WR4(sc, EMAC_MII_CMD,
274 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
275 	    (phy << PHY_ADDR_SHIFT) |
276 	    (reg << PHY_REG_ADDR_SHIFT) |
277 	    MII_WR | MII_BUSY);
278 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
279 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
280 			break;
281 		DELAY(10);
282 	}
283 
284 	if (retry == 0)
285 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
286 		    phy, reg);
287 
288 	return (0);
289 }
290 
291 static void
292 awg_miibus_statchg(device_t dev)
293 {
294 	struct awg_softc *sc;
295 	struct mii_data *mii;
296 	uint32_t val;
297 
298 	sc = device_get_softc(dev);
299 
300 	AWG_ASSERT_LOCKED(sc);
301 
302 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
303 		return;
304 	mii = device_get_softc(sc->miibus);
305 
306 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
307 	    (IFM_ACTIVE | IFM_AVALID)) {
308 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
309 		case IFM_1000_T:
310 		case IFM_1000_SX:
311 		case IFM_100_TX:
312 		case IFM_10_T:
313 			sc->link = 1;
314 			break;
315 		default:
316 			sc->link = 0;
317 			break;
318 		}
319 	} else
320 		sc->link = 0;
321 
322 	if (sc->link == 0)
323 		return;
324 
325 	val = RD4(sc, EMAC_BASIC_CTL_0);
326 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
327 
328 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
329 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
330 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
331 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
332 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
333 	else
334 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
335 
336 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
337 		val |= BASIC_CTL_DUPLEX;
338 
339 	WR4(sc, EMAC_BASIC_CTL_0, val);
340 
341 	val = RD4(sc, EMAC_RX_CTL_0);
342 	val &= ~RX_FLOW_CTL_EN;
343 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
344 		val |= RX_FLOW_CTL_EN;
345 	WR4(sc, EMAC_RX_CTL_0, val);
346 
347 	val = RD4(sc, EMAC_TX_FLOW_CTL);
348 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
349 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
350 		val |= TX_FLOW_CTL_EN;
351 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
352 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
353 	WR4(sc, EMAC_TX_FLOW_CTL, val);
354 }
355 
356 /*
357  * Media functions
358  */
359 
360 static void
361 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
362 {
363 	struct awg_softc *sc;
364 	struct mii_data *mii;
365 
366 	sc = if_getsoftc(ifp);
367 	mii = device_get_softc(sc->miibus);
368 
369 	AWG_LOCK(sc);
370 	mii_pollstat(mii);
371 	ifmr->ifm_active = mii->mii_media_active;
372 	ifmr->ifm_status = mii->mii_media_status;
373 	AWG_UNLOCK(sc);
374 }
375 
376 static int
377 awg_media_change(if_t ifp)
378 {
379 	struct awg_softc *sc;
380 	struct mii_data *mii;
381 	int error;
382 
383 	sc = if_getsoftc(ifp);
384 	mii = device_get_softc(sc->miibus);
385 
386 	AWG_LOCK(sc);
387 	error = mii_mediachg(mii);
388 	AWG_UNLOCK(sc);
389 
390 	return (error);
391 }
392 
393 /*
394  * Core functions
395  */
396 
397 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
398 static uint32_t
399 bitrev32(uint32_t x)
400 {
401 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
402 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
403 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
404 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
405 
406 	return (x >> 16) | (x << 16);
407 }
408 
409 static u_int
410 awg_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
411 {
412 	uint32_t crc, hashreg, hashbit, *hash = arg;
413 
414 	crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7f;
415 	crc = bitrev32(~crc) >> 26;
416 	hashreg = (crc >> 5);
417 	hashbit = (crc & 0x1f);
418 	hash[hashreg] |= (1 << hashbit);
419 
420 	return (1);
421 }
422 
423 static void
424 awg_setup_rxfilter(struct awg_softc *sc)
425 {
426 	uint32_t val, hash[2], machi, maclo;
427 	uint8_t *eaddr;
428 	if_t ifp;
429 
430 	AWG_ASSERT_LOCKED(sc);
431 
432 	ifp = sc->ifp;
433 	val = 0;
434 	hash[0] = hash[1] = 0;
435 
436 	if (if_getflags(ifp) & IFF_PROMISC)
437 		val |= DIS_ADDR_FILTER;
438 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
439 		val |= RX_ALL_MULTICAST;
440 		hash[0] = hash[1] = ~0;
441 	} else if (if_foreach_llmaddr(ifp, awg_hash_maddr, hash) > 0)
442 		val |= HASH_MULTICAST;
443 
444 	/* Write our unicast address */
445 	eaddr = if_getlladdr(ifp);
446 	machi = (eaddr[5] << 8) | eaddr[4];
447 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
448 	   (eaddr[0] << 0);
449 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
450 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
451 
452 	/* Multicast hash filters */
453 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
454 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
455 
456 	/* RX frame filter config */
457 	WR4(sc, EMAC_RX_FRM_FLT, val);
458 }
459 
460 static void
461 awg_setup_core(struct awg_softc *sc)
462 {
463 	uint32_t val;
464 
465 	AWG_ASSERT_LOCKED(sc);
466 	/* Configure DMA burst length and priorities */
467 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
468 	if (awg_rx_tx_pri)
469 		val |= BASIC_CTL_RX_TX_PRI;
470 	WR4(sc, EMAC_BASIC_CTL_1, val);
471 
472 }
473 
474 static void
475 awg_enable_mac(struct awg_softc *sc, bool enable)
476 {
477 	uint32_t tx, rx;
478 
479 	AWG_ASSERT_LOCKED(sc);
480 
481 	tx = RD4(sc, EMAC_TX_CTL_0);
482 	rx = RD4(sc, EMAC_RX_CTL_0);
483 	if (enable) {
484 		tx |= TX_EN;
485 		rx |= RX_EN | CHECK_CRC;
486 	} else {
487 		tx &= ~TX_EN;
488 		rx &= ~(RX_EN | CHECK_CRC);
489 	}
490 
