xref: /freebsd/sys/amd64/vmm/x86.c (revision 0dbdecfd4f23486da21345fe446a28a1c27db3f2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/pcpu.h>
36 #include <sys/systm.h>
37 #include <sys/sysctl.h>
38 
39 #include <machine/clock.h>
40 #include <machine/cpufunc.h>
41 #include <machine/md_var.h>
42 #include <machine/segments.h>
43 #include <machine/specialreg.h>
44 
45 #include <machine/vmm.h>
46 
47 #include "vmm_host.h"
48 #include "vmm_ktr.h"
49 #include "vmm_util.h"
50 #include "x86.h"
51 
52 SYSCTL_DECL(_hw_vmm);
53 static SYSCTL_NODE(_hw_vmm, OID_AUTO, topology, CTLFLAG_RD, 0, NULL);
54 
55 #define	CPUID_VM_HIGH		0x40000000
56 
57 static const char bhyve_id[12] = "bhyve bhyve ";
58 
59 static uint64_t bhyve_xcpuids;
60 SYSCTL_ULONG(_hw_vmm, OID_AUTO, bhyve_xcpuids, CTLFLAG_RW, &bhyve_xcpuids, 0,
61     "Number of times an unknown cpuid leaf was accessed");
62 
63 #if __FreeBSD_version < 1200060	/* Remove after 11 EOL helps MFCing */
64 extern u_int threads_per_core;
65 SYSCTL_UINT(_hw_vmm_topology, OID_AUTO, threads_per_core, CTLFLAG_RDTUN,
66     &threads_per_core, 0, NULL);
67 
68 extern u_int cores_per_package;
69 SYSCTL_UINT(_hw_vmm_topology, OID_AUTO, cores_per_package, CTLFLAG_RDTUN,
70     &cores_per_package, 0, NULL);
71 #endif
72 
73 static int cpuid_leaf_b = 1;
74 SYSCTL_INT(_hw_vmm_topology, OID_AUTO, cpuid_leaf_b, CTLFLAG_RDTUN,
75     &cpuid_leaf_b, 0, NULL);
76 
77 /*
78  * Round up to the next power of two, if necessary, and then take log2.
79  * Returns -1 if argument is zero.
80  */
81 static __inline int
82 log2(u_int x)
83 {
84 
85 	return (fls(x << (1 - powerof2(x))) - 1);
86 }
87 
88 int
89 x86_emulate_cpuid(struct vm *vm, int vcpu_id,
90 		  uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
91 {
92 	const struct xsave_limits *limits;
93 	uint64_t cr4;
94 	int error, enable_invpcid, level, width, x2apic_id;
95 	unsigned int func, regs[4], logical_cpus;
96 	enum x2apic_state x2apic_state;
97 	uint16_t cores, maxcpus, sockets, threads;
98 
99 	VCPU_CTR2(vm, vcpu_id, "cpuid %#x,%#x", *eax, *ecx);
100 
101 	/*
102 	 * Requests for invalid CPUID levels should map to the highest
103 	 * available level instead.
104 	 */
105 	if (cpu_exthigh != 0 && *eax >= 0x80000000) {
106 		if (*eax > cpu_exthigh)
107 			*eax = cpu_exthigh;
108 	} else if (*eax >= 0x40000000) {
109 		if (*eax > CPUID_VM_HIGH)
110 			*eax = CPUID_VM_HIGH;
111 	} else if (*eax > cpu_high) {
112 		*eax = cpu_high;
113 	}
114 
115 	func = *eax;
116 
117 	/*
118 	 * In general the approach used for CPU topology is to
119 	 * advertise a flat topology where all CPUs are packages with
120 	 * no multi-core or SMT.
121 	 */
122 	switch (func) {
123 		/*
124 		 * Pass these through to the guest
125 		 */
126 		case CPUID_0000_0000:
127 		case CPUID_0000_0002:
128 		case CPUID_0000_0003:
129 		case CPUID_8000_0000:
130 		case CPUID_8000_0002:
131 		case CPUID_8000_0003:
132 		case CPUID_8000_0004:
133 		case CPUID_8000_0006:
134 			cpuid_count(*eax, *ecx, regs);
135 			break;
136 		case CPUID_8000_0008:
137 			cpuid_count(*eax, *ecx, regs);
138 			if (vmm_is_amd()) {
139 				/*
140 				 * XXX this might appear silly because AMD
141 				 * cpus don't have threads.
142 				 *
143 				 * However this matches the logical cpus as
144 				 * advertised by leaf 0x1 and will work even
145 				 * if threads is set incorrectly on an AMD host.
