xref: /freebsd/sys/arm/allwinner/if_awg.c (revision 094fc1ed0f2627525c7b0342efcbad5be7a8546a)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Allwinner Gigabit Ethernet MAC (EMAC) controller
31  */
32 
33 #include "opt_device_polling.h"
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42 #include <sys/kernel.h>
43 #include <sys/endian.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/module.h>
48 #include <sys/taskqueue.h>
49 #include <sys/gpio.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 
59 #include <machine/bus.h>
60 
61 #include <dev/ofw/ofw_bus.h>
62 #include <dev/ofw/ofw_bus_subr.h>
63 
64 #include <arm/allwinner/if_awgreg.h>
65 #include <arm/allwinner/aw_sid.h>
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/extres/clk/clk.h>
70 #include <dev/extres/hwreset/hwreset.h>
71 #include <dev/extres/regulator/regulator.h>
72 
73 #include "miibus_if.h"
74 #include "gpio_if.h"
75 
76 #define	RD4(sc, reg)		bus_read_4((sc)->res[_RES_EMAC], (reg))
77 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
78 
79 #define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
80 #define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
81 #define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
82 #define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
83 
84 #define	DESC_ALIGN		4
85 #define	TX_DESC_COUNT		1024
86 #define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
87 #define	RX_DESC_COUNT		256
88 #define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
89 
90 #define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
91 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
92 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
93 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
94 
95 #define	TX_MAX_SEGS		10
96 
97 #define	SOFT_RST_RETRY		1000
98 #define	MII_BUSY_RETRY		1000
99 #define	MDIO_FREQ		2500000
100 
101 #define	BURST_LEN_DEFAULT	8
102 #define	RX_TX_PRI_DEFAULT	0
103 #define	PAUSE_TIME_DEFAULT	0x400
104 #define	TX_INTERVAL_DEFAULT	64
105 #define	RX_BATCH_DEFAULT	64
106 
107 /* syscon EMAC clock register */
108 #define	EMAC_CLK_EPHY_ADDR	(0x1f << 20)	/* H3 */
109 #define	EMAC_CLK_EPHY_ADDR_SHIFT 20
110 #define	EMAC_CLK_EPHY_LED_POL	(1 << 17)	/* H3 */
111 #define	EMAC_CLK_EPHY_SHUTDOWN	(1 << 16)	/* H3 */
112 #define	EMAC_CLK_EPHY_SELECT	(1 << 15)	/* H3 */
113 #define	EMAC_CLK_RMII_EN	(1 << 13)
114 #define	EMAC_CLK_ETXDC		(0x7 << 10)
115 #define	EMAC_CLK_ETXDC_SHIFT	10
116 #define	EMAC_CLK_ERXDC		(0x1f << 5)
117 #define	EMAC_CLK_ERXDC_SHIFT	5
118 #define	EMAC_CLK_PIT		(0x1 << 2)
119 #define	 EMAC_CLK_PIT_MII	(0 << 2)
120 #define	 EMAC_CLK_PIT_RGMII	(1 << 2)
121 #define	EMAC_CLK_SRC		(0x3 << 0)
122 #define	 EMAC_CLK_SRC_MII	(0 << 0)
123 #define	 EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
124 #define	 EMAC_CLK_SRC_RGMII	(2 << 0)
125 
126 /* Burst length of RX and TX DMA transfers */
127 static int awg_burst_len = BURST_LEN_DEFAULT;
128 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
129 
130 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
131 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
132 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
133 
134 /* Pause time field in the transmitted control frame */
135 static int awg_pause_time = PAUSE_TIME_DEFAULT;
136 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
137 
138 /* Request a TX interrupt every <n> descriptors */
139 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
140 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
141 
142 /* Maximum number of mbufs to send to if_input */
143 static int awg_rx_batch = RX_BATCH_DEFAULT;
144 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
145 
146 enum awg_type {
147 	EMAC_A83T = 1,
148 	EMAC_H3,
149 	EMAC_A64,
150 };
151 
152 static struct ofw_compat_data compat_data[] = {
153 	{ "allwinner,sun8i-a83t-emac",		EMAC_A83T },
154 	{ "allwinner,sun8i-h3-emac",		EMAC_H3 },
155 	{ "allwinner,sun50i-a64-emac",		EMAC_A64 },
156 	{ NULL,					0 }
157 };
158 
159 struct awg_bufmap {
160 	bus_dmamap_t		map;
161 	struct mbuf		*mbuf;
162 };
163 
164 struct awg_txring {
165 	bus_dma_tag_t		desc_tag;
166 	bus_dmamap_t		desc_map;
167 	struct emac_desc	*desc_ring;
168 	bus_addr_t		desc_ring_paddr;
169 	bus_dma_tag_t		buf_tag;
170 	struct awg_bufmap	buf_map[TX_DESC_COUNT];
171 	u_int			cur, next, queued;
172 };
173 
174 struct awg_rxring {
175 	bus_dma_tag_t		desc_tag;
176 	bus_dmamap_t		desc_map;
177 	struct emac_desc	*desc_ring;
178 	bus_addr_t		desc_ring_paddr;
179 	bus_dma_tag_t		buf_tag;
180 	struct awg_bufmap	buf_map[RX_DESC_COUNT];
181 	u_int			cur;
182 };
183 
184 enum {
185 	_RES_EMAC,
186 	_RES_IRQ,
187 	_RES_SYSCON,
188 	_RES_NITEMS
189 };
190 
191 struct awg_softc {
192 	struct resource		*res[_RES_NITEMS];
193 	struct mtx		mtx;
194 	if_t			ifp;
195 	device_t		miibus;
196 	struct callout		stat_ch;
197 	struct task		link_task;
198 	void			*ih;
199 	u_int			mdc_div_ratio_m;
200 	int			link;
201 	int			if_flags;
202 	enum awg_type		type;
203 
204 	struct awg_txring	tx;
205 	struct awg_rxring	rx;
206 };
207 
208 static struct resource_spec awg_spec[] = {
209 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
210 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
211 	{ SYS_RES_MEMORY,	1,	RF_ACTIVE | RF_OPTIONAL },
212 	{ -1, 0 }
213 };
214 
215 static int
216 awg_miibus_readreg(device_t dev, int phy, int reg)
217 {
218 	struct awg_softc *sc;
219 	int retry, val;
220 
221 	sc = device_get_softc(dev);
222 	val = 0;
223 
224 	WR4(sc, EMAC_MII_CMD,
225 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
226 	    (phy << PHY_ADDR_SHIFT) |
227 	    (reg << PHY_REG_ADDR_SHIFT) |
228 	    MII_BUSY);
229 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
230 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
231 			val = RD4(sc, EMAC_MII_DATA);
232 			break;
233 		}
234 		DELAY(10);
235 	}
236 
237 	if (retry == 0)
