xref: /freebsd/sys/arm/allwinner/aw_thermal.c (revision 7815283df299be63807225a9fe9b6e54406eae28)
1 /*-
2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Allwinner thermal sensor controller
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/rman.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <sys/reboot.h>
43 #include <sys/module.h>
44 #include <sys/cpu.h>
45 #include <sys/taskqueue.h>
46 #include <machine/bus.h>
47 
48 #include <dev/ofw/ofw_bus.h>
49 #include <dev/ofw/ofw_bus_subr.h>
50 
51 #include <dev/extres/clk/clk.h>
52 #include <dev/extres/hwreset/hwreset.h>
53 #include <dev/extres/nvmem/nvmem.h>
54 
55 #include <arm/allwinner/aw_sid.h>
56 
57 #include "cpufreq_if.h"
58 #include "nvmem_if.h"
59 
60 #define	THS_CTRL0		0x00
61 #define	THS_CTRL1		0x04
62 #define	 ADC_CALI_EN		(1 << 17)
63 #define	THS_CTRL2		0x40
64 #define	 SENSOR_ACQ1_SHIFT	16
65 #define	 SENSOR2_EN		(1 << 2)
66 #define	 SENSOR1_EN		(1 << 1)
67 #define	 SENSOR0_EN		(1 << 0)
68 #define	THS_INTC		0x44
69 #define	 THS_THERMAL_PER_SHIFT	12
70 #define	THS_INTS		0x48
71 #define	 THS2_DATA_IRQ_STS	(1 << 10)
72 #define	 THS1_DATA_IRQ_STS	(1 << 9)
73 #define	 THS0_DATA_IRQ_STS	(1 << 8)
74 #define	 SHUT_INT2_STS		(1 << 6)
75 #define	 SHUT_INT1_STS		(1 << 5)
76 #define	 SHUT_INT0_STS		(1 << 4)
77 #define	 ALARM_INT2_STS		(1 << 2)
78 #define	 ALARM_INT1_STS		(1 << 1)
79 #define	 ALARM_INT0_STS		(1 << 0)
80 #define	THS_ALARM0_CTRL		0x50
81 #define	 ALARM_T_HOT_MASK	0xfff
82 #define	 ALARM_T_HOT_SHIFT	16
83 #define	 ALARM_T_HYST_MASK	0xfff
84 #define	 ALARM_T_HYST_SHIFT	0
85 #define	THS_SHUTDOWN0_CTRL	0x60
86 #define	 SHUT_T_HOT_MASK	0xfff
87 #define	 SHUT_T_HOT_SHIFT	16
88 #define	THS_FILTER		0x70
89 #define	THS_CALIB0		0x74
90 #define	THS_CALIB1		0x78
91 #define	THS_DATA0		0x80
92 #define	THS_DATA1		0x84
93 #define	THS_DATA2		0x88
94 #define	 DATA_MASK		0xfff
95 
96 #define	A83T_CLK_RATE		24000000
97 #define	A83T_ADC_ACQUIRE_TIME	23	/* 24Mhz/(23 + 1) = 1us */
98 #define	A83T_THERMAL_PER	1	/* 4096 * (1 + 1) / 24Mhz = 341 us */
99 #define	A83T_FILTER		0x5	/* Filter enabled, avg of 4 */
100 #define	A83T_TEMP_BASE		2719000
101 #define	A83T_TEMP_MUL		1000
102 #define	A83T_TEMP_DIV		14186
103 
104 #define	A64_CLK_RATE		4000000
105 #define	A64_ADC_ACQUIRE_TIME	400	/* 4Mhz/(400 + 1) = 100 us */
106 #define	A64_THERMAL_PER		24	/* 4096 * (24 + 1) / 4Mhz = 25.6 ms */
107 #define	A64_FILTER		0x6	/* Filter enabled, avg of 8 */
108 #define	A64_TEMP_BASE		2170000
109 #define	A64_TEMP_MUL		1000
110 #define	A64_TEMP_DIV		8560
111 
112 #define	H3_CLK_RATE		4000000
113 #define	H3_ADC_ACQUIRE_TIME	0x3f
114 #define	H3_THERMAL_PER		401
115 #define	H3_FILTER		0x6	/* Filter enabled, avg of 8 */
116 #define	H3_TEMP_BASE		217
117 #define	H3_TEMP_MUL		1000
118 #define	H3_TEMP_DIV		8253
