xref: /freebsd/sys/amd64/vmm/vmm_instruction_emul.c (revision fcb560670601b2a4d87bb31d7531c8dcc37ee71b)
1 /*-
2  * Copyright (c) 2012 Sandvine, Inc.
3  * Copyright (c) 2012 NetApp, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #ifdef _KERNEL
34 #include <sys/param.h>
35 #include <sys/pcpu.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 
39 #include <vm/vm.h>
40 #include <vm/pmap.h>
41 
42 #include <machine/vmparam.h>
43 #include <machine/vmm.h>
44 #else	/* !_KERNEL */
45 #include <sys/types.h>
46 #include <sys/errno.h>
47 #include <sys/_iovec.h>
48 
49 #include <machine/vmm.h>
50 
51 #include <assert.h>
52 #include <vmmapi.h>
53 #define	KASSERT(exp,msg)	assert((exp))
54 #endif	/* _KERNEL */
55 
56 #include <machine/vmm_instruction_emul.h>
57 #include <x86/psl.h>
58 #include <x86/specialreg.h>
59 
60 /* struct vie_op.op_type */
61 enum {
62 	VIE_OP_TYPE_NONE = 0,
63 	VIE_OP_TYPE_MOV,
64 	VIE_OP_TYPE_MOVSX,
65 	VIE_OP_TYPE_MOVZX,
66 	VIE_OP_TYPE_AND,
67 	VIE_OP_TYPE_OR,
68 	VIE_OP_TYPE_SUB,
69 	VIE_OP_TYPE_TWO_BYTE,
70 	VIE_OP_TYPE_PUSH,
71 	VIE_OP_TYPE_CMP,
72 	VIE_OP_TYPE_POP,
73 	VIE_OP_TYPE_MOVS,
74 	VIE_OP_TYPE_LAST
75 };
76 
77 /* struct vie_op.op_flags */
78 #define	VIE_OP_F_IMM		(1 << 0)  /* 16/32-bit immediate operand */
79 #define	VIE_OP_F_IMM8		(1 << 1)  /* 8-bit immediate operand */
80 #define	VIE_OP_F_MOFFSET	(1 << 2)  /* 16/32/64-bit immediate moffset */
81 #define	VIE_OP_F_NO_MODRM	(1 << 3)
82 #define	VIE_OP_F_NO_GLA_VERIFICATION (1 << 4)
83 
84 static const struct vie_op two_byte_opcodes[256] = {
85 	[0xB6] = {
86 		.op_byte = 0xB6,
87 		.op_type = VIE_OP_TYPE_MOVZX,
88 	},
89 	[0xB7] = {
90 		.op_byte = 0xB7,
91 		.op_type = VIE_OP_TYPE_MOVZX,
92 	},
93 	[0xBE] = {
94 		.op_byte = 0xBE,
95 		.op_type = VIE_OP_TYPE_MOVSX,
96 	},
97 };
98 
99 static const struct vie_op one_byte_opcodes[256] = {
100 	[0x0F] = {
101 		.op_byte = 0x0F,
102 		.op_type = VIE_OP_TYPE_TWO_BYTE
103 	},
104 	[0x2B] = {
105 		.op_byte = 0x2B,
106 		.op_type = VIE_OP_TYPE_SUB,
107 	},
108 	[0x3B] = {
109 		.op_byte = 0x3B,
110 		.op_type = VIE_OP_TYPE_CMP,
111 	},
112 	[0x88] = {
113 		.op_byte = 0x88,
114 		.op_type = VIE_OP_TYPE_MOV,
115 	},
116 	[0x89] = {
117 		.op_byte = 0x89,
118 		.op_type = VIE_OP_TYPE_MOV,
119 	},
120 	[0x8A] = {
121 		.op_byte = 0x8A,
122 		.op_type = VIE_OP_TYPE_MOV,
123 	},
124 	[0x8B] = {
125 		.op_byte = 0x8B,
126 		.op_type = VIE_OP_TYPE_MOV,
127 	},
128 	[0xA1] = {
129 		.op_byte = 0xA1,
130 		.op_type = VIE_OP_TYPE_MOV,
131 		.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
132 	},
133 	[0xA3] = {
134 		.op_byte = 0xA3,
135 		.op_type = VIE_OP_TYPE_MOV,
136 		.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
137 	},
138 	[0xA4] = {
139 		.op_byte = 0xA4,
140 		.op_type = VIE_OP_TYPE_MOVS,
141 		.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
142 	},
143 	[0xA5] = {