238 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
239 		    phy, reg);
240 
241 	return (val);
242 }
243 
244 static int
245 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
246 {
247 	struct awg_softc *sc;
248 	int retry;
249 
250 	sc = device_get_softc(dev);
251 
252 	WR4(sc, EMAC_MII_DATA, val);
253 	WR4(sc, EMAC_MII_CMD,
254 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
255 	    (phy << PHY_ADDR_SHIFT) |
256 	    (reg << PHY_REG_ADDR_SHIFT) |
257 	    MII_WR | MII_BUSY);
258 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
259 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
260 			break;
261 		DELAY(10);
262 	}
263 
264 	if (retry == 0)
265 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
266 		    phy, reg);
267 
268 	return (0);
269 }
270 
271 static void
272 awg_update_link_locked(struct awg_softc *sc)
273 {
274 	struct mii_data *mii;
275 	uint32_t val;
276 
277 	AWG_ASSERT_LOCKED(sc);
278 
279 	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
280 		return;
281 	mii = device_get_softc(sc->miibus);
282 
283 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
284 	    (IFM_ACTIVE | IFM_AVALID)) {
285 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
286 		case IFM_1000_T:
287 		case IFM_1000_SX:
288 		case IFM_100_TX:
289 		case IFM_10_T:
290 			sc->link = 1;
291 			break;
292 		default:
293 			sc->link = 0;
294 			break;
295 		}
296 	} else
297 		sc->link = 0;
298 
299 	if (sc->link == 0)
300 		return;
301 
302 	val = RD4(sc, EMAC_BASIC_CTL_0);
303 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
304 
305 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
306 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
307 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
308 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
309 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
310 	else
311 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
312 
313 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
314 		val |= BASIC_CTL_DUPLEX;
315 
316 	WR4(sc, EMAC_BASIC_CTL_0, val);
317 
318 	val = RD4(sc, EMAC_RX_CTL_0);
319 	val &= ~RX_FLOW_CTL_EN;
320 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
321 		val |= RX_FLOW_CTL_EN;
322 	WR4(sc, EMAC_RX_CTL_0, val);
323 
324 	val = RD4(sc, EMAC_TX_FLOW_CTL);
325 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
326 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
327 		val |= TX_FLOW_CTL_EN;
328 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
329 		val |= awg_pause_time << PAUSE_TIME_SHIFT;
330 	WR4(sc, EMAC_TX_FLOW_CTL, val);
331 }
332 
333 static void
334 awg_link_task(void *arg, int pending)
335 {
336 	struct awg_softc *sc;
337 
338 	sc = arg;
339 
340 	AWG_LOCK(sc);
341 	awg_update_link_locked(sc);
342 	AWG_UNLOCK(sc);
343 }
344 
345 static void
346 awg_miibus_statchg(device_t dev)
347 {
348 	struct awg_softc *sc;
349 
350 	sc = device_get_softc(dev);
351 
352 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
353 }
354 
355 static void
356 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
357 {
358 	struct awg_softc *sc;
359 	struct mii_data *mii;
360 
361 	sc = if_getsoftc(ifp);
362 	mii = device_get_softc(sc->miibus);
363 
364 	AWG_LOCK(sc);
365 	mii_pollstat(mii);
366 	ifmr->ifm_active = mii->mii_media_active;
367 	ifmr->ifm_status = mii->mii_media_status;
368 	AWG_UNLOCK(sc);
369 }
370 
371 static int
372 awg_media_change(if_t ifp)
373 {
374 	struct awg_softc *sc;
375 	struct mii_data *mii;
376 	int error;
377 
378 	sc = if_getsoftc(ifp);
379 	mii = device_get_softc(sc->miibus);
380 
381 	AWG_LOCK(sc);
382 	error = mii_mediachg(mii);
383 	AWG_UNLOCK(sc);
384 
385 	return (error);
386 }
387 
388 static void
389 awg_setup_txdesc(struct awg_softc *sc, int index, int flags, bus_addr_t paddr,
390     u_int len)
391 {
392 	uint32_t status, size;
393 
394 	if (paddr == 0 || len == 0) {
395 		status = 0;
396 		size = 0;
397 		--sc->tx.queued;
398 	} else {
399 		status = TX_DESC_CTL;
400 		size = flags | len;
401 		if ((index & (awg_tx_interval - 1)) == 0)
402 			size |= TX_INT_CTL;
403 		++sc->tx.queued;
404 	}
405 
406 	sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
407 	sc->tx.desc_ring[index].size = htole32(size);
408 	sc->tx.desc_ring[index].status = htole32(status);
409 }
410 
411 static int
412 awg_setup_txbuf(struct awg_softc *sc, int index, struct mbuf **mp)
413 {
414 	bus_dma_segment_t segs[TX_MAX_SEGS];
415 	int error, nsegs, cur, i, flags;
416 	u_int csum_flags;
417 	struct mbuf *m;
418 
419 	m = *mp;
420 	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag,
421 	    sc->tx.buf_map[index].map, m, segs, &nsegs, BUS_DMA_NOWAIT);
422 	if (error == EFBIG) {
423 		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
424 		if (m == NULL)
425 			return (0);
426 		*mp = m;
427 		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag,
428 		    sc->tx.buf_map[index].map, m, segs, &nsegs, BUS_DMA_NOWAIT);
429 	}
430 	if (error != 0)
431 		return (0);
432 
433 	bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
434 	    BUS_DMASYNC_PREWRITE);
435 
436 	flags = TX_FIR_DESC;
437 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
438 		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
439 			csum_flags = TX_CHECKSUM_CTL_FULL;
440 		else
441 			csum_flags = TX_CHECKSUM_CTL_IP;
442 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
443 	}
444 
445 	for (cur = index, i = 0; i < nsegs; i++) {
446 		sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
447 		if (i == nsegs - 1)
448 			flags |= TX_LAST_DESC;
449 		awg_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
450 		    segs[i].ds_len);
451 		flags &= ~TX_FIR_DESC;
452 		cur = TX_NEXT(cur);
453 	}
454 
455 	return (nsegs);
456 }
457 
458 static void
459 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
460 {
461 	uint32_t status, size;
462 
463 	status = RX_DESC_CTL;
464 	size = MCLBYTES - 1;