119 #define	H3_TEMP_MINUS		1794000
120 #define	H3_INIT_ALARM		90	/* degC */
121 #define	H3_INIT_SHUT		105	/* degC */
122 
123 #define	H5_CLK_RATE		24000000
124 #define	H5_ADC_ACQUIRE_TIME	479	/* 24Mhz/479 = 20us */
125 #define	H5_THERMAL_PER		58	/* 4096 * (58 + 1) / 24Mhz = 10ms */
126 #define	H5_FILTER		0x6	/* Filter enabled, avg of 8 */
127 #define	H5_TEMP_BASE		233832448
128 #define	H5_TEMP_MUL		124885
129 #define	H5_TEMP_DIV		20
130 #define	H5_TEMP_BASE_CPU	271581184
131 #define	H5_TEMP_MUL_CPU		152253
132 #define	H5_TEMP_BASE_GPU	289406976
133 #define	H5_TEMP_MUL_GPU		166724
134 #define	H5_INIT_CPU_ALARM	80	/* degC */
135 #define	H5_INIT_CPU_SHUT	96	/* degC */
136 #define	H5_INIT_GPU_ALARM	84	/* degC */
137 #define	H5_INIT_GPU_SHUT	100	/* degC */
138 
139 #define	TEMP_C_TO_K		273
140 #define	SENSOR_ENABLE_ALL	(SENSOR0_EN|SENSOR1_EN|SENSOR2_EN)
141 #define	SHUT_INT_ALL		(SHUT_INT0_STS|SHUT_INT1_STS|SHUT_INT2_STS)
142 #define	ALARM_INT_ALL		(ALARM_INT0_STS)
143 
144 #define	MAX_SENSORS	3
145 #define	MAX_CF_LEVELS	64
146 
147 #define	THROTTLE_ENABLE_DEFAULT	1
148 
149 /* Enable thermal throttling */
150 static int aw_thermal_throttle_enable = THROTTLE_ENABLE_DEFAULT;
151 TUNABLE_INT("hw.aw_thermal.throttle_enable", &aw_thermal_throttle_enable);
152 
153 struct aw_thermal_sensor {
154 	const char		*name;
155 	const char		*desc;
156 	int			init_alarm;
157 	int			init_shut;
158 };
159 
160 struct aw_thermal_config {
161 	struct aw_thermal_sensor	sensors[MAX_SENSORS];
162 	int				nsensors;
163 	uint64_t			clk_rate;
164 	uint32_t			adc_acquire_time;
165 	int				adc_cali_en;
166 	uint32_t			filter;
167 	uint32_t			thermal_per;
168 	int				(*to_temp)(uint32_t, int);
169 	uint32_t			(*to_reg)(int, int);
170 	int				temp_base;
171 	int				temp_mul;
172 	int				temp_div;
173 	int				calib0, calib1;
174 	uint32_t			calib0_mask, calib1_mask;
175 };
176 
177 static int
178 a83t_to_temp(uint32_t val, int sensor)
179 {
180 	return ((A83T_TEMP_BASE - (val * A83T_TEMP_MUL)) / A83T_TEMP_DIV);
181 }
182 
183 static const struct aw_thermal_config a83t_config = {
184 	.nsensors = 3,
185 	.sensors = {
186 		[0] = {
187 			.name = "cluster0",
188 			.desc = "CPU cluster 0 temperature",
189 		},
190 		[1] = {
191 			.name = "cluster1",
192 			.desc = "CPU cluster 1 temperature",
193 		},
194 		[2] = {
195 			.name = "gpu",
196 			.desc = "GPU temperature",
197 		},
198 	},
199 	.clk_rate = A83T_CLK_RATE,
200 	.adc_acquire_time = A83T_ADC_ACQUIRE_TIME,
201 	.adc_cali_en = 1,
202 	.filter = A83T_FILTER,
203 	.thermal_per = A83T_THERMAL_PER,
204 	.to_temp = a83t_to_temp,
205 	.calib0_mask = 0xffffffff,
206 	.calib1_mask = 0xffff,
207 };
208 
209 static int
210 a64_to_temp(uint32_t val, int sensor)
211 {
212 	return ((A64_TEMP_BASE - (val * A64_TEMP_MUL)) / A64_TEMP_DIV);