491 	WR4(sc, EMAC_TX_CTL_0, tx);
492 	WR4(sc, EMAC_RX_CTL_0, rx);
493 }
494 
495 static void
496 awg_get_eaddr(device_t dev, uint8_t *eaddr)
497 {
498 	struct awg_softc *sc;
499 	uint32_t maclo, machi, rnd;
500 	u_char rootkey[16];
501 	uint32_t rootkey_size;
502 
503 	sc = device_get_softc(dev);
504 
505 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
506 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
507 
508 	rootkey_size = sizeof(rootkey);
509 	if (maclo == 0xffffffff && machi == 0xffff) {
510 		/* MAC address in hardware is invalid, create one */
511 		if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
512 		    &rootkey_size) == 0 &&
513 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
514 		     rootkey[15]) != 0) {
515 			/* MAC address is derived from the root key in SID */
516 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
517 				(rootkey[3] << 8) | 0x02;
518 			machi = (rootkey[15] << 8) | rootkey[14];
519 		} else {
520 			/* Create one */
521 			rnd = arc4random();
522 			maclo = 0x00f2 | (rnd & 0xffff0000);
523 			machi = rnd & 0xffff;
524 		}
525 	}
526 
527 	eaddr[0] = maclo & 0xff;
528 	eaddr[1] = (maclo >> 8) & 0xff;
529 	eaddr[2] = (maclo >> 16) & 0xff;
530 	eaddr[3] = (maclo >> 24) & 0xff;
531 	eaddr[4] = machi & 0xff;
532 	eaddr[5] = (machi >> 8) & 0xff;
533 }
534 
535 /*
536  * DMA functions
537  */
538 
539 static void
540 awg_enable_dma_intr(struct awg_softc *sc)
541 {
542 	/* Enable interrupts */
543 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
544 }
545 
546 static void
547 awg_disable_dma_intr(struct awg_softc *sc)
548 {
549 	/* Disable interrupts */
550 	WR4(sc, EMAC_INT_EN, 0);
551 }
552 
553 static void
554 awg_init_dma(struct awg_softc *sc)
555 {
556 	uint32_t val;
557 
558 	AWG_ASSERT_LOCKED(sc);
559 
560 	/* Enable interrupts */
561 #ifdef DEVICE_POLLING
562 	if ((if_getcapenable(sc->ifp) & IFCAP_POLLING) == 0)
563 		awg_enable_dma_intr(sc);
564 	else
565 		awg_disable_dma_intr(sc);
566 #else
567 	awg_enable_dma_intr(sc);
568 #endif
569 
570 	/* Enable transmit DMA */
571 	val = RD4(sc, EMAC_TX_CTL_1);
572 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
573 
574 	/* Enable receive DMA */
575 	val = RD4(sc, EMAC_RX_CTL_1);
576 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
577 }
578 
579 static void
580 awg_stop_dma(struct awg_softc *sc)
581 {
582 	uint32_t val;
583 
584 	AWG_ASSERT_LOCKED(sc);
585 
586 	/* Stop transmit DMA and flush data in the TX FIFO */
587 	val = RD4(sc, EMAC_TX_CTL_1);
588 	val &= ~TX_DMA_EN;
589 	val |= FLUSH_TX_FIFO;
590 	WR4(sc, EMAC_TX_CTL_1, val);
591 
592 	/* Disable interrupts */
593 	awg_disable_dma_intr(sc);
594 
595 	/* Disable transmit DMA */
596 	val = RD4(sc, EMAC_TX_CTL_1);
597 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
598 
599 	/* Disable receive DMA */
600 	val = RD4(sc, EMAC_RX_CTL_1);
601 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
602 }
603 
604 static int
605 awg_encap(struct awg_softc *sc, struct mbuf **mp)
606 {
607 	bus_dmamap_t map;
608 	bus_dma_segment_t segs[TX_MAX_SEGS];
609 	int error, nsegs, cur, first, last, i;
610 	u_int csum_flags;
611 	uint32_t flags, status;
612 	struct mbuf *m;
613 
614 	cur = first = sc->tx.cur;
615 	map = sc->tx.buf_map[first].map;
616 
617 	m = *mp;
618 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
619 	    &nsegs, BUS_DMA_NOWAIT);
620 	if (error == EFBIG) {
621 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
622 		if (m == NULL) {
623 			device_printf(sc->dev, "awg_encap: m_collapse failed\n");
624 			m_freem(*mp);
625 			*mp = NULL;
626 			return (ENOMEM);
627 		}
628 		*mp = m;
629 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
630 		    segs, &nsegs, BUS_DMA_NOWAIT);
631 		if (error != 0) {
632 			m_freem(*mp);
633 			*mp = NULL;
634 		}
635 	}
636 	if (error != 0) {
637 		device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
638 		return (error);
639 	}
640 	if (nsegs == 0) {
641 		m_freem(*mp);
642 		*mp = NULL;
643 		return (EIO);
644 	}
645 
646 	if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
647 		bus_dmamap_unload(sc->tx.buf_tag, map);
648 		return (ENOBUFS);
649 	}
650 
651 	bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
652 
653 	flags = TX_FIR_DESC;
654 	status = 0;
655 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
656 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
657 			csum_flags = TX_CHECKSUM_CTL_FULL;
658 		else
659 			csum_flags = TX_CHECKSUM_CTL_IP;
660 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
661 	}
662 
663 	for (i = 0; i < nsegs; i++) {
664 		sc->tx.segs++;
665 		if (i == nsegs - 1) {
666 			flags |= TX_LAST_DESC;
667 			/*
668 			 * Can only request TX completion
669 			 * interrupt on last descriptor.
670 			 */
671 			if (sc->tx.segs >= awg_tx_interval) {
672 				sc->tx.segs = 0;
673 				flags |= TX_INT_CTL;
674 			}
675 		}
676 
677 		sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
678 		sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
679 		sc->tx.desc_ring[cur].status = htole32(status);
680 
681 		flags &= ~TX_FIR_DESC;
682 		/*
683 		 * Setting of the valid bit in the first descriptor is
684 		 * deferred until the whole chain is fully set up.
685 		 */
686 		status = TX_DESC_CTL;
687 
688 		++sc->tx.queued;
689 		cur = TX_NEXT(cur);
690 	}
691 
692 	sc->tx.cur = cur;
693 
694 	/* Store mapping and mbuf in the last segment */
695 	last = TX_SKIP(cur, TX_DESC_COUNT - 1);
696 	sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
697 	sc->tx.buf_map[last].map = map;
698 	sc->tx.buf_map[last].mbuf = m;
699 
700 	/*
701 	 * The whole mbuf chain has been DMA mapped,
702 	 * fix the first descriptor.