144 		.op_byte = 0xA5,
145 		.op_type = VIE_OP_TYPE_MOVS,
146 		.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
147 	},
148 	[0xC6] = {
149 		/* XXX Group 11 extended opcode - not just MOV */
150 		.op_byte = 0xC6,
151 		.op_type = VIE_OP_TYPE_MOV,
152 		.op_flags = VIE_OP_F_IMM8,
153 	},
154 	[0xC7] = {
155 		.op_byte = 0xC7,
156 		.op_type = VIE_OP_TYPE_MOV,
157 		.op_flags = VIE_OP_F_IMM,
158 	},
159 	[0x23] = {
160 		.op_byte = 0x23,
161 		.op_type = VIE_OP_TYPE_AND,
162 	},
163 	[0x81] = {
164 		/* XXX Group 1 extended opcode - not just AND */
165 		.op_byte = 0x81,
166 		.op_type = VIE_OP_TYPE_AND,
167 		.op_flags = VIE_OP_F_IMM,
168 	},
169 	[0x83] = {
170 		/* XXX Group 1 extended opcode - not just OR */
171 		.op_byte = 0x83,
172 		.op_type = VIE_OP_TYPE_OR,
173 		.op_flags = VIE_OP_F_IMM8,
174 	},
175 	[0x8F] = {
176 		/* XXX Group 1A extended opcode - not just POP */
177 		.op_byte = 0x8F,
178 		.op_type = VIE_OP_TYPE_POP,
179 	},
180 	[0xFF] = {
181 		/* XXX Group 5 extended opcode - not just PUSH */
182 		.op_byte = 0xFF,
183 		.op_type = VIE_OP_TYPE_PUSH,
184 	}
185 };
186 
187 /* struct vie.mod */
188 #define	VIE_MOD_INDIRECT		0
189 #define	VIE_MOD_INDIRECT_DISP8		1
190 #define	VIE_MOD_INDIRECT_DISP32		2
191 #define	VIE_MOD_DIRECT			3
192 
193 /* struct vie.rm */
194 #define	VIE_RM_SIB			4
195 #define	VIE_RM_DISP32			5
196 
197 #define	GB				(1024 * 1024 * 1024)
198 
199 static enum vm_reg_name gpr_map[16] = {
200 	VM_REG_GUEST_RAX,
201 	VM_REG_GUEST_RCX,
202 	VM_REG_GUEST_RDX,
203 	VM_REG_GUEST_RBX,
204 	VM_REG_GUEST_RSP,
205 	VM_REG_GUEST_RBP,
206 	VM_REG_GUEST_RSI,
207 	VM_REG_GUEST_RDI,
208 	VM_REG_GUEST_R8,
209 	VM_REG_GUEST_R9,
210 	VM_REG_GUEST_R10,
211 	VM_REG_GUEST_R11,
212 	VM_REG_GUEST_R12,
213 	VM_REG_GUEST_R13,
214 	VM_REG_GUEST_R14,
215 	VM_REG_GUEST_R15
216 };
217 
218 static uint64_t size2mask[] = {
219 	[1] = 0xff,
220 	[2] = 0xffff,
221 	[4] = 0xffffffff,
222 	[8] = 0xffffffffffffffff,
223 };
224 
225 static int
226 vie_read_register(void *vm, int vcpuid, enum vm_reg_name reg, uint64_t *rval)
227 {
228 	int error;
229 
230 	error = vm_get_register(vm, vcpuid, reg, rval);
231 
232 	return (error);
233 }
234 
235 static void
236 vie_calc_bytereg(struct vie *vie, enum vm_reg_name *reg, int *lhbr)
237 {
238 	*lhbr = 0;
239 	*reg = gpr_map[vie->reg];
240 
241 	/*
242 	 * 64-bit mode imposes limitations on accessing legacy high byte
243 	 * registers (lhbr).
244 	 *
245 	 * The legacy high-byte registers cannot be addressed if the REX
246 	 * prefix is present. In this case the values 4, 5, 6 and 7 of the
247 	 * 'ModRM:reg' field address %spl, %bpl, %sil and %dil respectively.
248 	 *
249 	 * If the REX prefix is not present then the values 4, 5, 6 and 7
250 	 * of the 'ModRM:reg' field address the legacy high-byte registers,
251 	 * %ah, %ch, %dh and %bh respectively.
