xref: /freebsd/sys/arm/allwinner/aw_cir.c (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 /*-
2  * Copyright (c) 2016 Ganbold Tsagaankhuu <ganbold@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Allwinner Consumer IR controller
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/rman.h>
37 #include <sys/sysctl.h>
38 #include <machine/bus.h>
39 
40 #include <dev/ofw/openfirm.h>
41 #include <dev/ofw/ofw_bus.h>
42 #include <dev/ofw/ofw_bus_subr.h>
43 #include <dev/extres/clk/clk.h>
44 #include <dev/extres/hwreset/hwreset.h>
45 
46 #include <dev/evdev/input.h>
47 #include <dev/evdev/evdev.h>
48 
49 #define	READ(_sc, _r)		bus_read_4((_sc)->res[0], (_r))
50 #define	WRITE(_sc, _r, _v)	bus_write_4((_sc)->res[0], (_r), (_v))
51 
52 /* IR Control */
53 #define	AW_IR_CTL			0x00
54 /* Global Enable */
55 #define	 AW_IR_CTL_GEN			(1 << 0)
56 /* RX enable */
57 #define	 AW_IR_CTL_RXEN			(1 << 1)
58 /* CIR mode enable */
59 #define	 AW_IR_CTL_MD			(1 << 4) | (1 << 5)
60 
61 /* RX Config Reg */
62 #define	AW_IR_RXCTL			0x10
63 /* Pulse Polarity Invert flag */
64 #define	 AW_IR_RXCTL_RPPI		(1 << 2)
65 
66 /* RX Data */
67 #define	AW_IR_RXFIFO			0x20
68 
69 /* RX Interrupt Control */
70 #define	AW_IR_RXINT			0x2C
71 /* RX FIFO Overflow */
72 #define	 AW_IR_RXINT_ROI_EN		(1 << 0)
73 /* RX Packet End */
74 #define	 AW_IR_RXINT_RPEI_EN		(1 << 1)
75 /* RX FIFO Data Available */
76 #define	 AW_IR_RXINT_RAI_EN		(1 << 4)
77 /* RX FIFO available byte level */
78 #define	 AW_IR_RXINT_RAL(val)		((val) << 8)
79 
80 /* RX Interrupt Status Reg */
81 #define	AW_IR_RXSTA			0x30
82 /* RX FIFO Get Available Counter */
83 #define	 AW_IR_RXSTA_COUNTER(val)	(((val) >> 8) & (sc->fifo_size * 2 - 1))
84 /* Clear all interrupt status */
85 #define	 AW_IR_RXSTA_CLEARALL		0xff
86 
87 /* IR Sample Configure Reg */
88 #define	AW_IR_CIR			0x34
89 
90 /*
91  * Frequency sample: 23437.5Hz (Cycle: 42.7us)
92  * Pulse of NEC Remote > 560us
93  */
94 /* Filter Threshold = 8 * 42.7 = ~341us < 500us */
95 #define	 AW_IR_RXFILT_VAL		(((8) & 0x3f) << 2)
96 /* Idle Threshold = (2 + 1) * 128 * 42.7 = ~16.4ms > 9ms */
97 #define	 AW_IR_RXIDLE_VAL		(((2) & 0xff) << 8)
98 
99 /* Bit 15 - value (pulse/space) */
100 #define	VAL_MASK			0x80
101 /* Bits 0:14 - sample duration  */
102 #define	PERIOD_MASK			0x7f
103 
104 /* Clock rate for IR0 or IR1 clock in CIR mode */
105 #define	AW_IR_BASE_CLK			3000000
106 /* Frequency sample 3MHz/64 = 46875Hz (21.3us) */
107 #define	AW_IR_SAMPLE_64			(0 << 0)
108 /* Frequency sample 3MHz/128 = 23437.5Hz (42.7us) */
109 #define	AW_IR_SAMPLE_128		(1 << 0)
110 
111 #define	AW_IR_ERROR_CODE		0xffffffff
112 #define	AW_IR_REPEAT_CODE		0x0
113 
114 /* 80 * 42.7 = ~3.4ms, Lead1(4.5ms) > AW_IR_L1_MIN */
115 #define	AW_IR_L1_MIN			80
116 /* 40 * 42.7 = ~1.7ms, Lead0(4.5ms) Lead0R(2.25ms) > AW_IR_L0_MIN */
117 #define	AW_IR_L0_MIN			40
118 /* 26 * 42.7 = ~1109us ~= 561 * 2, Pulse < AW_IR_PMAX */
119 #define	AW_IR_PMAX			26
120 /* 26 * 42.7 = ~1109us ~= 561 * 2, D1 > AW_IR_DMID, D0 <= AW_IR_DMID */
121 #define	AW_IR_DMID			26
122 /* 53 * 42.7 = ~2263us ~= 561 * 4, D < AW_IR_DMAX */
123 #define	AW_IR_DMAX			53
124 
125 /* Active Thresholds */
126 #define	AW_IR_ACTIVE_T_VAL		AW_IR_L1_MIN