703 	 */
704 	sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
705 
706 	return (0);
707 }
708 
709 static void
710 awg_clean_txbuf(struct awg_softc *sc, int index)
711 {
712 	struct awg_bufmap *bmap;
713 
714 	--sc->tx.queued;
715 
716 	bmap = &sc->tx.buf_map[index];
717 	if (bmap->mbuf != NULL) {
718 		bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
719 		    BUS_DMASYNC_POSTWRITE);
720 		bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
721 		m_freem(bmap->mbuf);
722 		bmap->mbuf = NULL;
723 	}
724 }
725 
726 static void
727 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
728 {
729 	uint32_t status, size;
730 
731 	status = RX_DESC_CTL;
732 	size = MCLBYTES - 1;
733 
734 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
735 	sc->rx.desc_ring[index].size = htole32(size);
736 	sc->rx.desc_ring[index].status = htole32(status);
737 }
738 
739 static void
740 awg_reuse_rxdesc(struct awg_softc *sc, int index)
741 {
742 
743 	sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
744 }
745 
746 static int
747 awg_newbuf_rx(struct awg_softc *sc, int index)
748 {
749 	struct mbuf *m;
750 	bus_dma_segment_t seg;
751 	bus_dmamap_t map;
752 	int nsegs;
753 
754 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
755 	if (m == NULL)
756 		return (ENOBUFS);
757 
758 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
759 	m_adj(m, ETHER_ALIGN);
760 
761 	if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
762 	    m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
763 		m_freem(m);
764 		return (ENOBUFS);
765 	}
766 
767 	if (sc->rx.buf_map[index].mbuf != NULL) {
768 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
769 		    BUS_DMASYNC_POSTREAD);
770 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
771 	}
772 	map = sc->rx.buf_map[index].map;
773 	sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
774 	sc->rx.buf_spare_map = map;
775 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
776 	    BUS_DMASYNC_PREREAD);
777 
778 	sc->rx.buf_map[index].mbuf = m;
779 	awg_setup_rxdesc(sc, index, seg.ds_addr);
780 
781 	return (0);
782 }
783 
784 static void
785 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
786 {
787 	if (error != 0)
788 		return;
789 	*(bus_addr_t *)arg = segs[0].ds_addr;
790 }
791 
792 static int
793 awg_setup_dma(device_t dev)
794 {
795 	struct awg_softc *sc;
796 	int error, i;
797 
798 	sc = device_get_softc(dev);
799 
800 	/* Setup TX ring */
801 	error = bus_dma_tag_create(
802 	    bus_get_dma_tag(dev),	/* Parent tag */
803 	    DESC_ALIGN, 0,		/* alignment, boundary */
804 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
805 	    BUS_SPACE_MAXADDR,		/* highaddr */
806 	    NULL, NULL,			/* filter, filterarg */
807 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
808 	    TX_DESC_SIZE,		/* maxsegsize */
809 	    0,				/* flags */
810 	    NULL, NULL,			/* lockfunc, lockarg */
811 	    &sc->tx.desc_tag);
812 	if (error != 0) {
813 		device_printf(dev, "cannot create TX descriptor ring tag\n");
814 		return (error);
815 	}
816 
817 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
818 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
819 	if (error != 0) {
820 		device_printf(dev, "cannot allocate TX descriptor ring\n");
821 		return (error);
822 	}
823 
824 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
825 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
826 	    &sc->tx.desc_ring_paddr, 0);
827 	if (error != 0) {
828 		device_printf(dev, "cannot load TX descriptor ring\n");
829 		return (error);
830 	}
831 
832 	for (i = 0; i < TX_DESC_COUNT; i++)
833 		sc->tx.desc_ring[i].next =
834 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
835 
836 	error = bus_dma_tag_create(
837 	    bus_get_dma_tag(dev),	/* Parent tag */
838 	    1, 0,			/* alignment, boundary */
839 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
840 	    BUS_SPACE_MAXADDR,		/* highaddr */
841 	    NULL, NULL,			/* filter, filterarg */
842 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
843 	    MCLBYTES,			/* maxsegsize */
844 	    0,				/* flags */
845 	    NULL, NULL,			/* lockfunc, lockarg */
846 	    &sc->tx.buf_tag);
847 	if (error != 0) {
848 		device_printf(dev, "cannot create TX buffer tag\n");
849 		return (error);
850 	}
851 
852 	sc->tx.queued = 0;
853 	for (i = 0; i < TX_DESC_COUNT; i++) {
854 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
855 		    &sc->tx.buf_map[i].map);
856 		if (error != 0) {
857 			device_printf(dev, "cannot create TX buffer map\n");
858 			return (error);
859 		}
860 	}
861 
862 	/* Setup RX ring */
863 	error = bus_dma_tag_create(
864 	    bus_get_dma_tag(dev),	/* Parent tag */
865 	    DESC_ALIGN, 0,		/* alignment, boundary */
866 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
867 	    BUS_SPACE_MAXADDR,		/* highaddr */
868 	    NULL, NULL,			/* filter, filterarg */
869 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
870 	    RX_DESC_SIZE,		/* maxsegsize */
871 	    0,				/* flags */
872 	    NULL, NULL,			/* lockfunc, lockarg */
873 	    &sc->rx.desc_tag);
874 	if (error != 0) {
875 		device_printf(dev, "cannot create RX descriptor ring tag\n");
876 		return (error);
877 	}
878 
879 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
880 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
881 	if (error != 0) {
882 		device_printf(dev, "cannot allocate RX descriptor ring\n");
883 		return (error);
884 	}
885 
886 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
887 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
888 	    &sc->rx.desc_ring_paddr, 0);
889 	if (error != 0) {
890 		device_printf(dev, "cannot load RX descriptor ring\n");