252 	 */
253 	if (!vie->rex_present) {
254 		if (vie->reg & 0x4) {
255 			*lhbr = 1;
256 			*reg = gpr_map[vie->reg & 0x3];
257 		}
258 	}
259 }
260 
261 static int
262 vie_read_bytereg(void *vm, int vcpuid, struct vie *vie, uint8_t *rval)
263 {
264 	uint64_t val;
265 	int error, lhbr;
266 	enum vm_reg_name reg;
267 
268 	vie_calc_bytereg(vie, &reg, &lhbr);
269 	error = vm_get_register(vm, vcpuid, reg, &val);
270 
271 	/*
272 	 * To obtain the value of a legacy high byte register shift the
273 	 * base register right by 8 bits (%ah = %rax >> 8).
274 	 */
275 	if (lhbr)
276 		*rval = val >> 8;
277 	else
278 		*rval = val;
279 	return (error);
280 }
281 
282 static int
283 vie_write_bytereg(void *vm, int vcpuid, struct vie *vie, uint8_t byte)
284 {
285 	uint64_t origval, val, mask;
286 	int error, lhbr;
287 	enum vm_reg_name reg;
288 
289 	vie_calc_bytereg(vie, &reg, &lhbr);
290 	error = vm_get_register(vm, vcpuid, reg, &origval);
291 	if (error == 0) {
292 		val = byte;
293 		mask = 0xff;
294 		if (lhbr) {
295 			/*
296 			 * Shift left by 8 to store 'byte' in a legacy high
297 			 * byte register.
298 			 */
299 			val <<= 8;
300 			mask <<= 8;
301 		}
302 		val |= origval & ~mask;
303 		error = vm_set_register(vm, vcpuid, reg, val);
304 	}
305 	return (error);
306 }
307 
308 int
309 vie_update_register(void *vm, int vcpuid, enum vm_reg_name reg,
310 		    uint64_t val, int size)
311 {
312 	int error;
313 	uint64_t origval;
314 
315 	switch (size) {
316 	case 1:
317 	case 2:
318 		error = vie_read_register(vm, vcpuid, reg, &origval);
319 		if (error)
320 			return (error);
321 		val &= size2mask[size];
322 		val |= origval & ~size2mask[size];
323 		break;
324 	case 4:
325 		val &= 0xffffffffUL;
326 		break;
327 	case 8:
328 		break;
329 	default:
330 		return (EINVAL);
331 	}
332 
333 	error = vm_set_register(vm, vcpuid, reg, val);
334 	return (error);
335 }
336 
337 #define	RFLAGS_STATUS_BITS    (PSL_C | PSL_PF | PSL_AF | PSL_Z | PSL_N | PSL_V)
338 
339 /*
340  * Return the status flags that would result from doing (x - y).
341  */
342 #define	GETCC(sz)							\
343 static u_long								\
344 getcc##sz(uint##sz##_t x, uint##sz##_t y)				\
345 {									\
346 	u_long rflags;							\
347 									\
348 	__asm __volatile("sub %2,%1; pushfq; popq %0" :			\
349 	    "=r" (rflags), "+r" (x) : "m" (y));				\
350 	return (rflags);						\
351 } struct __hack
352 
353 GETCC(8);
354 GETCC(16);
355 GETCC(32);
356 GETCC(64);
357 
358 static u_long
359 getcc(int opsize, uint64_t x, uint64_t y)
360 {
361 	KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
362 	    ("getcc: invalid operand size %d", opsize));
363 
364 	if (opsize == 1)
365 		return (getcc8(x, y));
366 	else if (opsize == 2)
367 		return (getcc16(x, y));
368 	else if (opsize == 4)
369 		return (getcc32(x, y));
370 	else
371 		return (getcc64(x, y));
372 }
373 
374 static int
375 emulate_mov(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
376 	    mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
377 {
378 	int error, size;
379 	enum vm_reg_name reg;
380 	uint8_t byte;
381 	uint64_t val;
382 
383 	size = vie->opsize;
384 	error = EINVAL;
385 
386 	switch (vie->op.op_byte) {
387 	case 0x88:
388 		/*
389 		 * MOV byte from reg (ModRM:reg) to mem (ModRM:r/m)
390 		 * 88/r:	mov r/m8, r8