127 #define	AW_IR_ACTIVE_T			(((AW_IR_ACTIVE_T_VAL - 1) & 0xff) << 16)
128 #define	AW_IR_ACTIVE_T_C_VAL		0
129 #define	AW_IR_ACTIVE_T_C		((AW_IR_ACTIVE_T_C_VAL & 0xff) << 23)
130 
131 /* Code masks */
132 #define	CODE_MASK			0x00ff00ff
133 #define	INV_CODE_MASK			0xff00ff00
134 #define	VALID_CODE_MASK			0x00ff0000
135 
136 enum {
137 	A10_IR = 1,
138 	A13_IR,
139 	A31_IR,
140 };
141 
142 #define	AW_IR_RAW_BUF_SIZE		128
143 
144 SYSCTL_NODE(_hw, OID_AUTO, aw_cir, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
145     "aw_cir driver");
146 
147 static int aw_cir_debug = 0;
148 SYSCTL_INT(_hw_aw_cir, OID_AUTO, debug, CTLFLAG_RWTUN, &aw_cir_debug, 0,
149     "Debug 1=on 0=off");
150 
151 struct aw_ir_softc {
152 	device_t		dev;
153 	struct resource		*res[2];
154 	void *			intrhand;
155 	int			fifo_size;
156 	int			dcnt;	/* Packet Count */
157 	unsigned char		buf[AW_IR_RAW_BUF_SIZE];
158 	struct evdev_dev	*sc_evdev;
159 };
160 
161 static struct resource_spec aw_ir_spec[] = {
162 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
163 	{ SYS_RES_IRQ,		0,	RF_ACTIVE | RF_SHAREABLE },
164 	{ -1, 0 }
165 };
166 
167 static struct ofw_compat_data compat_data[] = {
168 	{ "allwinner,sun4i-a10-ir",	A10_IR },
169 	{ "allwinner,sun5i-a13-ir",	A13_IR },
170 	{ "allwinner,sun6i-a31-ir",	A31_IR },
171 	{ NULL,				0 }
172 };
173 
174 static void
175 aw_ir_buf_reset(struct aw_ir_softc *sc)
176 {
177 
178 	sc->dcnt = 0;
179 }
180 
181 static void
182 aw_ir_buf_write(struct aw_ir_softc *sc, unsigned char data)
183 {
184 
185 	if (sc->dcnt < AW_IR_RAW_BUF_SIZE)
186 		sc->buf[sc->dcnt++] = data;
187 	else
188 		if (bootverbose)
189 			device_printf(sc->dev, "IR RX Buffer Full!\n");
190 }
191 
192 static int
193 aw_ir_buf_full(struct aw_ir_softc *sc)
194 {
195 
196 	return (sc->dcnt >= AW_IR_RAW_BUF_SIZE);
197 }
198 
199 static unsigned char
200 aw_ir_read_data(struct aw_ir_softc *sc)
201 {
202 
203 	return (unsigned char)(READ(sc, AW_IR_RXFIFO) & 0xff);
204 }
205 
206 static unsigned long
207 aw_ir_decode_packets(struct aw_ir_softc *sc)
208 {
209 	unsigned int len, code;
210 	unsigned int active_delay;
211 	unsigned char val, last;
212 	int i, bitcount;
213 
214 	if (bootverbose && __predict_false(aw_cir_debug) != 0)
215 		device_printf(sc->dev, "sc->dcnt = %d\n", sc->dcnt);
216 
217 	/* Find Lead 1 (bit separator) */
218 	active_delay = AW_IR_ACTIVE_T_VAL *
219 	    (AW_IR_ACTIVE_T_C_VAL != 0 ? 128 : 1);
220 	len = active_delay;
221 	if (bootverbose && __predict_false(aw_cir_debug) != 0)
222 		device_printf(sc->dev, "Initial len: %d\n", len);
223 	for (i = 0;  i < sc->dcnt; i++) {
224 		val = sc->buf[i];
225 		if (val & VAL_MASK)
226 			len += (val & PERIOD_MASK) + 1;
227 		else {
228 			if (len > AW_IR_L1_MIN)
229 				break;
230 			len = 0;
231 		}
232 	}
233 	if (bootverbose && __predict_false(aw_cir_debug) != 0)
234 		device_printf(sc->dev, "len = %d\n", len);
235 	if ((val & VAL_MASK) || (len <= AW_IR_L1_MIN)) {
236 		if (bootverbose && __predict_false(aw_cir_debug) != 0)
237 			device_printf(sc->dev, "Bit separator error\n");
238 		goto error_code;
239 	}
240 
241 	/* Find Lead 0 (bit length) */
242 	len = 0;
243 	for (; i < sc->dcnt; i++) {