891 		return (error);
892 	}
893 
894 	error = bus_dma_tag_create(
895 	    bus_get_dma_tag(dev),	/* Parent tag */
896 	    1, 0,			/* alignment, boundary */
897 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
898 	    BUS_SPACE_MAXADDR,		/* highaddr */
899 	    NULL, NULL,			/* filter, filterarg */
900 	    MCLBYTES, 1,		/* maxsize, nsegs */
901 	    MCLBYTES,			/* maxsegsize */
902 	    0,				/* flags */
903 	    NULL, NULL,			/* lockfunc, lockarg */
904 	    &sc->rx.buf_tag);
905 	if (error != 0) {
906 		device_printf(dev, "cannot create RX buffer tag\n");
907 		return (error);
908 	}
909 
910 	error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
911 	if (error != 0) {
912 		device_printf(dev,
913 		    "cannot create RX buffer spare map\n");
914 		return (error);
915 	}
916 
917 	for (i = 0; i < RX_DESC_COUNT; i++) {
918 		sc->rx.desc_ring[i].next =
919 		    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
920 
921 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
922 		    &sc->rx.buf_map[i].map);
923 		if (error != 0) {
924 			device_printf(dev, "cannot create RX buffer map\n");
925 			return (error);
926 		}
927 		sc->rx.buf_map[i].mbuf = NULL;
928 		error = awg_newbuf_rx(sc, i);
929 		if (error != 0) {
930 			device_printf(dev, "cannot create RX buffer\n");
931 			return (error);
932 		}
933 	}
934 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
935 	    BUS_DMASYNC_PREWRITE);
936 
937 	/* Write transmit and receive descriptor base address registers */
938 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
939 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
940 
941 	return (0);
942 }
943 
944 static void
945 awg_dma_start_tx(struct awg_softc *sc)
946 {
947 	uint32_t val;
948 
949 	AWG_ASSERT_LOCKED(sc);
950 
951 	/* Start and run TX DMA */
952 	val = RD4(sc, EMAC_TX_CTL_1);
953 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
954 }
955 
956 /*
957  * if_ functions
958  */
959 
960 static void
961 awg_start_locked(struct awg_softc *sc)
962 {
963 	struct mbuf *m;
964 	if_t ifp;
965 	int cnt, err;
966 
967 	AWG_ASSERT_LOCKED(sc);
968 
969 	if (!sc->link)
970 		return;
971 
972 	ifp = sc->ifp;
973 
974 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
975 	    IFF_DRV_RUNNING)
976 		return;
977 
978 	for (cnt = 0; ; cnt++) {
979 		m = if_dequeue(ifp);
980 		if (m == NULL)
981 			break;
982 
983 		err = awg_encap(sc, &m);
984 		if (err != 0) {
985 			if (err == ENOBUFS)
986 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
987 			if (m != NULL)
988 				if_sendq_prepend(ifp, m);
989 			break;
990 		}
991 		if_bpfmtap(ifp, m);
992 	}
993 
994 	if (cnt != 0) {
995 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
996 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
997 
998 		awg_dma_start_tx(sc);
999 	}
1000 }
1001 
1002 static void
1003 awg_start(if_t ifp)
1004 {
1005 	struct awg_softc *sc;
1006 
1007 	sc = if_getsoftc(ifp);
1008 
1009 	AWG_LOCK(sc);
1010 	awg_start_locked(sc);
1011 	AWG_UNLOCK(sc);
1012 }
1013 
1014 static void
1015 awg_init_locked(struct awg_softc *sc)
1016 {
1017 	struct mii_data *mii;
1018 	if_t ifp;
1019 
1020 	mii = device_get_softc(sc->miibus);
1021 	ifp = sc->ifp;
1022 
1023 	AWG_ASSERT_LOCKED(sc);
1024 
1025 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1026 		return;
1027 
1028 	awg_setup_rxfilter(sc);
1029 	awg_setup_core(sc);
1030 	awg_enable_mac(sc, true);
1031 	awg_init_dma(sc);
1032 
1033 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
1034 
1035 	mii_mediachg(mii);
1036 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
1037 }
1038 
1039 static void
1040 awg_init(void *softc)
1041 {
1042 	struct awg_softc *sc;
1043 
1044 	sc = softc;
1045 
1046 	AWG_LOCK(sc);
1047 	awg_init_locked(sc);
1048 	AWG_UNLOCK(sc);
1049 }
1050 
1051 static void
1052 awg_stop(struct awg_softc *sc)
1053 {
1054 	if_t ifp;
1055 	uint32_t val;
1056 	int i;
1057 
1058 	AWG_ASSERT_LOCKED(sc);
1059 
1060 	ifp = sc->ifp;
1061 
1062 	callout_stop(&sc->stat_ch);
1063 
1064 	awg_stop_dma(sc);
1065 	awg_enable_mac(sc, false);
1066 
1067 	sc->link = 0;
1068 
1069 	/* Finish handling transmitted buffers */
1070 	awg_txeof(sc);
1071 
1072 	/* Release any untransmitted buffers. */
1073 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
1074 		val = le32toh(sc->tx.desc_ring[i].status);
1075 		if ((val & TX_DESC_CTL) != 0)
1076 			break;
1077 		awg_clean_txbuf(sc, i);
1078 	}
1079 	sc->tx.next = i;
1080 	for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
1081 		sc->tx.desc_ring[i].status = 0;
1082 		awg_clean_txbuf(sc, i);
1083 	}
1084 	sc->tx.cur = sc->tx.next;
1085 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
1086 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1087 
1088 	/* Setup RX buffers for reuse */
1089 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1090 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1091 
1092 	for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
1093 		val = le32toh(sc->rx.desc_ring[i].status);
1094 		if ((val & RX_DESC_CTL) != 0)
1095 			break;
1096 		awg_reuse_rxdesc(sc, i);
1097 	}
1098 	sc->rx.cur = i;
1099 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1100 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1101 
1102 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1103 }
1104 
1105 static int
1106 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
1107 {
1108 	struct awg_softc *sc;
1109 	struct mii_data *mii;
1110 	struct ifreq *ifr;
1111 	int flags, mask, error;
1112 
1113 	sc = if_getsoftc(ifp);
1114 	mii = device_get_softc(sc->miibus);
1115 	ifr = (struct ifreq *)data;
1116 	error = 0;
1117 