465 
466 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
467 	sc->rx.desc_ring[index].size = htole32(size);
468 	sc->rx.desc_ring[index].next =
469 	    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
470 	sc->rx.desc_ring[index].status = htole32(status);
471 }
472 
473 static int
474 awg_setup_rxbuf(struct awg_softc *sc, int index, struct mbuf *m)
475 {
476 	bus_dma_segment_t seg;
477 	int error, nsegs;
478 
479 	m_adj(m, ETHER_ALIGN);
480 
481 	error = bus_dmamap_load_mbuf_sg(sc->rx.buf_tag,
482 	    sc->rx.buf_map[index].map, m, &seg, &nsegs, 0);
483 	if (error != 0)
484 		return (error);
485 
486 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
487 	    BUS_DMASYNC_PREREAD);
488 
489 	sc->rx.buf_map[index].mbuf = m;
490 	awg_setup_rxdesc(sc, index, seg.ds_addr);
491 
492 	return (0);
493 }
494 
495 static struct mbuf *
496 awg_alloc_mbufcl(struct awg_softc *sc)
497 {
498 	struct mbuf *m;
499 
500 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
501 	if (m != NULL)
502 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
503 
504 	return (m);
505 }
506 
507 static void
508 awg_start_locked(struct awg_softc *sc)
509 {
510 	struct mbuf *m;
511 	uint32_t val;
512 	if_t ifp;
513 	int cnt, nsegs;
514 
515 	AWG_ASSERT_LOCKED(sc);
516 
517 	if (!sc->link)
518 		return;
519 
520 	ifp = sc->ifp;
521 
522 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
523 	    IFF_DRV_RUNNING)
524 		return;
525 
526 	for (cnt = 0; ; cnt++) {
527 		if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
528 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
529 			break;
530 		}
531 
532 		m = if_dequeue(ifp);
533 		if (m == NULL)
534 			break;
535 
536 		nsegs = awg_setup_txbuf(sc, sc->tx.cur, &m);
537 		if (nsegs == 0) {
538 			if_sendq_prepend(ifp, m);
539 			break;
540 		}
541 		if_bpfmtap(ifp, m);
542 		sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
543 	}
544 
545 	if (cnt != 0) {
546 		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
547 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
548 
549 		/* Start and run TX DMA */
550 		val = RD4(sc, EMAC_TX_CTL_1);
551 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
552 	}
553 }
554 
555 static void
556 awg_start(if_t ifp)
557 {
558 	struct awg_softc *sc;
559 
560 	sc = if_getsoftc(ifp);
561 
562 	AWG_LOCK(sc);
563 	awg_start_locked(sc);
564 	AWG_UNLOCK(sc);
565 }
566 
567 static void
568 awg_tick(void *softc)
569 {
570 	struct awg_softc *sc;
571 	struct mii_data *mii;
572 	if_t ifp;
573 	int link;
574 
575 	sc = softc;
576 	ifp = sc->ifp;
577 	mii = device_get_softc(sc->miibus);
578 
579 	AWG_ASSERT_LOCKED(sc);
580 
581 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
582 		return;
583 
584 	link = sc->link;
585 	mii_tick(mii);
586 	if (sc->link && !link)
587 		awg_start_locked(sc);
588 
589 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
590 }
591 
592 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
593 static uint32_t
594 bitrev32(uint32_t x)
595 {
596 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
597 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
598 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
599 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
600 
601 	return (x >> 16) | (x << 16);
602 }
603 
604 static void
605 awg_setup_rxfilter(struct awg_softc *sc)
606 {
607 	uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
608 	int mc_count, mcnt, i;
609 	uint8_t *eaddr, *mta;
610 	if_t ifp;
611 
612 	AWG_ASSERT_LOCKED(sc);
613 
614 	ifp = sc->ifp;
615 	val = 0;
616 	hash[0] = hash[1] = 0;
617 
618 	mc_count = if_multiaddr_count(ifp, -1);
619 
620 	if (if_getflags(ifp) & IFF_PROMISC)
621 		val |= DIS_ADDR_FILTER;
622 	else if (if_getflags(ifp) & IFF_ALLMULTI) {
623 		val |= RX_ALL_MULTICAST;
624 		hash[0] = hash[1] = ~0;
625 	} else if (mc_count > 0) {
626 		val |= HASH_MULTICAST;
627 
628 		mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count,
629 		    M_DEVBUF, M_NOWAIT);
630 		if (mta == NULL) {
631 			if_printf(ifp,
632 			    "failed to allocate temporary multicast list\n");
633 			return;
634 		}
635 
636 		if_multiaddr_array(ifp, mta, &mcnt, mc_count);
637 		for (i = 0; i < mcnt; i++) {
638 			crc = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
639 			    ETHER_ADDR_LEN) & 0x7f;
640 			crc = bitrev32(~crc) >> 26;
641 			hashreg = (crc >> 5);
642 			hashbit = (crc & 0x1f);
643 			hash[hashreg] |= (1 << hashbit);
644 		}
645 
646 		free(mta, M_DEVBUF);
647 	}
648 
649 	/* Write our unicast address */
650 	eaddr = IF_LLADDR(ifp);
651 	machi = (eaddr[5] << 8) | eaddr[4];
652 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
653 	   (eaddr[0] << 0);
654 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
655 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
656 
657 	/* Multicast hash filters */
658 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
659 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
660 
661 	/* RX frame filter config */
662 	WR4(sc, EMAC_RX_FRM_FLT, val);
663 }
664 
665 static void
666 awg_enable_intr(struct awg_softc *sc)
667 {
668 	/* Enable interrupts */
669 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
670 }
671 
672 static void
673 awg_disable_intr(struct awg_softc *sc)
674 {
675 	/* Disable interrupts */
676 	WR4(sc, EMAC_INT_EN, 0);
677 }
678 
679 static void
680 awg_init_locked(struct awg_softc *sc)
681 {
682 	struct mii_data *mii;
683 	uint32_t val;
684 	if_t ifp;
685 
686 	mii = device_get_softc(sc->miibus);
687 	ifp = sc->ifp;
688 
689 	AWG_ASSERT_LOCKED(sc);
690 
691 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
692 		return;
693 
694 	awg_setup_rxfilter(sc);
695 
696 	/* Configure DMA burst length and priorities */
697 	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
698 	if (awg_rx_tx_pri)
699 		val |= BASIC_CTL_RX_TX_PRI;
700 	WR4(sc, EMAC_BASIC_CTL_1, val);
701 
702 	/* Enable interrupts */