391 		 * REX + 88/r:	mov r/m8, r8 (%ah, %ch, %dh, %bh not available)
392 		 */
393 		size = 1;	/* override for byte operation */
394 		error = vie_read_bytereg(vm, vcpuid, vie, &byte);
395 		if (error == 0)
396 			error = memwrite(vm, vcpuid, gpa, byte, size, arg);
397 		break;
398 	case 0x89:
399 		/*
400 		 * MOV from reg (ModRM:reg) to mem (ModRM:r/m)
401 		 * 89/r:	mov r/m16, r16
402 		 * 89/r:	mov r/m32, r32
403 		 * REX.W + 89/r	mov r/m64, r64
404 		 */
405 		reg = gpr_map[vie->reg];
406 		error = vie_read_register(vm, vcpuid, reg, &val);
407 		if (error == 0) {
408 			val &= size2mask[size];
409 			error = memwrite(vm, vcpuid, gpa, val, size, arg);
410 		}
411 		break;
412 	case 0x8A:
413 		/*
414 		 * MOV byte from mem (ModRM:r/m) to reg (ModRM:reg)
415 		 * 8A/r:	mov r8, r/m8
416 		 * REX + 8A/r:	mov r8, r/m8
417 		 */
418 		size = 1;	/* override for byte operation */
419 		error = memread(vm, vcpuid, gpa, &val, size, arg);
420 		if (error == 0)
421 			error = vie_write_bytereg(vm, vcpuid, vie, val);
422 		break;
423 	case 0x8B:
424 		/*
425 		 * MOV from mem (ModRM:r/m) to reg (ModRM:reg)
426 		 * 8B/r:	mov r16, r/m16
427 		 * 8B/r:	mov r32, r/m32
428 		 * REX.W 8B/r:	mov r64, r/m64
429 		 */
430 		error = memread(vm, vcpuid, gpa, &val, size, arg);
431 		if (error == 0) {
432 			reg = gpr_map[vie->reg];
433 			error = vie_update_register(vm, vcpuid, reg, val, size);
434 		}
435 		break;
436 	case 0xA1:
437 		/*
438 		 * MOV from seg:moffset to AX/EAX/RAX
439 		 * A1:		mov AX, moffs16
440 		 * A1:		mov EAX, moffs32
441 		 * REX.W + A1:	mov RAX, moffs64
442 		 */
443 		error = memread(vm, vcpuid, gpa, &val, size, arg);
444 		if (error == 0) {
445 			reg = VM_REG_GUEST_RAX;
446 			error = vie_update_register(vm, vcpuid, reg, val, size);
447 		}
448 		break;
449 	case 0xA3:
450 		/*
451 		 * MOV from AX/EAX/RAX to seg:moffset
452 		 * A3:		mov moffs16, AX
453 		 * A3:		mov moffs32, EAX
454 		 * REX.W + A3:	mov moffs64, RAX
455 		 */
456 		error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RAX, &val);
457 		if (error == 0) {
458 			val &= size2mask[size];
459 			error = memwrite(vm, vcpuid, gpa, val, size, arg);
460 		}
461 		break;
462 	case 0xC6:
463 		/*
464 		 * MOV from imm8 to mem (ModRM:r/m)
465 		 * C6/0		mov r/m8, imm8
466 		 * REX + C6/0	mov r/m8, imm8
467 		 */
468 		size = 1;	/* override for byte operation */
469 		error = memwrite(vm, vcpuid, gpa, vie->immediate, size, arg);
470 		break;
471 	case 0xC7:
472 		/*
473 		 * MOV from imm16/imm32 to mem (ModRM:r/m)
474 		 * C7/0		mov r/m16, imm16
475 		 * C7/0		mov r/m32, imm32
476 		 * REX.W + C7/0	mov r/m64, imm32 (sign-extended to 64-bits)
477 		 */
478 		val = vie->immediate & size2mask[size];
479 		error = memwrite(vm, vcpuid, gpa, val, size, arg);
480 		break;
481 	default:
482 		break;
483 	}
484 
485 	return (error);
486 }
487 
488 static int
489 emulate_movx(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
490 	     mem_region_read_t memread, mem_region_write_t memwrite,
491 	     void *arg)
492 {
493 	int error, size;
494 	enum vm_reg_name reg;
495 	uint64_t val;
496 
497 	size = vie->opsize;
498 	error = EINVAL;
499 
500 	switch (vie->op.op_byte) {
501 	case 0xB6:
502 		/*
503 		 * MOV and zero extend byte from mem (ModRM:r/m) to
504 		 * reg (ModRM:reg).