213 }
214 
215 static const struct aw_thermal_config a64_config = {
216 	.nsensors = 3,
217 	.sensors = {
218 		[0] = {
219 			.name = "cpu",
220 			.desc = "CPU temperature",
221 		},
222 		[1] = {
223 			.name = "gpu1",
224 			.desc = "GPU temperature 1",
225 		},
226 		[2] = {
227 			.name = "gpu2",
228 			.desc = "GPU temperature 2",
229 		},
230 	},
231 	.clk_rate = A64_CLK_RATE,
232 	.adc_acquire_time = A64_ADC_ACQUIRE_TIME,
233 	.adc_cali_en = 1,
234 	.filter = A64_FILTER,
235 	.thermal_per = A64_THERMAL_PER,
236 	.to_temp = a64_to_temp,
237 	.calib0_mask = 0xffffffff,
238 	.calib1_mask = 0xffff,
239 };
240 
241 static int
242 h3_to_temp(uint32_t val, int sensor)
243 {
244 	return (H3_TEMP_BASE - ((val * H3_TEMP_MUL) / H3_TEMP_DIV));
245 }
246 
247 static uint32_t
248 h3_to_reg(int val, int sensor)
249 {
250 	return ((H3_TEMP_MINUS - (val * H3_TEMP_DIV)) / H3_TEMP_MUL);
251 }
252 
253 static const struct aw_thermal_config h3_config = {
254 	.nsensors = 1,
255 	.sensors = {
256 		[0] = {
257 			.name = "cpu",
258 			.desc = "CPU temperature",
259 			.init_alarm = H3_INIT_ALARM,
260 			.init_shut = H3_INIT_SHUT,
261 		},
262 	},
263 	.clk_rate = H3_CLK_RATE,
264 	.adc_acquire_time = H3_ADC_ACQUIRE_TIME,
265 	.adc_cali_en = 1,
266 	.filter = H3_FILTER,
267 	.thermal_per = H3_THERMAL_PER,
268 	.to_temp = h3_to_temp,
269 	.to_reg = h3_to_reg,
270 	.calib0_mask = 0xffff,
271 };
272 
273 static int
274 h5_to_temp(uint32_t val, int sensor)
275 {
276 	int tmp;
277 
278 	/* Temp is lower than 70 degrees */
279 	if (val > 0x500) {
280 		tmp = H5_TEMP_BASE - (val * H5_TEMP_MUL);
281 		tmp >>= H5_TEMP_DIV;
282 		return (tmp);
283 	}
284 
285 	if (sensor == 0)
286 		tmp = H5_TEMP_BASE_CPU - (val * H5_TEMP_MUL_CPU);
287 	else if (sensor == 1)
288 		tmp = H5_TEMP_BASE_GPU - (val * H5_TEMP_MUL_GPU);
289 	else {
290 		printf("Unknown sensor %d\n", sensor);
291 		return (val);
292 	}
293 
294 	tmp >>= H5_TEMP_DIV;
295 	return (tmp);
296 }
297 
298 static uint32_t
299 h5_to_reg(int val, int sensor)
300 {
301 	int tmp;
302 
303 	if (val < 70) {
304 		tmp = H5_TEMP_BASE - (val << H5_TEMP_DIV);
305 		tmp /= H5_TEMP_MUL;
306 	} else {
307 		if (sensor == 0) {
308 			tmp = H5_TEMP_BASE_CPU - (val << H5_TEMP_DIV);
309 			tmp /= H5_TEMP_MUL_CPU;
310 		} else if (sensor == 1) {
311 			tmp = H5_TEMP_BASE_GPU - (val << H5_TEMP_DIV);
312 			tmp /= H5_TEMP_MUL_GPU;
313 		} else {
314 			printf("Unknown sensor %d\n", sensor);
315 			return (val);
316 		}
317 	}
318 
319 	return ((uint32_t)tmp);
320 }
321 
322 static const struct aw_thermal_config h5_config = {
323 	.nsensors = 2,
324 	.sensors = {
325 		[0] = {
326 			.name = "cpu",
327 			.desc = "CPU temperature",
328 			.init_alarm = H5_INIT_CPU_ALARM,
329 			.init_shut = H5_INIT_CPU_SHUT,
330 		},
331 		[1] = {