244 		val = sc->buf[i];
245 		if (val & VAL_MASK) {
246 			if(len > AW_IR_L0_MIN)
247 				break;
248 			len = 0;
249 		} else
250 			len += (val & PERIOD_MASK) + 1;
251 	}
252 	if ((!(val & VAL_MASK)) || (len <= AW_IR_L0_MIN)) {
253 		if (bootverbose && __predict_false(aw_cir_debug) != 0)
254 			device_printf(sc->dev, "Bit length error\n");
255 		goto error_code;
256 	}
257 
258 	/* Start decoding */
259 	code = 0;
260 	bitcount = 0;
261 	last = 1;
262 	len = 0;
263 	for (; i < sc->dcnt; i++) {
264 		val = sc->buf[i];
265 		if (last) {
266 			if (val & VAL_MASK)
267 				len += (val & PERIOD_MASK) + 1;
268 			else {
269 				if (len > AW_IR_PMAX) {
270 					if (bootverbose)
271 						device_printf(sc->dev,
272 						    "Pulse error, len=%d\n",
273 						    len);
274 					goto error_code;
275 				}
276 				last = 0;
277 				len = (val & PERIOD_MASK) + 1;
278 			}
279 		} else {
280 			if (val & VAL_MASK) {
281 				if (len > AW_IR_DMAX) {
282 					if (bootverbose)
283 						device_printf(sc->dev,
284 						    "Distance error, len=%d\n",
285 						    len);
286 					goto error_code;
287 				} else {
288 					if (len > AW_IR_DMID) {
289 						/* Decode */
290 						code |= 1 << bitcount;
291 					}
292 					bitcount++;
293 					if (bitcount == 32)
294 						break;  /* Finish decoding */
295 				}
296 				last = 1;
297 				len = (val & PERIOD_MASK) + 1;
298 			} else
299 				len += (val & PERIOD_MASK) + 1;
300 		}
301 	}
302 	return (code);
303 
304 error_code:
305 
306 	return (AW_IR_ERROR_CODE);
307 }
308 
309 static int
310 aw_ir_validate_code(unsigned long code)
311 {
312 	unsigned long v1, v2;
313 
314 	/* Don't check address */
315 	v1 = code & CODE_MASK;
316 	v2 = (code & INV_CODE_MASK) >> 8;
317 
318 	if (((v1 ^ v2) & VALID_CODE_MASK) == VALID_CODE_MASK)
319 		return (0);	/* valid */
320 	else
321 		return (1);	/* invalid */
322 }
323 
324 static void
325 aw_ir_intr(void *arg)
326 {
327 	struct aw_ir_softc *sc;
328 	uint32_t val;
329 	int i, dcnt;
330 	unsigned long ir_code;
331 	int stat;
332 
333 	sc = (struct aw_ir_softc *)arg;
334 
335 	/* Read RX interrupt status */
336 	val = READ(sc, AW_IR_RXSTA);
337 	if (bootverbose && __predict_false(aw_cir_debug) != 0)
338 		device_printf(sc->dev, "RX interrupt status: %x\n", val);
339 
340 	/* Clean all pending interrupt statuses */
341 	WRITE(sc, AW_IR_RXSTA, val | AW_IR_RXSTA_CLEARALL);
342 
343 	/* When Rx FIFO Data available or Packet end */
344 	if (val & (AW_IR_RXINT_RAI_EN | AW_IR_RXINT_RPEI_EN)) {
345 		if (bootverbose && __predict_false(aw_cir_debug) != 0)
346 			device_printf(sc->dev,
347 			    "RX FIFO Data available or Packet end\n");
348 		/* Get available message count in RX FIFO */
349 		dcnt  = AW_IR_RXSTA_COUNTER(val);
350 		/* Read FIFO */
351 		for (i = 0; i < dcnt; i++) {
352 			if (aw_ir_buf_full(sc)) {
353 				if (bootverbose)
354 					device_printf(sc->dev,
355 					    "raw buffer full\n");
356 				break;
357 			} else
358 				aw_ir_buf_write(sc, aw_ir_read_data(sc));
359 		}
360 	}
361 
362 	if (val & AW_IR_RXINT_RPEI_EN) {
363 		/* RX Packet end */
364 		if (bootverbose && __predict_false(aw_cir_debug) != 0)
365 			device_printf(sc->dev, "RX Packet end\n");
366 		ir_code = aw_ir_decode_packets(sc);