703 #ifdef DEVICE_POLLING
704 	if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
705 		awg_enable_intr(sc);
706 	else
707 		awg_disable_intr(sc);
708 #else
709 	awg_enable_intr(sc);
710 #endif
711 
712 	/* Enable transmit DMA */
713 	val = RD4(sc, EMAC_TX_CTL_1);
714 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
715 
716 	/* Enable receive DMA */
717 	val = RD4(sc, EMAC_RX_CTL_1);
718 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
719 
720 	/* Enable transmitter */
721 	val = RD4(sc, EMAC_TX_CTL_0);
722 	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
723 
724 	/* Enable receiver */
725 	val = RD4(sc, EMAC_RX_CTL_0);
726 	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
727 
728 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
729 
730 	mii_mediachg(mii);
731 	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
732 }
733 
734 static void
735 awg_init(void *softc)
736 {
737 	struct awg_softc *sc;
738 
739 	sc = softc;
740 
741 	AWG_LOCK(sc);
742 	awg_init_locked(sc);
743 	AWG_UNLOCK(sc);
744 }
745 
746 static void
747 awg_stop(struct awg_softc *sc)
748 {
749 	if_t ifp;
750 	uint32_t val;
751 
752 	AWG_ASSERT_LOCKED(sc);
753 
754 	ifp = sc->ifp;
755 
756 	callout_stop(&sc->stat_ch);
757 
758 	/* Stop transmit DMA and flush data in the TX FIFO */
759 	val = RD4(sc, EMAC_TX_CTL_1);
760 	val &= ~TX_DMA_EN;
761 	val |= FLUSH_TX_FIFO;
762 	WR4(sc, EMAC_TX_CTL_1, val);
763 
764 	/* Disable transmitter */
765 	val = RD4(sc, EMAC_TX_CTL_0);
766 	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
767 
768 	/* Disable receiver */
769 	val = RD4(sc, EMAC_RX_CTL_0);
770 	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
771 
772 	/* Disable interrupts */
773 	awg_disable_intr(sc);
774 
775 	/* Disable transmit DMA */
776 	val = RD4(sc, EMAC_TX_CTL_1);
777 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
778 
779 	/* Disable receive DMA */
780 	val = RD4(sc, EMAC_RX_CTL_1);
781 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
782 
783 	sc->link = 0;
784 
785 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
786 }
787 
788 static int
789 awg_rxintr(struct awg_softc *sc)
790 {
791 	if_t ifp;
792 	struct mbuf *m, *m0, *mh, *mt;
793 	int error, index, len, cnt, npkt;
794 	uint32_t status;
795 
796 	ifp = sc->ifp;
797 	mh = mt = NULL;
798 	cnt = 0;
799 	npkt = 0;
800 
801 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
802 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
803 
804 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
805 		status = le32toh(sc->rx.desc_ring[index].status);
806 		if ((status & RX_DESC_CTL) != 0)
807 			break;
808 
809 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
810 		    BUS_DMASYNC_POSTREAD);
811 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
812 
813 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
814 		if (len != 0) {
815 			m = sc->rx.buf_map[index].mbuf;
816 			m->m_pkthdr.rcvif = ifp;
817 			m->m_pkthdr.len = len;
818 			m->m_len = len;
819 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
820 
821 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
822 			    (status & RX_FRM_TYPE) != 0) {
823 				m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
824 				if ((status & RX_HEADER_ERR) == 0)
825 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
826 				if ((status & RX_PAYLOAD_ERR) == 0) {
827 					m->m_pkthdr.csum_flags |=
828 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
829 					m->m_pkthdr.csum_data = 0xffff;
830 				}
831 			}
832 
833 			m->m_nextpkt = NULL;
834 			if (mh == NULL)
835 				mh = m;
836 			else
837 				mt->m_nextpkt = m;
838 			mt = m;
839 			++cnt;
840 			++npkt;
841 
842 			if (cnt == awg_rx_batch) {
843 				AWG_UNLOCK(sc);
844 				if_input(ifp, mh);
845 				AWG_LOCK(sc);
846 				mh = mt = NULL;
847 				cnt = 0;
848 			}
849 
850 		}
851 
852 		if ((m0 = awg_alloc_mbufcl(sc)) != NULL) {
853 			error = awg_setup_rxbuf(sc, index, m0);
854 			if (error != 0) {
855 				/* XXX hole in RX ring */
856 			}
857 		} else
858 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
859 	}
860 
861 	if (index != sc->rx.cur) {
862 		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
863 		    BUS_DMASYNC_PREWRITE);
864 	}
865 
866 	if (mh != NULL) {
867 		AWG_UNLOCK(sc);
868 		if_input(ifp, mh);
869 		AWG_LOCK(sc);
870 	}
871 
872 	sc->rx.cur = index;
873 
874 	return (npkt);
875 }
876 
877 static void
878 awg_txintr(struct awg_softc *sc)
879 {
880 	struct awg_bufmap *bmap;
881 	struct emac_desc *desc;
882 	uint32_t status;
883 	if_t ifp;
884 	int i;
885 
886 	AWG_ASSERT_LOCKED(sc);
887 
888 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
889 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
890 
891 	ifp = sc->ifp;
892 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
893 		desc = &sc->tx.desc_ring[i];
894 		status = le32toh(desc->status);
895 		if ((status & TX_DESC_CTL) != 0)
896 			break;
897 		bmap = &sc->tx.buf_map[i];
898 		if (bmap->mbuf != NULL) {
899 			bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
900 			    BUS_DMASYNC_POSTWRITE);
901 			bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
902 			m_freem(bmap->mbuf);
903 			bmap->mbuf = NULL;
904 		}
905 		awg_setup_txdesc(sc, i, 0, 0, 0);
906 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
907 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
908 	}
909 
910 	sc->tx.next = i;
911 
912 	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
913 	    BUS_DMASYNC_PREWRITE);
914 }
915 
916 static void
917 awg_intr(void *arg)
918 {
919 	struct awg_softc *sc;
920 	uint32_t val;
921 
922 	sc = arg;
923 
924 	AWG_LOCK(sc);
925 	val = RD4(sc, EMAC_INT_STA);
926 	WR4(sc, EMAC_INT_STA, val);
927 
928 	if (val & RX_INT)
929 		awg_rxintr(sc);
930 
931 	if (val & (TX_INT|TX_BUF_UA_INT)) {
932 		awg_txintr(sc);
933 		if (!if_sendq_empty(sc->ifp))
934 			awg_start_locked(sc);