1118 	switch (cmd) {
1119 	case SIOCSIFFLAGS:
1120 		AWG_LOCK(sc);
1121 		if (if_getflags(ifp) & IFF_UP) {
1122 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1123 				flags = if_getflags(ifp) ^ sc->if_flags;
1124 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
1125 					awg_setup_rxfilter(sc);
1126 			} else
1127 				awg_init_locked(sc);
1128 		} else {
1129 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1130 				awg_stop(sc);
1131 		}
1132 		sc->if_flags = if_getflags(ifp);
1133 		AWG_UNLOCK(sc);
1134 		break;
1135 	case SIOCADDMULTI:
1136 	case SIOCDELMULTI:
1137 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1138 			AWG_LOCK(sc);
1139 			awg_setup_rxfilter(sc);
1140 			AWG_UNLOCK(sc);
1141 		}
1142 		break;
1143 	case SIOCSIFMEDIA:
1144 	case SIOCGIFMEDIA:
1145 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1146 		break;
1147 	case SIOCSIFCAP:
1148 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1149 #ifdef DEVICE_POLLING
1150 		if (mask & IFCAP_POLLING) {
1151 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1152 				error = ether_poll_register(awg_poll, ifp);
1153 				if (error != 0)
1154 					break;
1155 				AWG_LOCK(sc);
1156 				awg_disable_dma_intr(sc);
1157 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1158 				AWG_UNLOCK(sc);
1159 			} else {
1160 				error = ether_poll_deregister(ifp);
1161 				AWG_LOCK(sc);
1162 				awg_enable_dma_intr(sc);
1163 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1164 				AWG_UNLOCK(sc);
1165 			}
1166 		}
1167 #endif
1168 		if (mask & IFCAP_VLAN_MTU)
1169 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1170 		if (mask & IFCAP_RXCSUM)
1171 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1172 		if (mask & IFCAP_TXCSUM)
1173 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1174 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1175 			if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
1176 		else
1177 			if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
1178 		break;
1179 	default:
1180 		error = ether_ioctl(ifp, cmd, data);
1181 		break;
1182 	}
1183 
1184 	return (error);
1185 }
1186 
1187 /*
1188  * Interrupts functions
1189  */
1190 
1191 static int
1192 awg_rxintr(struct awg_softc *sc)
1193 {
1194 	if_t ifp;
1195 	struct mbuf *m, *mh, *mt;
1196 	int error, index, len, cnt, npkt;
1197 	uint32_t status;
1198 
1199 	ifp = sc->ifp;
1200 	mh = mt = NULL;
1201 	cnt = 0;
1202 	npkt = 0;
1203 
1204 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1205 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1206 
1207 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
1208 		status = le32toh(sc->rx.desc_ring[index].status);
1209 		if ((status & RX_DESC_CTL) != 0)
1210 			break;
1211 
1212 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
1213 
1214 		if (len == 0) {
1215 			if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
1216 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1217 			awg_reuse_rxdesc(sc, index);
1218 			continue;
1219 		}
1220 
1221 		m = sc->rx.buf_map[index].mbuf;
1222 
1223 		error = awg_newbuf_rx(sc, index);
1224 		if (error != 0) {
1225 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1226 			awg_reuse_rxdesc(sc, index);
1227 			continue;
1228 		}
1229 
1230 		m->m_pkthdr.rcvif = ifp;
1231 		m->m_pkthdr.len = len;
1232 		m->m_len = len;
1233 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1234 
1235 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
1236 		    (status & RX_FRM_TYPE) != 0) {
1237 			m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
1238 			if ((status & RX_HEADER_ERR) == 0)
1239 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1240 			if ((status & RX_PAYLOAD_ERR) == 0) {
1241 				m->m_pkthdr.csum_flags |=
1242 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1243 				m->m_pkthdr.csum_data = 0xffff;
1244 			}
1245 		}
1246 
1247 		m->m_nextpkt = NULL;
1248 		if (mh == NULL)
1249 			mh = m;
1250 		else
1251 			mt->m_nextpkt = m;
1252 		mt = m;
1253 		++cnt;
1254 		++npkt;
1255 
1256 		if (cnt == awg_rx_batch) {
1257 			AWG_UNLOCK(sc);
1258 			if_input(ifp, mh);
1259 			AWG_LOCK(sc);
1260 			mh = mt = NULL;
1261 			cnt = 0;
1262 		}
1263 	}
1264 
1265 	if (index != sc->rx.cur) {
1266 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1267 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1268 	}
1269 
1270 	if (mh != NULL) {
1271 		AWG_UNLOCK(sc);
1272 		if_input(ifp, mh);
1273 		AWG_LOCK(sc);
1274 	}
1275 
1276 	sc->rx.cur = index;
1277 
1278 	return (npkt);
1279 }
1280 
1281 static void
1282 awg_txeof(struct awg_softc *sc)
1283 {
1284 	struct emac_desc *desc;
1285 	uint32_t status, size;
1286 	if_t ifp;
1287 	int i, prog;
1288 
1289 	AWG_ASSERT_LOCKED(sc);
1290 
1291 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
1292 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1293 
1294 	ifp = sc->ifp;
1295 
1296 	prog = 0;
1297 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
1298 		desc = &sc->tx.desc_ring[i];
1299 		status = le32toh(desc->status);
1300 		if ((status & TX_DESC_CTL) != 0)
1301 			break;
1302 		size = le32toh(desc->size);
1303 		if (size & TX_LAST_DESC) {
1304 			if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
1305 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1306 			else
1307 				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1308 		}
1309 		prog++;
1310 		awg_clean_txbuf(sc, i);
1311 	}
1312 
1313 	if (prog > 0) {
1314 		sc->tx.next = i;
1315 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1316 	}
1317 }
1318 
1319 static void
1320 awg_intr(void *arg)
1321 {
1322 	struct awg_softc *sc;
1323 	uint32_t val;
1324 
1325 	sc = arg;
1326 