367 		stat = aw_ir_validate_code(ir_code);
368 		if (stat == 0) {
369 			evdev_push_event(sc->sc_evdev,
370 			    EV_MSC, MSC_SCAN, ir_code);
371 			evdev_sync(sc->sc_evdev);
372 		}
373 		if (bootverbose && __predict_false(aw_cir_debug) != 0) {
374 			device_printf(sc->dev, "Final IR code: %lx\n",
375 			    ir_code);
376 			device_printf(sc->dev, "IR code status: %d\n",
377 			    stat);
378 		}
379 		aw_ir_buf_reset(sc);
380 	}
381 	if (val & AW_IR_RXINT_ROI_EN) {
382 		/* RX FIFO overflow */
383 		if (bootverbose)
384 			device_printf(sc->dev, "RX FIFO overflow\n");
385 		/* Flush raw buffer */
386 		aw_ir_buf_reset(sc);
387 	}
388 }
389 
390 static int
391 aw_ir_probe(device_t dev)
392 {
393 
394 	if (!ofw_bus_status_okay(dev))
395 		return (ENXIO);
396 
397 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
398 		return (ENXIO);
399 
400 	device_set_desc(dev, "Allwinner CIR controller");
401 	return (BUS_PROBE_DEFAULT);
402 }
403 
404 static int
405 aw_ir_attach(device_t dev)
406 {
407 	struct aw_ir_softc *sc;
408 	hwreset_t rst_apb;
409 	clk_t clk_ir, clk_gate;
410 	int err;
411 	uint32_t val = 0;
412 
413 	clk_ir = clk_gate = NULL;
414 	rst_apb = NULL;
415 
416 	sc = device_get_softc(dev);
417 	sc->dev = dev;
418 
419 	if (bus_alloc_resources(dev, aw_ir_spec, sc->res) != 0) {
420 		device_printf(dev, "could not allocate memory resource\n");
421 		return (ENXIO);
422 	}
423 
424 	switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
425 	case A10_IR:
426 		sc->fifo_size = 16;
427 		break;
428 	case A13_IR:
429 	case A31_IR:
430 		sc->fifo_size = 64;
431 		break;
432 	}
433 
434 	/* De-assert reset */
435 	if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst_apb) == 0) {
436 		err = hwreset_deassert(rst_apb);
437 		if (err != 0) {
438 			device_printf(dev, "cannot de-assert reset\n");
439 			goto error;
440 		}
441 	}
442 
443 	/* Reset buffer */
444 	aw_ir_buf_reset(sc);
445 
446 	/* Get clocks and enable them */
447 	err = clk_get_by_ofw_name(dev, 0, "apb", &clk_gate);
448 	if (err != 0) {
449 		device_printf(dev, "Cannot get gate clock\n");
450 		goto error;
451 	}
452 	err = clk_get_by_ofw_name(dev, 0, "ir", &clk_ir);
453 	if (err != 0) {
454 		device_printf(dev, "Cannot get IR clock\n");
455 		goto error;
456 	}
457 	/* Set clock rate */
458 	err = clk_set_freq(clk_ir, AW_IR_BASE_CLK, 0);
459 	if (err != 0) {
460 		device_printf(dev, "cannot set IR clock rate\n");
461 		goto error;
462 	}
463 	/* Enable clocks */
464 	err = clk_enable(clk_gate);
465 	if (err != 0) {
466 		device_printf(dev, "Cannot enable clk gate\n");
467 		goto error;
468 	}
469 	err = clk_enable(clk_ir);
470 	if (err != 0) {
471 		device_printf(dev, "Cannot enable IR clock\n");
472 		goto error;
473 	}
474 
475 	if (bus_setup_intr(dev, sc->res[1],
476 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, aw_ir_intr, sc,
477 	    &sc->intrhand)) {
478 		bus_release_resources(dev, aw_ir_spec, sc->res);
479 		device_printf(dev, "cannot setup interrupt handler\n");
480 		err = ENXIO;
481 		goto error;
482 	}
483 
484 	/* Enable CIR Mode */
485 	WRITE(sc, AW_IR_CTL, AW_IR_CTL_MD);
486 
487 	/*
488 	 * Set clock sample, filter, idle thresholds.