935 	}
936 
937 	AWG_UNLOCK(sc);
938 }
939 
940 #ifdef DEVICE_POLLING
941 static int
942 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
943 {
944 	struct awg_softc *sc;
945 	uint32_t val;
946 	int rx_npkts;
947 
948 	sc = if_getsoftc(ifp);
949 	rx_npkts = 0;
950 
951 	AWG_LOCK(sc);
952 
953 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
954 		AWG_UNLOCK(sc);
955 		return (0);
956 	}
957 
958 	rx_npkts = awg_rxintr(sc);
959 	awg_txintr(sc);
960 	if (!if_sendq_empty(ifp))
961 		awg_start_locked(sc);
962 
963 	if (cmd == POLL_AND_CHECK_STATUS) {
964 		val = RD4(sc, EMAC_INT_STA);
965 		if (val != 0)
966 			WR4(sc, EMAC_INT_STA, val);
967 	}
968 
969 	AWG_UNLOCK(sc);
970 
971 	return (rx_npkts);
972 }
973 #endif
974 
975 static int
976 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
977 {
978 	struct awg_softc *sc;
979 	struct mii_data *mii;
980 	struct ifreq *ifr;
981 	int flags, mask, error;
982 
983 	sc = if_getsoftc(ifp);
984 	mii = device_get_softc(sc->miibus);
985 	ifr = (struct ifreq *)data;
986 	error = 0;
987 
988 	switch (cmd) {
989 	case SIOCSIFFLAGS:
990 		AWG_LOCK(sc);
991 		if (if_getflags(ifp) & IFF_UP) {
992 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
993 				flags = if_getflags(ifp) ^ sc->if_flags;
994 				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
995 					awg_setup_rxfilter(sc);
996 			} else
997 				awg_init_locked(sc);
998 		} else {
999 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1000 				awg_stop(sc);
1001 		}
1002 		sc->if_flags = if_getflags(ifp);
1003 		AWG_UNLOCK(sc);
1004 		break;
1005 	case SIOCADDMULTI:
1006 	case SIOCDELMULTI:
1007 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1008 			AWG_LOCK(sc);
1009 			awg_setup_rxfilter(sc);
1010 			AWG_UNLOCK(sc);
1011 		}
1012 		break;
1013 	case SIOCSIFMEDIA:
1014 	case SIOCGIFMEDIA:
1015 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1016 		break;
1017 	case SIOCSIFCAP:
1018 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1019 #ifdef DEVICE_POLLING
1020 		if (mask & IFCAP_POLLING) {
1021 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1022 				error = ether_poll_register(awg_poll, ifp);
1023 				if (error != 0)
1024 					break;
1025 				AWG_LOCK(sc);
1026 				awg_disable_intr(sc);
1027 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1028 				AWG_UNLOCK(sc);
1029 			} else {
1030 				error = ether_poll_deregister(ifp);
1031 				AWG_LOCK(sc);
1032 				awg_enable_intr(sc);
1033 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1034 				AWG_UNLOCK(sc);
1035 			}
1036 		}
1037 #endif
1038 		if (mask & IFCAP_VLAN_MTU)
1039 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
1040 		if (mask & IFCAP_RXCSUM)
1041 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1042 		if (mask & IFCAP_TXCSUM)
1043 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1044 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1045 			if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
1046 		else
1047 			if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
1048 		break;
1049 	default:
1050 		error = ether_ioctl(ifp, cmd, data);
1051 		break;
1052 	}
1053 
1054 	return (error);
1055 }
1056 
1057 static int
1058 awg_setup_phy(device_t dev)
1059 {
1060 	struct awg_softc *sc;
1061 	clk_t clk_tx, clk_tx_parent;
1062 	const char *tx_parent_name;
1063 	char *phy_type;
1064 	phandle_t node;
1065 	uint32_t reg, tx_delay, rx_delay;
1066 	int error;
1067 
1068 	sc = device_get_softc(dev);
1069 	node = ofw_bus_get_node(dev);
1070 
1071 	if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type) == 0)
1072 		return (0);
1073 
1074 	if (bootverbose)
1075 		device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
1076 		    sc->res[_RES_SYSCON] != NULL ? "reg" : "clk");
1077 
1078 	if (sc->res[_RES_SYSCON] != NULL) {
1079 		reg = bus_read_4(sc->res[_RES_SYSCON], 0);
1080 		reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
1081 		if (strcmp(phy_type, "rgmii") == 0)
1082 			reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
1083 		else if (strcmp(phy_type, "rmii") == 0)
1084 			reg |= EMAC_CLK_RMII_EN;
1085 		else
1086 			reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1087 
1088 		if (OF_getencprop(node, "tx-delay", &tx_delay,
1089 		    sizeof(tx_delay)) > 0) {
1090 			reg &= ~EMAC_CLK_ETXDC;
1091 			reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1092 		}
1093 		if (OF_getencprop(node, "rx-delay", &rx_delay,
1094 		    sizeof(rx_delay)) > 0) {
1095 			reg &= ~EMAC_CLK_ERXDC;
1096 			reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1097 		}
1098 
1099 		if (sc->type == EMAC_H3) {
1100 			if (OF_hasprop(node, "allwinner,use-internal-phy")) {
1101 				reg |= EMAC_CLK_EPHY_SELECT;
1102 				reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1103 				if (OF_hasprop(node,
1104 				    "allwinner,leds-active-low"))
1105 					reg |= EMAC_CLK_EPHY_LED_POL;
1106 				else
1107 					reg &= ~EMAC_CLK_EPHY_LED_POL;
1108 
1109 				/* Set internal PHY addr to 1 */
1110 				reg &= ~EMAC_CLK_EPHY_ADDR;
1111 				reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1112 			} else {
1113 				reg &= ~EMAC_CLK_EPHY_SELECT;
1114 			}
1115 		}
1116 
1117 		if (bootverbose)
1118 			device_printf(dev, "EMAC clock: 0x%08x\n", reg);
1119 		bus_write_4(sc->res[_RES_SYSCON], 0, reg);
1120 	} else {
1121 		if (strcmp(phy_type, "rgmii") == 0)
1122 			tx_parent_name = "emac_int_tx";
1123 		else
1124 			tx_parent_name = "mii_phy_tx";
1125 
1126 		/* Get the TX clock */
1127 		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
1128 		if (error != 0) {
1129 			device_printf(dev, "cannot get tx clock\n");
1130 			goto fail;
1131 		}
1132 
1133 		/* Find the desired parent clock based on phy-mode property */
1134 		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
1135 		if (error != 0) {
1136 			device_printf(dev, "cannot get clock '%s'\n",
1137 			    tx_parent_name);