1327 	AWG_LOCK(sc);
1328 	val = RD4(sc, EMAC_INT_STA);
1329 	WR4(sc, EMAC_INT_STA, val);
1330 
1331 	if (val & RX_INT)
1332 		awg_rxintr(sc);
1333 
1334 	if (val & TX_INT)
1335 		awg_txeof(sc);
1336 
1337 	if (val & (TX_INT | TX_BUF_UA_INT)) {
1338 		if (!if_sendq_empty(sc->ifp))
1339 			awg_start_locked(sc);
1340 	}
1341 
1342 	AWG_UNLOCK(sc);
1343 }
1344 
1345 #ifdef DEVICE_POLLING
1346 static int
1347 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
1348 {
1349 	struct awg_softc *sc;
1350 	uint32_t val;
1351 	int rx_npkts;
1352 
1353 	sc = if_getsoftc(ifp);
1354 	rx_npkts = 0;
1355 
1356 	AWG_LOCK(sc);
1357 
1358 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1359 		AWG_UNLOCK(sc);
1360 		return (0);
1361 	}
1362 
1363 	rx_npkts = awg_rxintr(sc);
1364 	awg_txeof(sc);
1365 	if (!if_sendq_empty(ifp))
1366 		awg_start_locked(sc);
1367 
1368 	if (cmd == POLL_AND_CHECK_STATUS) {
1369 		val = RD4(sc, EMAC_INT_STA);
1370 		if (val != 0)
1371 			WR4(sc, EMAC_INT_STA, val);
1372 	}
1373 
1374 	AWG_UNLOCK(sc);
1375 
1376 	return (rx_npkts);
1377 }
1378 #endif
1379 
1380 /*
1381  * syscon functions
1382  */
1383 static uint32_t
1384 syscon_read_emac_clk_reg(device_t dev)
1385 {
1386 	struct awg_softc *sc;
1387 
1388 	sc = device_get_softc(dev);
1389 	if (sc->syscon != NULL)
1390 		return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
1391 	else if (sc->res[_RES_SYSCON] != NULL)
1392 		return (bus_read_4(sc->res[_RES_SYSCON], 0));
1393 
1394 	return (0);
1395 }
1396 
1397 static void
1398 syscon_write_emac_clk_reg(device_t dev, uint32_t val)
1399 {
1400 	struct awg_softc *sc;
1401 
1402 	sc = device_get_softc(dev);
1403 	if (sc->syscon != NULL)
1404 		SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
1405 	else if (sc->res[_RES_SYSCON] != NULL)
1406 		bus_write_4(sc->res[_RES_SYSCON], 0, val);
1407 }
1408 
1409 /*
1410  * PHY functions
1411  */
1412 
1413 static phandle_t
1414 awg_get_phy_node(device_t dev)
1415 {
1416 	phandle_t node;
1417 	pcell_t phy_handle;
1418 
1419 	node = ofw_bus_get_node(dev);
1420 	if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
1421 	    sizeof(phy_handle)) <= 0)
1422 		return (0);
1423 
1424 	return (OF_node_from_xref(phy_handle));
1425 }
1426 
1427 static bool
1428 awg_has_internal_phy(device_t dev)
1429 {
1430 	phandle_t node, phy_node;
1431 
1432 	node = ofw_bus_get_node(dev);
1433 	/* Legacy binding */
1434 	if (OF_hasprop(node, "allwinner,use-internal-phy"))
1435 		return (true);
1436 
1437 	phy_node = awg_get_phy_node(dev);
1438 	return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
1439 	    "allwinner,sun8i-h3-mdio-internal") != 0);
1440 }
1441 
1442 static int
1443 awg_parse_delay(device_t dev, uint32_t *tx_delay, uint32_t *rx_delay)
1444 {
1445 	phandle_t node;
1446 	uint32_t delay;
1447 
1448 	if (tx_delay == NULL || rx_delay == NULL)
1449 		return (EINVAL);
1450 	*tx_delay = *rx_delay = 0;
1451 	node = ofw_bus_get_node(dev);
1452 
1453 	if (OF_getencprop(node, "tx-delay", &delay, sizeof(delay)) >= 0)
1454 		*tx_delay = delay;
1455 	else if (OF_getencprop(node, "allwinner,tx-delay-ps", &delay,
1456 	    sizeof(delay)) >= 0) {
1457 		if ((delay % 100) != 0) {
1458 			device_printf(dev, "tx-delay-ps is not a multiple of 100\n");
1459 			return (EDOM);
1460 		}
1461 		*tx_delay = delay / 100;
1462 	}
1463 	if (*tx_delay > 7) {
1464 		device_printf(dev, "tx-delay out of range\n");
1465 		return (ERANGE);
1466 	}
1467 
1468 	if (OF_getencprop(node, "rx-delay", &delay, sizeof(delay)) >= 0)
1469 		*rx_delay = delay;
1470 	else if (OF_getencprop(node, "allwinner,rx-delay-ps", &delay,
1471 	    sizeof(delay)) >= 0) {
1472 		if ((delay % 100) != 0) {
1473 			device_printf(dev, "rx-delay-ps is not within documented domain\n");
1474 			return (EDOM);
1475 		}
1476 		*rx_delay = delay / 100;
1477 	}
1478 	if (*rx_delay > 31) {
1479 		device_printf(dev, "rx-delay out of range\n");
1480 		return (ERANGE);
1481 	}
1482 
1483 	return (0);
1484 }
1485 
1486 static int
1487 awg_setup_phy(device_t dev)
1488 {
1489 	struct awg_softc *sc;
1490 	clk_t clk_tx, clk_tx_parent;
1491 	const char *tx_parent_name;
1492 	char *phy_type;
1493 	phandle_t node;
1494 	uint32_t reg, tx_delay, rx_delay;
1495 	int error;
1496 	bool use_syscon;
1497 
1498 	sc = device_get_softc(dev);
1499 	node = ofw_bus_get_node(dev);
1500 	use_syscon = false;
1501 
1502 	if (OF_getprop_alloc(node, "phy-mode", (void **)&phy_type) == 0)
1503 		return (0);
1504 
1505 	if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
1506 		use_syscon = true;
1507 
1508 	if (bootverbose)
1509 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1510 		    use_syscon ? "reg" : "clk");
1511 
1512 	if (use_syscon) {
1513 		/*
1514 		 * Abstract away writing to syscon for devices like the pine64.
1515 		 * For the pine64, we get dtb from U-Boot and it still uses the
1516 		 * legacy setup of specifying syscon register in emac node
1517 		 * rather than as its own node and using an xref in emac.
1518 		 * These abstractions can go away once U-Boot dts is up-to-date.
1519 		 */
1520 		reg = syscon_read_emac_clk_reg(dev);
1521 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1522 		if (strncmp(phy_type, "rgmii", 5) == 0)
1523 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1524 		else if (strcmp(phy_type, "rmii") == 0)
1525 			reg |= EMAC_CLK_RMII_EN;
1526 		else
1527 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1528 
1529 		/*
1530 		 * Fail attach if we fail to parse either of the delay
1531 		 * parameters. If we don't have the proper delay to write to
1532 		 * syscon, then awg likely won't function properly anyways.
1533 		 * Lack of delay is not an error!