505 		 *
506 		 * 0F B6/r		movzx r16, r/m8
507 		 * 0F B6/r		movzx r32, r/m8
508 		 * REX.W + 0F B6/r	movzx r64, r/m8
509 		 */
510 
511 		/* get the first operand */
512 		error = memread(vm, vcpuid, gpa, &val, 1, arg);
513 		if (error)
514 			break;
515 
516 		/* get the second operand */
517 		reg = gpr_map[vie->reg];
518 
519 		/* zero-extend byte */
520 		val = (uint8_t)val;
521 
522 		/* write the result */
523 		error = vie_update_register(vm, vcpuid, reg, val, size);
524 		break;
525 	case 0xB7:
526 		/*
527 		 * MOV and zero extend word from mem (ModRM:r/m) to
528 		 * reg (ModRM:reg).
529 		 *
530 		 * 0F B7/r		movzx r32, r/m16
531 		 * REX.W + 0F B7/r	movzx r64, r/m16
532 		 */
533 		error = memread(vm, vcpuid, gpa, &val, 2, arg);
534 		if (error)
535 			return (error);
536 
537 		reg = gpr_map[vie->reg];
538 
539 		/* zero-extend word */
540 		val = (uint16_t)val;
541 
542 		error = vie_update_register(vm, vcpuid, reg, val, size);
543 		break;
544 	case 0xBE:
545 		/*
546 		 * MOV and sign extend byte from mem (ModRM:r/m) to
547 		 * reg (ModRM:reg).
548 		 *
549 		 * 0F BE/r		movsx r16, r/m8
550 		 * 0F BE/r		movsx r32, r/m8
551 		 * REX.W + 0F BE/r	movsx r64, r/m8
552 		 */
553 
554 		/* get the first operand */
555 		error = memread(vm, vcpuid, gpa, &val, 1, arg);
556 		if (error)
557 			break;
558 
559 		/* get the second operand */
560 		reg = gpr_map[vie->reg];
561 
562 		/* sign extend byte */
563 		val = (int8_t)val;
564 
565 		/* write the result */
566 		error = vie_update_register(vm, vcpuid, reg, val, size);
567 		break;
568 	default:
569 		break;
570 	}
571 	return (error);
572 }
573 
574 /*
575  * Helper function to calculate and validate a linear address.
576  *
577  * Returns 0 on success and 1 if an exception was injected into the guest.
578  */
579 static int
580 get_gla(void *vm, int vcpuid, struct vie *vie, struct vm_guest_paging *paging,
581     int opsize, int addrsize, int prot, enum vm_reg_name seg,
582     enum vm_reg_name gpr, uint64_t *gla)
583 {
584 	struct seg_desc desc;
585 	uint64_t cr0, val, rflags;
586 	int error;
587 
588 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_CR0, &cr0);
589 	KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
590 
591 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
592 	KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
593 
594 	error = vm_get_seg_desc(vm, vcpuid, seg, &desc);
595 	KASSERT(error == 0, ("%s: error %d getting segment descriptor %d",
596 	    __func__, error, seg));
597 
598 	error = vie_read_register(vm, vcpuid, gpr, &val);
599 	KASSERT(error == 0, ("%s: error %d getting register %d", __func__,
600 	    error, gpr));
601 
602 	if (vie_calculate_gla(paging->cpu_mode, seg, &desc, val, opsize,
603 	    addrsize, prot, gla)) {
604 		if (seg == VM_REG_GUEST_SS)
605 			vm_inject_ss(vm, vcpuid, 0);
606 		else
607 			vm_inject_gp(vm, vcpuid);
608 		return (1);
609 	}
610 
611 	if (vie_canonical_check(paging->cpu_mode, *gla)) {
612 		if (seg == VM_REG_GUEST_SS)
613 			vm_inject_ss(vm, vcpuid, 0);
614 		else
615 			vm_inject_gp(vm, vcpuid);
616 		return (1);
617 	}
618 
619 	if (vie_alignment_check(paging->cpl, opsize, cr0, rflags, *gla)) {
620 		vm_inject_ac(vm, vcpuid, 0);
621 		return (1);
622 	}
623 
624 	return (0);
625 }
626 
627 static int
628 emulate_movs(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
629     struct vm_guest_paging *paging, mem_region_read_t memread,
630     mem_region_write_t memwrite, void *arg)
631 {
632 #ifdef _KERNEL
633 	struct vm_copyinfo copyinfo[2];
634 #else
635 	struct iovec copyinfo[2];
636 #endif
637 	uint64_t dstaddr, srcaddr, val;
638 	uint64_t rcx, rdi, rsi, rflags;
639 	int error, opsize, seg, repeat;
640 
641 	opsize = (vie->op.op_byte == 0xA4) ? 1 : vie->opsize;
642 	val = 0;
643 	error = 0;
644 
645 	/*
646 	 * XXX although the MOVS instruction is only supposed to be used with
647 	 * the "rep" prefix some guests like FreeBSD will use "repnz" instead.