332 			.name = "gpu",
333 			.desc = "GPU temperature",
334 			.init_alarm = H5_INIT_GPU_ALARM,
335 			.init_shut = H5_INIT_GPU_SHUT,
336 		},
337 	},
338 	.clk_rate = H5_CLK_RATE,
339 	.adc_acquire_time = H5_ADC_ACQUIRE_TIME,
340 	.filter = H5_FILTER,
341 	.thermal_per = H5_THERMAL_PER,
342 	.to_temp = h5_to_temp,
343 	.to_reg = h5_to_reg,
344 	.calib0_mask = 0xffffffff,
345 };
346 
347 static struct ofw_compat_data compat_data[] = {
348 	{ "allwinner,sun8i-a83t-ths",	(uintptr_t)&a83t_config },
349 	{ "allwinner,sun8i-h3-ths",	(uintptr_t)&h3_config },
350 	{ "allwinner,sun50i-a64-ths",	(uintptr_t)&a64_config },
351 	{ "allwinner,sun50i-h5-ths",	(uintptr_t)&h5_config },
352 	{ NULL,				(uintptr_t)NULL }
353 };
354 
355 #define	THS_CONF(d)		\
356 	(void *)ofw_bus_search_compatible((d), compat_data)->ocd_data
357 
358 struct aw_thermal_softc {
359 	device_t			dev;
360 	struct resource			*res[2];
361 	struct aw_thermal_config	*conf;
362 
363 	struct task			cf_task;
364 	int				throttle;
365 	int				min_freq;
366 	struct cf_level			levels[MAX_CF_LEVELS];
367 	eventhandler_tag		cf_pre_tag;
368 
369 	clk_t				clk_apb;
370 	clk_t				clk_ths;
371 };
372 
373 static struct resource_spec aw_thermal_spec[] = {
374 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
375 	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
376 	{ -1, 0 }
377 };
378 
379 #define	RD4(sc, reg)		bus_read_4((sc)->res[0], (reg))
380 #define	WR4(sc, reg, val)	bus_write_4((sc)->res[0], (reg), (val))
381 
382 static int
383 aw_thermal_init(struct aw_thermal_softc *sc)
384 {
385 	phandle_t node;
386 	uint32_t calib[2];
387 	int error;
388 
389 	node = ofw_bus_get_node(sc->dev);
390 	if (nvmem_get_cell_len(node, "ths-calib") > sizeof(calib)) {
391 		device_printf(sc->dev, "ths-calib nvmem cell is too large\n");
392 		return (ENXIO);
393 	}
394 	error = nvmem_read_cell_by_name(node, "ths-calib",
395 	    (void *)&calib, nvmem_get_cell_len(node, "ths-calib"));
396 	/* Read calibration settings from EFUSE */
397 	if (error != 0) {
398 		device_printf(sc->dev, "Cannot read THS efuse\n");
399 		return (error);
400 	}
401 
402 	calib[0] &= sc->conf->calib0_mask;
403 	calib[1] &= sc->conf->calib1_mask;
404 
405 	/* Write calibration settings to thermal controller */
406 	if (calib[0] != 0)
407 		WR4(sc, THS_CALIB0, calib[0]);
408 	if (calib[1] != 0)
409 		WR4(sc, THS_CALIB1, calib[1]);
410 
411 	/* Configure ADC acquire time (CLK_IN/(N+1)) and enable sensors */
412 	WR4(sc, THS_CTRL1, ADC_CALI_EN);
413 	WR4(sc, THS_CTRL0, sc->conf->adc_acquire_time);
414 	WR4(sc, THS_CTRL2, sc->conf->adc_acquire_time << SENSOR_ACQ1_SHIFT);
415 
416 	/* Set thermal period */
417 	WR4(sc, THS_INTC, sc->conf->thermal_per << THS_THERMAL_PER_SHIFT);
418 
419 	/* Enable average filter */