146 				 */
147 				vm_get_topology(vm, &sockets, &cores, &threads,
148 				    &maxcpus);
149 				logical_cpus = threads * cores;
150 				regs[2] = logical_cpus - 1;
151 			}
152 			break;
153 
154 		case CPUID_8000_0001:
155 			cpuid_count(*eax, *ecx, regs);
156 
157 			/*
158 			 * Hide SVM and Topology Extension features from guest.
159 			 */
160 			regs[2] &= ~(AMDID2_SVM | AMDID2_TOPOLOGY);
161 
162 			/*
163 			 * Don't advertise extended performance counter MSRs
164 			 * to the guest.
165 			 */
166 			regs[2] &= ~AMDID2_PCXC;
167 			regs[2] &= ~AMDID2_PNXC;
168 			regs[2] &= ~AMDID2_PTSCEL2I;
169 
170 			/*
171 			 * Don't advertise Instruction Based Sampling feature.
172 			 */
173 			regs[2] &= ~AMDID2_IBS;
174 
175 			/* NodeID MSR not available */
176 			regs[2] &= ~AMDID2_NODE_ID;
177 
178 			/* Don't advertise the OS visible workaround feature */
179 			regs[2] &= ~AMDID2_OSVW;
180 
181 			/* Hide mwaitx/monitorx capability from the guest */
182 			regs[2] &= ~AMDID2_MWAITX;
183 
184 			/*
185 			 * Hide rdtscp/ia32_tsc_aux until we know how
186 			 * to deal with them.
187 			 */
188 			regs[3] &= ~AMDID_RDTSCP;
189 			break;
190 
191 		case CPUID_8000_0007:
192 			/*
193 			 * AMD uses this leaf to advertise the processor's
194 			 * power monitoring and RAS capabilities. These
195 			 * features are hardware-specific and exposing
196 			 * them to a guest doesn't make a lot of sense.
197 			 *
198 			 * Intel uses this leaf only to advertise the
199 			 * "Invariant TSC" feature with all other bits
200 			 * being reserved (set to zero).
201 			 */
202 			regs[0] = 0;
203 			regs[1] = 0;
204 			regs[2] = 0;
205 			regs[3] = 0;
206 
207 			/*
208 			 * "Invariant TSC" can be advertised to the guest if:
209 			 * - host TSC frequency is invariant
210 			 * - host TSCs are synchronized across physical cpus
211 			 *
212 			 * XXX This still falls short because the vcpu
213 			 * can observe the TSC moving backwards as it
214 			 * migrates across physical cpus. But at least
215 			 * it should discourage the guest from using the
216 			 * TSC to keep track of time.
217 			 */
218 			if (tsc_is_invariant && smp_tsc)
219 				regs[3] |= AMDPM_TSC_INVARIANT;
220 			break;
221 
222 		case CPUID_0000_0001:
223 			do_cpuid(1, regs);
224 
225 			error = vm_get_x2apic_state(vm, vcpu_id, &x2apic_state);
226 			if (error) {
227 				panic("x86_emulate_cpuid: error %d "
228 				      "fetching x2apic state", error);
229 			}
230 
231 			/*
232 			 * Override the APIC ID only in ebx
233 			 */
234 			regs[1] &= ~(CPUID_LOCAL_APIC_ID);
235 			regs[1] |= (vcpu_id << CPUID_0000_0001_APICID_SHIFT);
236 
237 			/*
238 			 * Don't expose VMX, SpeedStep, TME or SMX capability.
239 			 * Advertise x2APIC capability and Hypervisor guest.
240 			 */
241 			regs[2] &= ~(CPUID2_VMX | CPUID2_EST | CPUID2_TM2);
242 			regs[2] &= ~(CPUID2_SMX);
243 
244 			regs[2] |= CPUID2_HV;
245 
246 			if (x2apic_state != X2APIC_DISABLED)
247 				regs[2] |= CPUID2_X2APIC;
248 			else
249 				regs[2] &= ~CPUID2_X2APIC;
250 
251 			/*
252 			 * Only advertise CPUID2_XSAVE in the guest if
253 			 * the host is using XSAVE.
254 			 */
255 			if (!(regs[2] & CPUID2_OSXSAVE))
256 				regs[2] &= ~CPUID2_XSAVE;
257 
258 			/*
259 			 * If CPUID2_XSAVE is being advertised and the
260 			 * guest has set CR4_XSAVE, set
261 			 * CPUID2_OSXSAVE.