648 	 *
649 	 * Empirically the "repnz" prefix has identical behavior to "rep"
650 	 * and the zero flag does not make a difference.
651 	 */
652 	repeat = vie->repz_present | vie->repnz_present;
653 
654 	if (repeat) {
655 		error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RCX, &rcx);
656 		KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
657 
658 		/*
659 		 * The count register is %rcx, %ecx or %cx depending on the
660 		 * address size of the instruction.
661 		 */
662 		if ((rcx & vie_size2mask(vie->addrsize)) == 0)
663 			return (0);
664 	}
665 
666 	/*
667 	 *	Source		Destination	Comments
668 	 *	--------------------------------------------
669 	 * (1)  memory		memory		n/a
670 	 * (2)  memory		mmio		emulated
671 	 * (3)  mmio		memory		emulated
672 	 * (4)  mmio		mmio		not emulated
673 	 *
674 	 * At this point we don't have sufficient information to distinguish
675 	 * between (2), (3) and (4). We use 'vm_copy_setup()' to tease this
676 	 * out because it will succeed only when operating on regular memory.
677 	 *
678 	 * XXX the emulation doesn't properly handle the case where 'gpa'
679 	 * is straddling the boundary between the normal memory and MMIO.
680 	 */
681 
682 	seg = vie->segment_override ? vie->segment_register : VM_REG_GUEST_DS;
683 	error = get_gla(vm, vcpuid, vie, paging, opsize, vie->addrsize,
684 	    PROT_READ, seg, VM_REG_GUEST_RSI, &srcaddr);
685 	if (error)
686 		goto done;
687 
688 	error = vm_copy_setup(vm, vcpuid, paging, srcaddr, opsize, PROT_READ,
689 	    copyinfo, nitems(copyinfo));
690 	if (error == 0) {
691 		/*
692 		 * case (2): read from system memory and write to mmio.
693 		 */
694 		vm_copyin(vm, vcpuid, copyinfo, &val, opsize);
695 		vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
696 		error = memwrite(vm, vcpuid, gpa, val, opsize, arg);
697 		goto done;
698 	} else if (error > 0) {
699 		/*
700 		 * Resume guest execution to handle fault.
701 		 */
702 		goto done;
703 	} else {
704 		/*
705 		 * 'vm_copy_setup()' is expected to fail for cases (3) and (4)
706 		 * if 'srcaddr' is in the mmio space.
707 		 */
708 	}
709 
710 	error = get_gla(vm, vcpuid, vie, paging, opsize, vie->addrsize,
711 	    PROT_WRITE, VM_REG_GUEST_ES, VM_REG_GUEST_RDI, &dstaddr);
712 	if (error)
713 		goto done;
714 
715 	error = vm_copy_setup(vm, vcpuid, paging, dstaddr, opsize,
716 	    PROT_WRITE, copyinfo, nitems(copyinfo));
717 	if (error == 0) {
718 		/*
719 		 * case (3): read from MMIO and write to system memory.
720 		 *
721 		 * A MMIO read can have side-effects so we commit to it
722 		 * only after vm_copy_setup() is successful. If a page-fault
723 		 * needs to be injected into the guest then it will happen
724 		 * before the MMIO read is attempted.
725 		 */
726 		error = memread(vm, vcpuid, gpa, &val, opsize, arg);
727 		if (error)
728 			goto done;
729 
730 		vm_copyout(vm, vcpuid, &val, copyinfo, opsize);
731 		vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
732 	} else if (error > 0) {
733 		/*
734 		 * Resume guest execution to handle fault.
735 		 */
736 		goto done;
737 	} else {
738 		goto done;
739 	}
740 
741 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RSI, &rsi);
742 	KASSERT(error == 0, ("%s: error %d getting rsi", __func__, error));
743 
744 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RDI, &rdi);
745 	KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
746 
747 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
748 	KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
749 
750 	if (rflags & PSL_D) {
751 		rsi -= opsize;
752 		rdi -= opsize;
753 	} else {
754 		rsi += opsize;
755 		rdi += opsize;
756 	}
757 
758 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RSI, rsi,
759 	    vie->addrsize);
760 	KASSERT(error == 0, ("%s: error %d updating rsi", __func__, error));
761 
762 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RDI, rdi,
763 	    vie->addrsize);
764 	KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
765 
766 	if (repeat) {
767 		rcx = rcx - 1;
768 		error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RCX,
769 		    rcx, vie->addrsize);
770 		KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
771 
772 		/*
773 		 * Repeat the instruction if the count register is not zero.