420 	WR4(sc, THS_FILTER, sc->conf->filter);
421 
422 	/* Enable interrupts */
423 	WR4(sc, THS_INTS, RD4(sc, THS_INTS));
424 	WR4(sc, THS_INTC, RD4(sc, THS_INTC) | SHUT_INT_ALL | ALARM_INT_ALL);
425 
426 	/* Enable sensors */
427 	WR4(sc, THS_CTRL2, RD4(sc, THS_CTRL2) | SENSOR_ENABLE_ALL);
428 
429 	return (0);
430 }
431 
432 static int
433 aw_thermal_gettemp(struct aw_thermal_softc *sc, int sensor)
434 {
435 	uint32_t val;
436 
437 	val = RD4(sc, THS_DATA0 + (sensor * 4));
438 
439 	return (sc->conf->to_temp(val, sensor));
440 }
441 
442 static int
443 aw_thermal_getshut(struct aw_thermal_softc *sc, int sensor)
444 {
445 	uint32_t val;
446 
447 	val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4));
448 	val = (val >> SHUT_T_HOT_SHIFT) & SHUT_T_HOT_MASK;
449 
450 	return (sc->conf->to_temp(val, sensor));
451 }
452 
453 static void
454 aw_thermal_setshut(struct aw_thermal_softc *sc, int sensor, int temp)
455 {
456 	uint32_t val;
457 
458 	val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4));
459 	val &= ~(SHUT_T_HOT_MASK << SHUT_T_HOT_SHIFT);
460 	val |= (sc->conf->to_reg(temp, sensor) << SHUT_T_HOT_SHIFT);
461 	WR4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4), val);
462 }
463 
464 static int
465 aw_thermal_gethyst(struct aw_thermal_softc *sc, int sensor)
466 {
467 	uint32_t val;
468 
469 	val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
470 	val = (val >> ALARM_T_HYST_SHIFT) & ALARM_T_HYST_MASK;
471 
472 	return (sc->conf->to_temp(val, sensor));
473 }
474 
475 static int
476 aw_thermal_getalarm(struct aw_thermal_softc *sc, int sensor)
477 {
478 	uint32_t val;
479 
480 	val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
481 	val = (val >> ALARM_T_HOT_SHIFT) & ALARM_T_HOT_MASK;
482 
483 	return (sc->conf->to_temp(val, sensor));
484 }
485 
486 static void
487 aw_thermal_setalarm(struct aw_thermal_softc *sc, int sensor, int temp)
488 {
489 	uint32_t val;
490 
491 	val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
492 	val &= ~(ALARM_T_HOT_MASK << ALARM_T_HOT_SHIFT);
493 	val |= (sc->conf->to_reg(temp, sensor) << ALARM_T_HOT_SHIFT);
494 	WR4(sc, THS_ALARM0_CTRL + (sensor * 4), val);
495 }
496 
497 static int
498 aw_thermal_sysctl(SYSCTL_HANDLER_ARGS)
499 {
500 	struct aw_thermal_softc *sc;
501 	int sensor, val;
502 
503 	sc = arg1;
504 	sensor = arg2;
505 
506 	val = aw_thermal_gettemp(sc, sensor) + TEMP_C_TO_K;
507 
508 	return sysctl_handle_opaque(oidp, &val, sizeof(val), req);
509 }
510 
511 static void
512 aw_thermal_throttle(struct aw_thermal_softc *sc, int enable)
513 {
514 	device_t cf_dev;
515 	int count, error;
516 
517 	if (enable == sc->throttle)
518 		return;
519 
520 	if (enable != 0) {
521 		/* Set the lowest available frequency */
522 		cf_dev = devclass_get_device(devclass_find("cpufreq"), 0);