1138 			goto fail;
1139 		}
1140 
1141 		/* Set TX clock parent */
1142 		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
1143 		if (error != 0) {
1144 			device_printf(dev, "cannot set tx clock parent\n");
1145 			goto fail;
1146 		}
1147 
1148 		/* Enable TX clock */
1149 		error = clk_enable(clk_tx);
1150 		if (error != 0) {
1151 			device_printf(dev, "cannot enable tx clock\n");
1152 			goto fail;
1153 		}
1154 	}
1155 
1156 	error = 0;
1157 
1158 fail:
1159 	OF_prop_free(phy_type);
1160 	return (error);
1161 }
1162 
1163 static int
1164 awg_setup_extres(device_t dev)
1165 {
1166 	struct awg_softc *sc;
1167 	hwreset_t rst_ahb, rst_ephy;
1168 	clk_t clk_ahb, clk_ephy;
1169 	regulator_t reg;
1170 	phandle_t node;
1171 	uint64_t freq;
1172 	int error, div;
1173 
1174 	sc = device_get_softc(dev);
1175 	node = ofw_bus_get_node(dev);
1176 	rst_ahb = rst_ephy = NULL;
1177 	clk_ahb = clk_ephy = NULL;
1178 	reg = NULL;
1179 
1180 	/* Get AHB clock and reset resources */
1181 	error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
1182 	if (error != 0) {
1183 		device_printf(dev, "cannot get ahb reset\n");
1184 		goto fail;
1185 	}
1186 	if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
1187 		rst_ephy = NULL;
1188 	error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
1189 	if (error != 0) {
1190 		device_printf(dev, "cannot get ahb clock\n");
1191 		goto fail;
1192 	}
1193 	if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
1194 		clk_ephy = NULL;
1195 
1196 	/* Configure PHY for MII or RGMII mode */
1197 	if (awg_setup_phy(dev) != 0)
1198 		goto fail;
1199 
1200 	/* Enable clocks */
1201 	error = clk_enable(clk_ahb);
1202 	if (error != 0) {
1203 		device_printf(dev, "cannot enable ahb clock\n");
1204 		goto fail;
1205 	}
1206 	if (clk_ephy != NULL) {
1207 		error = clk_enable(clk_ephy);
1208 		if (error != 0) {
1209 			device_printf(dev, "cannot enable ephy clock\n");
1210 			goto fail;
1211 		}
1212 	}
1213 
1214 	/* De-assert reset */
1215 	error = hwreset_deassert(rst_ahb);
1216 	if (error != 0) {
1217 		device_printf(dev, "cannot de-assert ahb reset\n");
1218 		goto fail;
1219 	}
1220 	if (rst_ephy != NULL) {
1221 		error = hwreset_deassert(rst_ephy);
1222 		if (error != 0) {
1223 			device_printf(dev, "cannot de-assert ephy reset\n");
1224 			goto fail;
1225 		}
1226 	}
1227 
1228 	/* Enable PHY regulator if applicable */
1229 	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1230 		error = regulator_enable(reg);
1231 		if (error != 0) {
1232 			device_printf(dev, "cannot enable PHY regulator\n");
1233 			goto fail;
1234 		}
1235 	}
1236 
1237 	/* Determine MDC clock divide ratio based on AHB clock */
1238 	error = clk_get_freq(clk_ahb, &freq);
1239 	if (error != 0) {
1240 		device_printf(dev, "cannot get AHB clock frequency\n");
1241 		goto fail;
1242 	}
1243 	div = freq / MDIO_FREQ;
1244 	if (div <= 16)
1245 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1246 	else if (div <= 32)
1247 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1248 	else if (div <= 64)
1249 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1250 	else if (div <= 128)
1251 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1252 	else {
1253 		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1254 		error = ENXIO;
1255 		goto fail;
1256 	}
1257 
1258 	if (bootverbose)
1259 		device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
1260 		    (uintmax_t)freq, sc->mdc_div_ratio_m);
1261 
1262 	return (0);
1263 
1264 fail:
1265 	if (reg != NULL)
1266 		regulator_release(reg);
1267 	if (clk_ephy != NULL)
1268 		clk_release(clk_ephy);
1269 	if (clk_ahb != NULL)
1270 		clk_release(clk_ahb);
1271 	if (rst_ephy != NULL)
1272 		hwreset_release(rst_ephy);
1273 	if (rst_ahb != NULL)
1274 		hwreset_release(rst_ahb);
1275 	return (error);
1276 }
1277 
1278 static void
1279 awg_get_eaddr(device_t dev, uint8_t *eaddr)
1280 {
1281 	struct awg_softc *sc;
1282 	uint32_t maclo, machi, rnd;
1283 	u_char rootkey[16];
1284 
1285 	sc = device_get_softc(dev);
1286 
1287 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1288 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1289 
1290 	if (maclo == 0xffffffff && machi == 0xffff) {
1291 		/* MAC address in hardware is invalid, create one */
1292 		if (aw_sid_get_rootkey(rootkey) == 0 &&
1293 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1294 		     rootkey[15]) != 0) {
1295 			/* MAC address is derived from the root key in SID */
1296 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1297 				(rootkey[3] << 8) | 0x02;
1298 			machi = (rootkey[15] << 8) | rootkey[14];
1299 		} else {
1300 			/* Create one */
1301 			rnd = arc4random();
1302 			maclo = 0x00f2 | (rnd & 0xffff0000);
1303 			machi = rnd & 0xffff;
1304 		}
1305 	}
1306 
1307 	eaddr[0] = maclo & 0xff;
1308 	eaddr[1] = (maclo >> 8) & 0xff;
1309 	eaddr[2] = (maclo >> 16) & 0xff;
1310 	eaddr[3] = (maclo >> 24) & 0xff;
1311 	eaddr[4] = machi & 0xff;
1312 	eaddr[5] = (machi >> 8) & 0xff;
1313 }
1314 
1315 #ifdef AWG_DEBUG
1316 static void
1317 awg_dump_regs(device_t dev)
1318 {
1319 	static const struct {
1320 		const char *name;
1321 		u_int reg;
1322 	} regs[] = {
1323 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1324 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1325 		{ "INT_STA", EMAC_INT_STA },
1326 		{ "INT_EN", EMAC_INT_EN },
1327 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1328 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1329 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1330 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1331 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1332 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1333 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1334 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1335 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1336 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1337 		{ "MII_CMD", EMAC_MII_CMD },