774 		 */
775 		if ((rcx & vie_size2mask(vie->addrsize)) != 0)
776 			vm_restart_instruction(vm, vcpuid);
777 	}
778 done:
779 	if (error < 0)
780 		return (EFAULT);
781 	else
782 		return (0);
783 }
784 
785 static int
786 emulate_and(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
787 	    mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
788 {
789 	int error, size;
790 	enum vm_reg_name reg;
791 	uint64_t result, rflags, rflags2, val1, val2;
792 
793 	size = vie->opsize;
794 	error = EINVAL;
795 
796 	switch (vie->op.op_byte) {
797 	case 0x23:
798 		/*
799 		 * AND reg (ModRM:reg) and mem (ModRM:r/m) and store the
800 		 * result in reg.
801 		 *
802 		 * 23/r		and r16, r/m16
803 		 * 23/r		and r32, r/m32
804 		 * REX.W + 23/r	and r64, r/m64
805 		 */
806 
807 		/* get the first operand */
808 		reg = gpr_map[vie->reg];
809 		error = vie_read_register(vm, vcpuid, reg, &val1);
810 		if (error)
811 			break;
812 
813 		/* get the second operand */
814 		error = memread(vm, vcpuid, gpa, &val2, size, arg);
815 		if (error)
816 			break;
817 
818 		/* perform the operation and write the result */
819 		result = val1 & val2;
820 		error = vie_update_register(vm, vcpuid, reg, result, size);
821 		break;
822 	case 0x81:
823 		/*
824 		 * AND/OR mem (ModRM:r/m) with immediate and store the
825 		 * result in mem.
826 		 *
827 		 * AND: i = 4
828 		 * OR:  i = 1
829 		 * 81 /i		op r/m16, imm16
830 		 * 81 /i		op r/m32, imm32
831 		 * REX.W + 81 /i	op r/m64, imm32 sign-extended to 64
832 		 *
833 		 */
834 
835 		/* get the first operand */
836                 error = memread(vm, vcpuid, gpa, &val1, size, arg);
837                 if (error)
838 			break;
839 
840                 /*
841                  * perform the operation with the pre-fetched immediate
842                  * operand and write the result
843                  */
844 		switch (vie->reg & 7) {
845 		case 0x4:
846 			/* modrm:reg == b100, AND */
847 			result = val1 & vie->immediate;
848 			break;
849 		case 0x1:
850 			/* modrm:reg == b001, OR */
851 			result = val1 | vie->immediate;
852 			break;
853 		default:
854 			error = EINVAL;
855 			break;
856 		}
857 		if (error)
858 			break;
859 
860 		error = memwrite(vm, vcpuid, gpa, result, size, arg);
861 		break;
862 	default:
863 		break;
864 	}
865 	if (error)
866 		return (error);
867 
868 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
869 	if (error)
870 		return (error);
871 
872 	/*
873 	 * OF and CF are cleared; the SF, ZF and PF flags are set according
874 	 * to the result; AF is undefined.
875 	 *
876 	 * The updated status flags are obtained by subtracting 0 from 'result'.
877 	 */
878 	rflags2 = getcc(size, result, 0);
879 	rflags &= ~RFLAGS_STATUS_BITS;
880 	rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
881 
882 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
883 	return (error);
884 }
885 
886 static int
887 emulate_or(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
888 	    mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
889 {
890 	int error, size;
891 	uint64_t val1, result, rflags, rflags2;
892 
893 	size = vie->opsize;
894 	error = EINVAL;
895 
896 	switch (vie->op.op_byte) {
897 	case 0x83:
898 		/*
899 		 * OR mem (ModRM:r/m) with immediate and store the
900 		 * result in mem.
901 		 *
902 		 * 83 /1		OR r/m16, imm8 sign-extended to 16
903 		 * 83 /1		OR r/m32, imm8 sign-extended to 32
904 		 * REX.W + 83/1		OR r/m64, imm8 sign-extended to 64
905 		 *
906 		 * Currently, only the OR operation of the 0x83 opcode
907 		 * is implemented (ModRM:reg = b001).