262 			 */
263 			regs[2] &= ~CPUID2_OSXSAVE;
264 			if (regs[2] & CPUID2_XSAVE) {
265 				error = vm_get_register(vm, vcpu_id,
266 				    VM_REG_GUEST_CR4, &cr4);
267 				if (error)
268 					panic("x86_emulate_cpuid: error %d "
269 					      "fetching %%cr4", error);
270 				if (cr4 & CR4_XSAVE)
271 					regs[2] |= CPUID2_OSXSAVE;
272 			}
273 
274 			/*
275 			 * Hide monitor/mwait until we know how to deal with
276 			 * these instructions.
277 			 */
278 			regs[2] &= ~CPUID2_MON;
279 
280                         /*
281 			 * Hide the performance and debug features.
282 			 */
283 			regs[2] &= ~CPUID2_PDCM;
284 
285 			/*
286 			 * No TSC deadline support in the APIC yet
287 			 */
288 			regs[2] &= ~CPUID2_TSCDLT;
289 
290 			/*
291 			 * Hide thermal monitoring
292 			 */
293 			regs[3] &= ~(CPUID_ACPI | CPUID_TM);
294 
295 			/*
296 			 * Hide the debug store capability.
297 			 */
298 			regs[3] &= ~CPUID_DS;
299 
300 			/*
301 			 * Advertise the Machine Check and MTRR capability.
302 			 *
303 			 * Some guest OSes (e.g. Windows) will not boot if
304 			 * these features are absent.
305 			 */
306 			regs[3] |= (CPUID_MCA | CPUID_MCE | CPUID_MTRR);
307 
308 			vm_get_topology(vm, &sockets, &cores, &threads,
309 			    &maxcpus);
310 			logical_cpus = threads * cores;
311 			regs[1] &= ~CPUID_HTT_CORES;
312 			regs[1] |= (logical_cpus & 0xff) << 16;
313 			regs[3] |= CPUID_HTT;
314 			break;
315 
316 		case CPUID_0000_0004:
317 			cpuid_count(*eax, *ecx, regs);
318 
319 			if (regs[0] || regs[1] || regs[2] || regs[3]) {
320 				vm_get_topology(vm, &sockets, &cores, &threads,
321 				    &maxcpus);
322 				regs[0] &= 0x3ff;
323 				regs[0] |= (cores - 1) << 26;
324 				/*
325 				 * Cache topology:
326 				 * - L1 and L2 are shared only by the logical
327 				 *   processors in a single core.
328 				 * - L3 and above are shared by all logical
329 				 *   processors in the package.
330 				 */
331 				logical_cpus = threads;
332 				level = (regs[0] >> 5) & 0x7;
333 				if (level >= 3)
334 					logical_cpus *= cores;
335 				regs[0] |= (logical_cpus - 1) << 14;
336 			}
337 			break;
338 
339 		case CPUID_0000_0007:
340 			regs[0] = 0;
341 			regs[1] = 0;
342 			regs[2] = 0;
343 			regs[3] = 0;
344 
345 			/* leaf 0 */
346 			if (*ecx == 0) {
347 				cpuid_count(*eax, *ecx, regs);
348 
349 				/* Only leaf 0 is supported */
350 				regs[0] = 0;
351 
352 				/*
353 				 * Expose known-safe features.
354 				 */
355 				regs[1] &= (CPUID_STDEXT_FSGSBASE |
356 				    CPUID_STDEXT_BMI1 | CPUID_STDEXT_HLE |
357 				    CPUID_STDEXT_AVX2 | CPUID_STDEXT_BMI2 |
358 				    CPUID_STDEXT_ERMS | CPUID_STDEXT_RTM |
359 				    CPUID_STDEXT_AVX512F |
360 				    CPUID_STDEXT_AVX512PF |
361 				    CPUID_STDEXT_AVX512ER |
362 				    CPUID_STDEXT_AVX512CD);
363 				regs[2] = 0;
364 				regs[3] = 0;
365 
366 				/* Advertise INVPCID if it is enabled. */
367 				error = vm_get_capability(vm, vcpu_id,
368 				    VM_CAP_ENABLE_INVPCID, &enable_invpcid);
369 				if (error == 0 && enable_invpcid)
370 					regs[1] |= CPUID_STDEXT_INVPCID;
371 			}
372 			break;
373 
374 		case CPUID_0000_0006:
375 			regs[0] = CPUTPM1_ARAT;
376 			regs[1] = 0;
377 			regs[2] = 0;
378 			regs[3] = 0;
379 			break;
380 
381 		case CPUID_0000_000A:
382 			/*
383 			 * Handle the access, but report 0 for
384 			 * all options
385 			 */
386 			regs[0] = 0;
387 			regs[1] = 0;
388 			regs[2] = 0;
389 			regs[3] = 0;
390 			break;
391 
392 		case CPUID_0000_000B:
393 			/*