523 		if (cf_dev == NULL)
524 			return;
525 		count = MAX_CF_LEVELS;
526 		error = CPUFREQ_LEVELS(cf_dev, sc->levels, &count);
527 		if (error != 0 || count == 0)
528 			return;
529 		sc->min_freq = sc->levels[count - 1].total_set.freq;
530 		error = CPUFREQ_SET(cf_dev, &sc->levels[count - 1],
531 		    CPUFREQ_PRIO_USER);
532 		if (error != 0)
533 			return;
534 	}
535 
536 	sc->throttle = enable;
537 }
538 
539 static void
540 aw_thermal_cf_task(void *arg, int pending)
541 {
542 	struct aw_thermal_softc *sc;
543 
544 	sc = arg;
545 
546 	aw_thermal_throttle(sc, 1);
547 }
548 
549 static void
550 aw_thermal_cf_pre_change(void *arg, const struct cf_level *level, int *status)
551 {
552 	struct aw_thermal_softc *sc;
553 	int temp_cur, temp_alarm;
554 
555 	sc = arg;
556 
557 	if (aw_thermal_throttle_enable == 0 || sc->throttle == 0 ||
558 	    level->total_set.freq == sc->min_freq)
559 		return;
560 
561 	temp_cur = aw_thermal_gettemp(sc, 0);
562 	temp_alarm = aw_thermal_getalarm(sc, 0);
563 
564 	if (temp_cur < temp_alarm)
565 		aw_thermal_throttle(sc, 0);
566 	else
567 		*status = ENXIO;
568 }
569 
570 static void
571 aw_thermal_intr(void *arg)
572 {
573 	struct aw_thermal_softc *sc;
574 	device_t dev;
575 	uint32_t ints;
576 
577 	dev = arg;
578 	sc = device_get_softc(dev);
579 
580 	ints = RD4(sc, THS_INTS);
581 	WR4(sc, THS_INTS, ints);
582 
583 	if ((ints & SHUT_INT_ALL) != 0) {
584 		device_printf(dev,
585 		    "WARNING - current temperature exceeds safe limits\n");
586 		shutdown_nice(RB_POWEROFF);
587 	}
588 
589 	if ((ints & ALARM_INT_ALL) != 0)
590 		taskqueue_enqueue(taskqueue_thread, &sc->cf_task);
591 }
592 
593 static int
594 aw_thermal_probe(device_t dev)
595 {
596 	if (!ofw_bus_status_okay(dev))
597 		return (ENXIO);
598 
599 	if (THS_CONF(dev) == NULL)
600 		return (ENXIO);
601 
602 	device_set_desc(dev, "Allwinner Thermal Sensor Controller");
603 	return (BUS_PROBE_DEFAULT);
604 }
605 
606 static int
607 aw_thermal_attach(device_t dev)
608 {
609 	struct aw_thermal_softc *sc;
610 	hwreset_t rst;
611 	int i, error;
612 	void *ih;
613 
614 	sc = device_get_softc(dev);
615 	sc->dev = dev;
616 	rst = NULL;
617 	ih = NULL;
618 
619 	sc->conf = THS_CONF(dev);
620 	TASK_INIT(&sc->cf_task, 0, aw_thermal_cf_task, sc);
621 
622 	if (bus_alloc_resources(dev, aw_thermal_spec, sc->res) != 0) {
623 		device_printf(dev, "cannot allocate resources for device\n");
624 		return (ENXIO);
625 	}
626 
627 	if (clk_get_by_ofw_name(dev, 0, "apb", &sc->clk_apb) == 0) {
628 		error = clk_enable(sc->clk_apb);
629 		if (error != 0) {
630 			device_printf(dev, "cannot enable apb clock\n");
631 			goto fail;
632 		}
633 	}
634 
635 	if (clk_get_by_ofw_name(dev, 0, "ths", &sc->clk_ths) == 0) {
636 		error = clk_set_freq(sc->clk_ths, sc->conf->clk_rate, 0);