1534 		 */
1535 		error = awg_parse_delay(dev, &tx_delay, &rx_delay);
1536 		if (error != 0)
1537 			goto fail;
1538 
1539 		/* Default to 0 and we'll increase it if we need to. */
1540 		reg &= ~(EMAC_CLK_ETXDC | EMAC_CLK_ERXDC);
1541 		if (tx_delay > 0)
1542 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1543 		if (rx_delay > 0)
1544 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1545 
1546 		if (sc->type == EMAC_H3) {
1547 			if (awg_has_internal_phy(dev)) {
1548 				reg |= EMAC_CLK_EPHY_SELECT;
1549 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1550 				if (OF_hasprop(node,
1551 				    "allwinner,leds-active-low"))
1552 					reg |= EMAC_CLK_EPHY_LED_POL;
1553 				else
1554 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1555 
1556 				/* Set internal PHY addr to 1 */
1557 				reg &= ~EMAC_CLK_EPHY_ADDR;
1558 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1559 			} else {
1560 				reg &= ~EMAC_CLK_EPHY_SELECT;
1561 			}
1562 		}
1563 
1564 		if (bootverbose)
1565 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1566 		syscon_write_emac_clk_reg(dev, reg);
1567 	} else {
1568 		if (strncmp(phy_type, "rgmii", 5) == 0)
1569 			tx_parent_name = "emac_int_tx";
1570 		else
1571 			tx_parent_name = "mii_phy_tx";
1572 
1573 		/* Get the TX clock */
1574 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1575 		if (error != 0) {
1576 			device_printf(dev, "cannot get tx clock\n");
1577 			goto fail;
1578 		}
1579 
1580 		/* Find the desired parent clock based on phy-mode property */
1581 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1582 		if (error != 0) {
1583 			device_printf(dev, "cannot get clock '%s'\n",
1584 			    tx_parent_name);
1585 			goto fail;
1586 		}
1587 
1588 		/* Set TX clock parent */
1589 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1590 		if (error != 0) {
1591 			device_printf(dev, "cannot set tx clock parent\n");
1592 			goto fail;
1593 		}
1594 
1595 		/* Enable TX clock */
1596 		error = clk_enable(clk_tx);
1597 		if (error != 0) {
1598 			device_printf(dev, "cannot enable tx clock\n");
1599 			goto fail;
1600 		}
1601 	}
1602 
1603 	error = 0;
1604 
1605 fail:
1606 	OF_prop_free(phy_type);
1607 	return (error);
1608 }
1609 
1610 static int
1611 awg_setup_extres(device_t dev)
1612 {
1613 	struct awg_softc *sc;
1614 	phandle_t node, phy_node;
1615 	hwreset_t rst_ahb, rst_ephy;
1616 	clk_t clk_ahb, clk_ephy;
1617 	regulator_t reg;
1618 	uint64_t freq;
1619 	int error, div;
1620 
1621 	sc = device_get_softc(dev);
1622 	rst_ahb = rst_ephy = NULL;
1623 	clk_ahb = clk_ephy = NULL;
1624 	reg = NULL;
1625 	node = ofw_bus_get_node(dev);
1626 	phy_node = awg_get_phy_node(dev);
1627 
1628 	if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
1629 		error = ENXIO;
1630 		device_printf(dev, "cannot get phy handle\n");
1631 		goto fail;
1632 	}
1633 
1634 	/* Get AHB clock and reset resources */
1635 	error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
1636 	if (error != 0)
1637 		error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1638 	if (error != 0) {
1639 		device_printf(dev, "cannot get ahb reset\n");
1640 		goto fail;
1641 	}
1642 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1643 		if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
1644 		    &rst_ephy) != 0)
1645 			rst_ephy = NULL;
1646 	error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
1647 	if (error != 0)
1648 		error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1649 	if (error != 0) {
1650 		device_printf(dev, "cannot get ahb clock\n");
1651 		goto fail;
1652 	}
1653 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1654 		if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
1655 		    &clk_ephy) != 0)
1656 			clk_ephy = NULL;
1657 
1658 	if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
1659 	    "syscon", &sc->syscon) != 0) {
1660 		device_printf(dev, "cannot get syscon driver handle\n");
1661 		goto fail;
1662 	}
1663 
1664 	/* Configure PHY for MII or RGMII mode */
1665 	if (awg_setup_phy(dev) != 0)
1666 		goto fail;
1667 
1668 	/* Enable clocks */
1669 	error = clk_enable(clk_ahb);
1670 	if (error != 0) {
1671 		device_printf(dev, "cannot enable ahb clock\n");
1672 		goto fail;
1673 	}
1674 	if (clk_ephy != NULL) {
1675 		error = clk_enable(clk_ephy);
1676 		if (error != 0) {
1677 			device_printf(dev, "cannot enable ephy clock\n");
1678 			goto fail;
1679 		}
1680 	}
1681 
1682 	/* De-assert reset */
1683 	error = hwreset_deassert(rst_ahb);
1684 	if (error != 0) {
1685 		device_printf(dev, "cannot de-assert ahb reset\n");
1686 		goto fail;
1687 	}
1688 	if (rst_ephy != NULL) {
1689 		/*
1690 		 * The ephy reset is left de-asserted by U-Boot.  Assert it
1691 		 * here to make sure that we're in a known good state going
1692 		 * into the PHY reset.
1693 		 */
1694 		hwreset_assert(rst_ephy);
1695 		error = hwreset_deassert(rst_ephy);
1696 		if (error != 0) {
1697 			device_printf(dev, "cannot de-assert ephy reset\n");
1698 			goto fail;
1699 		}
1700 	}
1701 
1702 	/* Enable PHY regulator if applicable */
1703 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1704 		error = regulator_enable(reg);
1705 		if (error != 0) {
1706 			device_printf(dev, "cannot enable PHY regulator\n");
1707 			goto fail;
1708 		}
1709 	}
1710 
1711 	/* Determine MDC clock divide ratio based on AHB clock */
1712 	error = clk_get_freq(clk_ahb, &freq);
1713 	if (error != 0) {
1714 		device_printf(dev, "cannot get AHB clock frequency\n");
1715 		goto fail;
1716 	}
1717 	div = freq / MDIO_FREQ;
1718 	if (div <= 16)
1719 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1720 	else if (div <= 32)
1721 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1722 	else if (div <= 64)
1723 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1724 	else if (div <= 128)
1725 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1726 	else {
1727 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1728 		error = ENXIO;
1729 		goto fail;
1730 	}
1731 
1732 	if (bootverbose)
1733 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1734 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1735 
1736 	return (0);
1737 
1738 fail:
1739 	if (reg != NULL)
1740 		regulator_release(reg);
1741 	if (clk_ephy != NULL)
1742 		clk_release(clk_ephy);
1743 	if (clk_ahb != NULL)
1744 		clk_release(clk_ahb);
1745 	if (rst_ephy != NULL)
1746 		hwreset_release(rst_ephy);
1747 	if (rst_ahb != NULL)
1748 		hwreset_release(rst_ahb);
1749 	return (error);
1750 }
1751 
1752 #ifdef AWG_DEBUG
1753 static void
1754 awg_dump_regs(device_t dev)
1755 {
1756 	static const struct {
1757 		const char *name;
1758 		u_int reg;
1759 	} regs[] = {
1760 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1761 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1762 		{ "INT_STA", EMAC_INT_STA },
1763 		{ "INT_EN", EMAC_INT_EN },
1764 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1765 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1766 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1767 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1768 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1769 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1770 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1771 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1772 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1773 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1774 		{ "MII_CMD", EMAC_MII_CMD },