1338 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1339 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1340 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1341 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1342 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1343 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1344 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1345 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1346 		{ "RGMII_STA", EMAC_RGMII_STA },
1347 	};
1348 	struct awg_softc *sc;
1349 	unsigned int n;
1350 
1351 	sc = device_get_softc(dev);
1352 
1353 	for (n = 0; n < nitems(regs); n++)
1354 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1355 		    RD4(sc, regs[n].reg));
1356 }
1357 #endif
1358 
1359 #define	GPIO_ACTIVE_LOW		1
1360 
1361 static int
1362 awg_phy_reset(device_t dev)
1363 {
1364 	pcell_t gpio_prop[4], delay_prop[3];
1365 	phandle_t node, gpio_node;
1366 	device_t gpio;
1367 	uint32_t pin, flags;
1368 	uint32_t pin_value;
1369 
1370 	node = ofw_bus_get_node(dev);
1371 	if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
1372 	    sizeof(gpio_prop)) <= 0)
1373 		return (0);
1374 
1375 	if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
1376 	    sizeof(delay_prop)) <= 0)
1377 		return (ENXIO);
1378 
1379 	gpio_node = OF_node_from_xref(gpio_prop[0]);
1380 	if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
1381 		return (ENXIO);
1382 
1383 	if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
1384 	    gpio_prop + 1, &pin, &flags) != 0)
1385 		return (ENXIO);
1386 
1387 	pin_value = GPIO_PIN_LOW;
1388 	if (OF_hasprop(node, "allwinner,reset-active-low"))
1389 		pin_value = GPIO_PIN_HIGH;
1390 
1391 	if (flags & GPIO_ACTIVE_LOW)
1392 		pin_value = !pin_value;
1393 
1394 	GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
1395 	GPIO_PIN_SET(gpio, pin, pin_value);
1396 	DELAY(delay_prop[0]);
1397 	GPIO_PIN_SET(gpio, pin, !pin_value);
1398 	DELAY(delay_prop[1]);
1399 	GPIO_PIN_SET(gpio, pin, pin_value);
1400 	DELAY(delay_prop[2]);
1401 
1402 	return (0);
1403 }
1404 
1405 static int
1406 awg_reset(device_t dev)
1407 {
1408 	struct awg_softc *sc;
1409 	int retry;
1410 
1411 	sc = device_get_softc(dev);
1412 
1413 	/* Reset PHY if necessary */
1414 	if (awg_phy_reset(dev) != 0) {
1415 		device_printf(dev, "failed to reset PHY\n");
1416 		return (ENXIO);
1417 	}
1418 
1419 	/* Soft reset all registers and logic */
1420 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1421 
1422 	/* Wait for soft reset bit to self-clear */
1423 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1424 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1425 			break;
1426 		DELAY(10);
1427 	}
1428 	if (retry == 0) {
1429 		device_printf(dev, "soft reset timed out\n");
1430 #ifdef AWG_DEBUG
1431 		awg_dump_regs(dev);
1432 #endif
1433 		return (ETIMEDOUT);
1434 	}
1435 
1436 	return (0);
1437 }
1438 
1439 static void
1440 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1441 {
1442 	if (error != 0)
1443 		return;
1444 	*(bus_addr_t *)arg = segs[0].ds_addr;
1445 }
1446 
1447 static int
1448 awg_setup_dma(device_t dev)
1449 {
1450 	struct awg_softc *sc;
1451 	struct mbuf *m;
1452 	int error, i;
1453 
1454 	sc = device_get_softc(dev);
1455 
1456 	/* Setup TX ring */
1457 	error = bus_dma_tag_create(
1458 	    bus_get_dma_tag(dev),	/* Parent tag */
1459 	    DESC_ALIGN, 0,		/* alignment, boundary */
1460 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1461 	    BUS_SPACE_MAXADDR,		/* highaddr */
1462 	    NULL, NULL,			/* filter, filterarg */
1463 	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
1464 	    TX_DESC_SIZE,		/* maxsegsize */
1465 	    0,				/* flags */
1466 	    NULL, NULL,			/* lockfunc, lockarg */
1467 	    &sc->tx.desc_tag);
1468 	if (error != 0) {
1469 		device_printf(dev, "cannot create TX descriptor ring tag\n");
1470 		return (error);
1471 	}
1472 
1473 	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
1474 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
1475 	if (error != 0) {
1476 		device_printf(dev, "cannot allocate TX descriptor ring\n");
1477 		return (error);
1478 	}
1479 
1480 	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
1481 	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
1482 	    &sc->tx.desc_ring_paddr, 0);
1483 	if (error != 0) {
1484 		device_printf(dev, "cannot load TX descriptor ring\n");
1485 		return (error);
1486 	}
1487 
1488 	for (i = 0; i < TX_DESC_COUNT; i++)
1489 		sc->tx.desc_ring[i].next =
1490 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1491 
1492 	error = bus_dma_tag_create(
1493 	    bus_get_dma_tag(dev),	/* Parent tag */
1494 	    1, 0,			/* alignment, boundary */
1495 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1496 	    BUS_SPACE_MAXADDR,		/* highaddr */
1497 	    NULL, NULL,			/* filter, filterarg */
1498 	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
1499 	    MCLBYTES,			/* maxsegsize */
1500 	    0,				/* flags */
1501 	    NULL, NULL,			/* lockfunc, lockarg */
1502 	    &sc->tx.buf_tag);
1503 	if (error != 0) {
1504 		device_printf(dev, "cannot create TX buffer tag\n");
1505 		return (error);
1506 	}
1507 
1508 	sc->tx.queued = TX_DESC_COUNT;
1509 	for (i = 0; i < TX_DESC_COUNT; i++) {
1510 		error = bus_dmamap_create(sc->tx.buf_tag, 0,
1511 		    &sc->tx.buf_map[i].map);
1512 		if (error != 0) {
1513 			device_printf(dev, "cannot create TX buffer map\n");
1514 			return (error);
1515 		}
1516 		awg_setup_txdesc(sc, i, 0, 0, 0);
1517 	}
1518 
1519 	/* Setup RX ring */
1520 	error = bus_dma_tag_create(
1521 	    bus_get_dma_tag(dev),	/* Parent tag */
1522 	    DESC_ALIGN, 0,		/* alignment, boundary */
1523 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1524 	    BUS_SPACE_MAXADDR,		/* highaddr */
1525 	    NULL, NULL,			/* filter, filterarg */