637 		if (error != 0) {
638 			device_printf(dev, "cannot set ths clock rate\n");
639 			goto fail;
640 		}
641 		error = clk_enable(sc->clk_ths);
642 		if (error != 0) {
643 			device_printf(dev, "cannot enable ths clock\n");
644 			goto fail;
645 		}
646 	}
647 
648 	if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst) == 0) {
649 		error = hwreset_deassert(rst);
650 		if (error != 0) {
651 			device_printf(dev, "cannot de-assert reset\n");
652 			goto fail;
653 		}
654 	}
655 
656 	error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC | INTR_MPSAFE,
657 	    NULL, aw_thermal_intr, dev, &ih);
658 	if (error != 0) {
659 		device_printf(dev, "cannot setup interrupt handler\n");
660 		goto fail;
661 	}
662 
663 	for (i = 0; i < sc->conf->nsensors; i++) {
664 		if (sc->conf->sensors[i].init_alarm > 0)
665 			aw_thermal_setalarm(sc, i,
666 			    sc->conf->sensors[i].init_alarm);
667 		if (sc->conf->sensors[i].init_shut > 0)
668 			aw_thermal_setshut(sc, i,
669 			    sc->conf->sensors[i].init_shut);
670 	}
671 
672 	if (aw_thermal_init(sc) != 0)
673 		goto fail;
674 
675 	for (i = 0; i < sc->conf->nsensors; i++)
676 		SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
677 		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
678 		    OID_AUTO, sc->conf->sensors[i].name,
679 		    CTLTYPE_INT | CTLFLAG_RD,
680 		    sc, i, aw_thermal_sysctl, "IK0",
681 		    sc->conf->sensors[i].desc);
682 
683 	if (bootverbose)
684 		for (i = 0; i < sc->conf->nsensors; i++) {
685 			device_printf(dev,
686 			    "%s: alarm %dC hyst %dC shut %dC\n",
687 			    sc->conf->sensors[i].name,
688 			    aw_thermal_getalarm(sc, i),
689 			    aw_thermal_gethyst(sc, i),
690 			    aw_thermal_getshut(sc, i));
691 		}
692 
693 	sc->cf_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
694 	    aw_thermal_cf_pre_change, sc, EVENTHANDLER_PRI_FIRST);
695 
696 	return (0);
697 
698 fail:
699 	if (ih != NULL)
700 		bus_teardown_intr(dev, sc->res[1], ih);
701 	if (rst != NULL)
702 		hwreset_release(rst);
703 	if (sc->clk_apb != NULL)
704 		clk_release(sc->clk_apb);
705 	if (sc->clk_ths != NULL)
706 		clk_release(sc->clk_ths);
707 	bus_release_resources(dev, aw_thermal_spec, sc->res);
708 
709 	return (ENXIO);
710 }
711 
712 static device_method_t aw_thermal_methods[] = {
713 	/* Device interface */
714 	DEVMETHOD(device_probe,		aw_thermal_probe),
715 	DEVMETHOD(device_attach,	aw_thermal_attach),
716 
717 	DEVMETHOD_END
718 };
719 
720 static driver_t aw_thermal_driver = {
721 	"aw_thermal",
722 	aw_thermal_methods,
723 	sizeof(struct aw_thermal_softc),
724 };
725 
726 static devclass_t aw_thermal_devclass;
727 
728 DRIVER_MODULE(aw_thermal, simplebus, aw_thermal_driver, aw_thermal_devclass,
729     0, 0);
730 MODULE_VERSION(aw_thermal, 1);
731