1775 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1776 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1777 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1778 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1779 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1780 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1781 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1782 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1783 		{ "RGMII_STA", EMAC_RGMII_STA },
1784 	};
1785 	struct awg_softc *sc;
1786 	unsigned int n;
1787 
1788 	sc = device_get_softc(dev);
1789 
1790 	for (n = 0; n < nitems(regs); n++)
1791 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1792 		    RD4(sc, regs[n].reg));
1793 }
1794 #endif
1795 
1796 #define	GPIO_ACTIVE_LOW		1
1797 
1798 static int
1799 awg_phy_reset(device_t dev)
1800 {
1801 	pcell_t gpio_prop[4], delay_prop[3];
1802 	phandle_t node, gpio_node;
1803 	device_t gpio;
1804 	uint32_t pin, flags;
1805 	uint32_t pin_value;
1806 
1807 	node = ofw_bus_get_node(dev);
1808 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1809 	    sizeof(gpio_prop)) <= 0)
1810 		return (0);
1811 
1812 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1813 	    sizeof(delay_prop)) <= 0)
1814 		return (ENXIO);
1815 
1816 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1817 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1818 		return (ENXIO);
1819 
1820 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1821 	    gpio_prop + 1, &pin, &flags) != 0)
1822 		return (ENXIO);
1823 
1824 	pin_value = GPIO_PIN_LOW;
1825 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1826 		pin_value = GPIO_PIN_HIGH;
1827 
1828 	if (flags & GPIO_ACTIVE_LOW)
1829 		pin_value = !pin_value;
1830 
1831 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1832 	GPIO_PIN_SET(gpio, pin, pin_value);
1833 	DELAY(delay_prop[0]);
1834 	GPIO_PIN_SET(gpio, pin, !pin_value);
1835 	DELAY(delay_prop[1]);
1836 	GPIO_PIN_SET(gpio, pin, pin_value);
1837 	DELAY(delay_prop[2]);
1838 
1839 	return (0);
1840 }
1841 
1842 static int
1843 awg_reset(device_t dev)
1844 {
1845 	struct awg_softc *sc;
1846 	int retry;
1847 
1848 	sc = device_get_softc(dev);
1849 
1850 	/* Reset PHY if necessary */
1851 	if (awg_phy_reset(dev) != 0) {
1852 		device_printf(dev, "failed to reset PHY\n");
1853 		return (ENXIO);
1854 	}
1855 
1856 	/* Soft reset all registers and logic */
1857 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1858 
1859 	/* Wait for soft reset bit to self-clear */
1860 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1861 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1862 			break;
1863 		DELAY(10);
1864 	}
1865 	if (retry == 0) {
1866 		device_printf(dev, "soft reset timed out\n");
1867 #ifdef AWG_DEBUG
1868 		awg_dump_regs(dev);
1869 #endif
1870 		return (ETIMEDOUT);
1871 	}
1872 
1873 	return (0);
1874 }
1875 
1876 /*
1877  * Stats
1878  */
1879 
1880 static void
1881 awg_tick(void *softc)
1882 {
1883 	struct awg_softc *sc;
1884 	struct mii_data *mii;
1885 	if_t ifp;
1886 	int link;
1887 
1888 	sc = softc;
1889 	ifp = sc->ifp;
1890 	mii = device_get_softc(sc->miibus);
1891 
1892 	AWG_ASSERT_LOCKED(sc);
1893 
1894 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1895 		return;
1896 
1897 	link = sc->link;
1898 	mii_tick(mii);
1899 	if (sc->link && !link)
1900 		awg_start_locked(sc);
1901 
1902 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
1903 }
1904 
1905 /*
1906  * Probe/attach functions
1907  */
1908 
1909 static int
1910 awg_probe(device_t dev)
1911 {
1912 	if (!ofw_bus_status_okay(dev))
1913 		return (ENXIO);
1914 
1915 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1916 		return (ENXIO);
1917 
1918 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1919 	return (BUS_PROBE_DEFAULT);
1920 }
1921 
1922 static int
1923 awg_attach(device_t dev)
1924 {
1925 	uint8_t eaddr[ETHER_ADDR_LEN];
1926 	struct awg_softc *sc;
1927 	int error;
1928 
1929 	sc = device_get_softc(dev);
1930 	sc->dev = dev;
1931 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1932 
1933 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1934 		device_printf(dev, "cannot allocate resources for device\n");
1935 		return (ENXIO);
1936 	}
1937 
1938 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1939 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1940 
1941 	/* Setup clocks and regulators */
1942 	error = awg_setup_extres(dev);
1943 	if (error != 0)
1944 		return (error);
1945 
1946 	/* Read MAC address before resetting the chip */
1947 	awg_get_eaddr(dev, eaddr);
1948 
1949 	/* Soft reset EMAC core */
1950 	error = awg_reset(dev);
1951 	if (error != 0)
1952 		return (error);
1953 
1954 	/* Setup DMA descriptors */
1955 	error = awg_setup_dma(dev);
1956 	if (error != 0)
1957 		return (error);
1958 
1959 	/* Install interrupt handler */
1960 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1961 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1962 	if (error != 0) {
1963 		device_printf(dev, "cannot setup interrupt handler\n");
1964 		return (error);
1965 	}
1966 
1967 	/* Setup ethernet interface */
1968 	sc->ifp = if_alloc(IFT_ETHER);
1969 	if_setsoftc(sc->ifp, sc);
1970 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1971 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1972 	if_setstartfn(sc->ifp, awg_start);
1973 	if_setioctlfn(sc->ifp, awg_ioctl);
1974 	if_setinitfn(sc->ifp, awg_init);
1975 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1976 	if_setsendqready(sc->ifp);
1977 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1978 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1979 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1980 #ifdef DEVICE_POLLING
1981 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1982 #endif
1983 
1984 	/* Attach MII driver */
1985 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1986 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1987 	    MIIF_DOPAUSE);
1988 	if (error != 0) {
1989 		device_printf(dev, "cannot attach PHY\n");
1990 		return (error);
1991 	}
1992 
1993 	/* Attach ethernet interface */
1994 	ether_ifattach(sc->ifp, eaddr);
1995 
1996 	return (0);
1997 }
1998 
1999 static device_method_t awg_methods[] = {
2000 	/* Device interface */
2001 	DEVMETHOD(device_probe,		awg_probe),
2002 	DEVMETHOD(device_attach,	awg_attach),
2003 
2004 	/* MII interface */
2005 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
2006 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
2007 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
2008 
2009 	DEVMETHOD_END
2010 };
2011 
2012 static driver_t awg_driver = {
2013 	"awg",
2014 	awg_methods,
2015 	sizeof(struct awg_softc),
2016 };
2017 
2018 DRIVER_MODULE(awg, simplebus, awg_driver, 0, 0);
2019 DRIVER_MODULE(miibus, awg, miibus_driver, 0, 0);
2020 MODULE_DEPEND(awg, ether, 1, 1, 1);
2021 MODULE_DEPEND(awg, miibus, 1, 1, 1);
2022 MODULE_DEPEND(awg, aw_sid, 1, 1, 1);
2023 SIMPLEBUS_PNP_INFO(compat_data);
2024