394 			 * Processor topology enumeration
395 			 */
396 			vm_get_topology(vm, &sockets, &cores, &threads,
397 			    &maxcpus);
398 			if (*ecx == 0) {
399 				logical_cpus = threads;
400 				width = log2(logical_cpus);
401 				level = CPUID_TYPE_SMT;
402 				x2apic_id = vcpu_id;
403 			}
404 
405 			if (*ecx == 1) {
406 				logical_cpus = threads * cores;
407 				width = log2(logical_cpus);
408 				level = CPUID_TYPE_CORE;
409 				x2apic_id = vcpu_id;
410 			}
411 
412 			if (!cpuid_leaf_b || *ecx >= 2) {
413 				width = 0;
414 				logical_cpus = 0;
415 				level = 0;
416 				x2apic_id = 0;
417 			}
418 
419 			regs[0] = width & 0x1f;
420 			regs[1] = logical_cpus & 0xffff;
421 			regs[2] = (level << 8) | (*ecx & 0xff);
422 			regs[3] = x2apic_id;
423 			break;
424 
425 		case CPUID_0000_000D:
426 			limits = vmm_get_xsave_limits();
427 			if (!limits->xsave_enabled) {
428 				regs[0] = 0;
429 				regs[1] = 0;
430 				regs[2] = 0;
431 				regs[3] = 0;
432 				break;
433 			}
434 
435 			cpuid_count(*eax, *ecx, regs);
436 			switch (*ecx) {
437 			case 0:
438 				/*
439 				 * Only permit the guest to use bits
440 				 * that are active in the host in
441 				 * %xcr0.  Also, claim that the
442 				 * maximum save area size is
443 				 * equivalent to the host's current
444 				 * save area size.  Since this runs
445 				 * "inside" of vmrun(), it runs with
446 				 * the guest's xcr0, so the current
447 				 * save area size is correct as-is.
448 				 */
449 				regs[0] &= limits->xcr0_allowed;
450 				regs[2] = limits->xsave_max_size;
451 				regs[3] &= (limits->xcr0_allowed >> 32);
452 				break;
453 			case 1:
454 				/* Only permit XSAVEOPT. */
455 				regs[0] &= CPUID_EXTSTATE_XSAVEOPT;
456 				regs[1] = 0;
457 				regs[2] = 0;
458 				regs[3] = 0;
459 				break;
460 			default:
461 				/*
462 				 * If the leaf is for a permitted feature,
463 				 * pass through as-is, otherwise return
464 				 * all zeroes.
465 				 */
466 				if (!(limits->xcr0_allowed & (1ul << *ecx))) {
467 					regs[0] = 0;
468 					regs[1] = 0;
469 					regs[2] = 0;
470 					regs[3] = 0;
471 				}
472 				break;
473 			}
474 			break;
475 
476 		case 0x40000000:
477 			regs[0] = CPUID_VM_HIGH;
478 			bcopy(bhyve_id, &regs[1], 4);
479 			bcopy(bhyve_id + 4, &regs[2], 4);
480 			bcopy(bhyve_id + 8, &regs[3], 4);
481 			break;
482 
483 		default:
484 			/*
485 			 * The leaf value has already been clamped so
486 			 * simply pass this through, keeping count of
487 			 * how many unhandled leaf values have been seen.
488 			 */
489 			atomic_add_long(&bhyve_xcpuids, 1);
490 			cpuid_count(*eax, *ecx, regs);
491 			break;
492 	}
493 
494 	*eax = regs[0];
495 	*ebx = regs[1];
496 	*ecx = regs[2];
497 	*edx = regs[3];
498 
499 	return (1);
500 }
501 
502 bool
503 vm_cpuid_capability(struct vm *vm, int vcpuid, enum vm_cpuid_capability cap)
504 {
505 	bool rv;
506 
507 	KASSERT(cap > 0 && cap < VCC_LAST, ("%s: invalid vm_cpu_capability %d",
508 	    __func__, cap));
509 
510 	/*
511 	 * Simply passthrough the capabilities of the host cpu for now.
512 	 */
513 	rv = false;
514 	switch (cap) {
515 	case VCC_NO_EXECUTE:
516 		if (amd_feature & AMDID_NX)
517 			rv = true;
518 		break;
519 	case VCC_FFXSR:
520 		if (amd_feature & AMDID_FFXSR)
521 			rv = true;
522 		break;
523 	case VCC_TCE:
524 		if (amd_feature2 & AMDID2_TCE)
525 			rv = true;
526 		break;
527 	default:
528 		panic("%s: unknown vm_cpu_capability %d", __func__, cap);
529 	}
530 	return (rv);
531 }
532