489 	 * Frequency sample = 3MHz/128 = 23437.5Hz (42.7us)
490 	 */
491 	val = AW_IR_SAMPLE_128;
492 	val |= (AW_IR_RXFILT_VAL | AW_IR_RXIDLE_VAL);
493 	val |= (AW_IR_ACTIVE_T | AW_IR_ACTIVE_T_C);
494 	WRITE(sc, AW_IR_CIR, val);
495 
496 	/* Invert Input Signal */
497 	WRITE(sc, AW_IR_RXCTL, AW_IR_RXCTL_RPPI);
498 
499 	/* Clear All RX Interrupt Status */
500 	WRITE(sc, AW_IR_RXSTA, AW_IR_RXSTA_CLEARALL);
501 
502 	/*
503 	 * Enable RX interrupt in case of overflow, packet end
504 	 * and FIFO available.
505 	 * RX FIFO Threshold = FIFO size / 2
506 	 */
507 	WRITE(sc, AW_IR_RXINT, AW_IR_RXINT_ROI_EN | AW_IR_RXINT_RPEI_EN |
508 	    AW_IR_RXINT_RAI_EN | AW_IR_RXINT_RAL((sc->fifo_size >> 1) - 1));
509 
510 	/* Enable IR Module */
511 	val = READ(sc, AW_IR_CTL);
512 	WRITE(sc, AW_IR_CTL, val | AW_IR_CTL_GEN | AW_IR_CTL_RXEN);
513 
514 	sc->sc_evdev = evdev_alloc();
515 	evdev_set_name(sc->sc_evdev, device_get_desc(sc->dev));
516 	evdev_set_phys(sc->sc_evdev, device_get_nameunit(sc->dev));
517 	evdev_set_id(sc->sc_evdev, BUS_HOST, 0, 0, 0);
518 	evdev_support_event(sc->sc_evdev, EV_SYN);
519 	evdev_support_event(sc->sc_evdev, EV_MSC);
520 	evdev_support_msc(sc->sc_evdev, MSC_SCAN);
521 
522 	err = evdev_register(sc->sc_evdev);
523 	if (err) {
524 		device_printf(dev,
525 		    "failed to register evdev: error=%d\n", err);
526 		goto error;
527 	}
528 
529 	return (0);
530 error:
531 	if (clk_gate != NULL)
532 		clk_release(clk_gate);
533 	if (clk_ir != NULL)
534 		clk_release(clk_ir);
535 	if (rst_apb != NULL)
536 		hwreset_release(rst_apb);
537 	evdev_free(sc->sc_evdev);
538 	sc->sc_evdev = NULL;	/* Avoid double free */
539 
540 	bus_release_resources(dev, aw_ir_spec, sc->res);
541 	return (ENXIO);
542 }
543 
544 static device_method_t aw_ir_methods[] = {
545 	DEVMETHOD(device_probe, aw_ir_probe),
546 	DEVMETHOD(device_attach, aw_ir_attach),
547 
548 	DEVMETHOD_END
549 };
550 
551 static driver_t aw_ir_driver = {
552 	"aw_ir",
553 	aw_ir_methods,
554 	sizeof(struct aw_ir_softc),
555 };
556 
557 DRIVER_MODULE(aw_ir, simplebus, aw_ir_driver, 0, 0);
558 MODULE_DEPEND(aw_ir, evdev, 1, 1, 1);
559