1526 	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
1527 	    RX_DESC_SIZE,		/* maxsegsize */
1528 	    0,				/* flags */
1529 	    NULL, NULL,			/* lockfunc, lockarg */
1530 	    &sc->rx.desc_tag);
1531 	if (error != 0) {
1532 		device_printf(dev, "cannot create RX descriptor ring tag\n");
1533 		return (error);
1534 	}
1535 
1536 	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
1537 	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
1538 	if (error != 0) {
1539 		device_printf(dev, "cannot allocate RX descriptor ring\n");
1540 		return (error);
1541 	}
1542 
1543 	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
1544 	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
1545 	    &sc->rx.desc_ring_paddr, 0);
1546 	if (error != 0) {
1547 		device_printf(dev, "cannot load RX descriptor ring\n");
1548 		return (error);
1549 	}
1550 
1551 	error = bus_dma_tag_create(
1552 	    bus_get_dma_tag(dev),	/* Parent tag */
1553 	    1, 0,			/* alignment, boundary */
1554 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1555 	    BUS_SPACE_MAXADDR,		/* highaddr */
1556 	    NULL, NULL,			/* filter, filterarg */
1557 	    MCLBYTES, 1,		/* maxsize, nsegs */
1558 	    MCLBYTES,			/* maxsegsize */
1559 	    0,				/* flags */
1560 	    NULL, NULL,			/* lockfunc, lockarg */
1561 	    &sc->rx.buf_tag);
1562 	if (error != 0) {
1563 		device_printf(dev, "cannot create RX buffer tag\n");
1564 		return (error);
1565 	}
1566 
1567 	for (i = 0; i < RX_DESC_COUNT; i++) {
1568 		error = bus_dmamap_create(sc->rx.buf_tag, 0,
1569 		    &sc->rx.buf_map[i].map);
1570 		if (error != 0) {
1571 			device_printf(dev, "cannot create RX buffer map\n");
1572 			return (error);
1573 		}
1574 		if ((m = awg_alloc_mbufcl(sc)) == NULL) {
1575 			device_printf(dev, "cannot allocate RX mbuf\n");
1576 			return (ENOMEM);
1577 		}
1578 		error = awg_setup_rxbuf(sc, i, m);
1579 		if (error != 0) {
1580 			device_printf(dev, "cannot create RX buffer\n");
1581 			return (error);
1582 		}
1583 	}
1584 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1585 	    BUS_DMASYNC_PREWRITE);
1586 
1587 	/* Write transmit and receive descriptor base address registers */
1588 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1589 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1590 
1591 	return (0);
1592 }
1593 
1594 static int
1595 awg_probe(device_t dev)
1596 {
1597 	if (!ofw_bus_status_okay(dev))
1598 		return (ENXIO);
1599 
1600 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1601 		return (ENXIO);
1602 
1603 	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1604 	return (BUS_PROBE_DEFAULT);
1605 }
1606 
1607 static int
1608 awg_attach(device_t dev)
1609 {
1610 	uint8_t eaddr[ETHER_ADDR_LEN];
1611 	struct awg_softc *sc;
1612 	phandle_t node;
1613 	int error;
1614 
1615 	sc = device_get_softc(dev);
1616 	sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1617 	node = ofw_bus_get_node(dev);
1618 
1619 	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1620 		device_printf(dev, "cannot allocate resources for device\n");
1621 		return (ENXIO);
1622 	}
1623 
1624 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1625 	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1626 	TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
1627 
1628 	/* Setup clocks and regulators */
1629 	error = awg_setup_extres(dev);
1630 	if (error != 0)
1631 		return (error);
1632 
1633 	/* Read MAC address before resetting the chip */
1634 	awg_get_eaddr(dev, eaddr);
1635 
1636 	/* Soft reset EMAC core */
1637 	error = awg_reset(dev);
1638 	if (error != 0)
1639 		return (error);
1640 
1641 	/* Setup DMA descriptors */
1642 	error = awg_setup_dma(dev);
1643 	if (error != 0)
1644 		return (error);
1645 
1646 	/* Install interrupt handler */
1647 	error = bus_setup_intr(dev, sc->res[_RES_IRQ],
1648 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
1649 	if (error != 0) {
1650 		device_printf(dev, "cannot setup interrupt handler\n");
1651 		return (error);
1652 	}
1653 
1654 	/* Setup ethernet interface */
1655 	sc->ifp = if_alloc(IFT_ETHER);
1656 	if_setsoftc(sc->ifp, sc);
1657 	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1658 	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1659 	if_setstartfn(sc->ifp, awg_start);
1660 	if_setioctlfn(sc->ifp, awg_ioctl);
1661 	if_setinitfn(sc->ifp, awg_init);
1662 	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1663 	if_setsendqready(sc->ifp);
1664 	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1665 	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1666 	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1667 #ifdef DEVICE_POLLING
1668 	if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
1669 #endif
1670 
1671 	/* Attach MII driver */
1672 	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1673 	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1674 	    MIIF_DOPAUSE);
1675 	if (error != 0) {
1676 		device_printf(dev, "cannot attach PHY\n");
1677 		return (error);
1678 	}
1679 
1680 	/* Attach ethernet interface */
1681 	ether_ifattach(sc->ifp, eaddr);
1682 
1683 	return (0);
1684 }
1685 
1686 static device_method_t awg_methods[] = {
1687 	/* Device interface */
1688 	DEVMETHOD(device_probe,		awg_probe),
1689 	DEVMETHOD(device_attach,	awg_attach),
1690 
1691 	/* MII interface */
1692 	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
1693 	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
1694 	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
1695 
1696 	DEVMETHOD_END
1697 };
1698 
1699 static driver_t awg_driver = {
1700 	"awg",
1701 	awg_methods,
1702 	sizeof(struct awg_softc),
1703 };
1704 
1705 static devclass_t awg_devclass;
1706 
1707 DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
1708 DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
1709 
1710 MODULE_DEPEND(awg, ether, 1, 1, 1);
1711 MODULE_DEPEND(awg, miibus, 1, 1, 1);
1712