908 		 */
909 		if ((vie->reg & 7) != 1)
910 			break;
911 
912 		/* get the first operand */
913                 error = memread(vm, vcpuid, gpa, &val1, size, arg);
914                 if (error)
915 			break;
916 
917                 /*
918 		 * perform the operation with the pre-fetched immediate
919 		 * operand and write the result
920 		 */
921                 result = val1 | vie->immediate;
922                 error = memwrite(vm, vcpuid, gpa, result, size, arg);
923 		break;
924 	default:
925 		break;
926 	}
927 	if (error)
928 		return (error);
929 
930 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
931 	if (error)
932 		return (error);
933 
934 	/*
935 	 * OF and CF are cleared; the SF, ZF and PF flags are set according
936 	 * to the result; AF is undefined.
937 	 *
938 	 * The updated status flags are obtained by subtracting 0 from 'result'.
939 	 */
940 	rflags2 = getcc(size, result, 0);
941 	rflags &= ~RFLAGS_STATUS_BITS;
942 	rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
943 
944 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
945 	return (error);
946 }
947 
948 static int
949 emulate_cmp(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
950 	    mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
951 {
952 	int error, size;
953 	uint64_t op1, op2, rflags, rflags2;
954 	enum vm_reg_name reg;
955 
956 	size = vie->opsize;
957 	switch (vie->op.op_byte) {
958 	case 0x3B:
959 		/*
960 		 * 3B/r		CMP r16, r/m16
961 		 * 3B/r		CMP r32, r/m32
962 		 * REX.W + 3B/r	CMP r64, r/m64
963 		 *
964 		 * Compare first operand (reg) with second operand (r/m) and
965 		 * set status flags in EFLAGS register. The comparison is
966 		 * performed by subtracting the second operand from the first
967 		 * operand and then setting the status flags.
968 		 */
969 
970 		/* Get the first operand */
971 		reg = gpr_map[vie->reg];
972 		error = vie_read_register(vm, vcpuid, reg, &op1);
973 		if (error)
974 			return (error);
975 
976 		/* Get the second operand */
977 		error = memread(vm, vcpuid, gpa, &op2, size, arg);
978 		if (error)
979 			return (error);
980 
981 		break;
982 	default:
983 		return (EINVAL);
984 	}
985 	rflags2 = getcc(size, op1, op2);
986 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
987 	if (error)
988 		return (error);
989 	rflags &= ~RFLAGS_STATUS_BITS;
990 	rflags |= rflags2 & RFLAGS_STATUS_BITS;
991 
992 	error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
993 	return (error);
994 }
995 
996 static int
997 emulate_sub(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
998 	    mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
999 {
1000 	int error, size;
1001 	uint64_t nval, rflags, rflags2, val1, val2;
1002 	enum vm_reg_name reg;
1003 
1004 	size = vie->opsize;
1005 	error = EINVAL;
1006 
1007 	switch (vie->op.op_byte) {
1008 	case 0x2B:
1009 		/*
1010 		 * SUB r/m from r and store the result in r
1011 		 *
1012 		 * 2B/r            SUB r16, r/m16
1013 		 * 2B/r            SUB r32, r/m32
1014 		 * REX.W + 2B/r    SUB r64, r/m64
1015 		 */
1016 
1017 		/* get the first operand */
1018 		reg = gpr_map[vie->reg];
1019 		error = vie_read_register(vm, vcpuid, reg, &val1);
1020 		if (error)
1021 			break;
1022 
1023 		/* get the second operand */
1024 		error = memread(vm, vcpuid, gpa, &val2, size, arg);
1025 		if (error)
1026 			break;
1027 
1028 		/* perform the operation and write the result */
1029 		nval = val1 - val2;
1030 		error = vie_update_register(vm, vcpuid, reg, nval, size);
1031 		break;
1032 	default:
1033 		break;
1034 	}
1035 
1036 	if (!error) {
1037 		rflags2 = getcc(size, val1, val2);
1038 		error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
1039 		    &rflags);
1040 		if (error)
1041 			return (error);
1042 
1043 		rflags &= ~RFLAGS_STATUS_BITS;
1044 		rflags |= rflags2 & RFLAGS_STATUS_BITS;
1045 		error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
1046 		    rflags, 8);
1047 	}
1048 
1049 	return (error);
1050 }
1051 
1052 static int
1053 emulate_stack_op(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
1054     struct vm_guest_paging *paging, mem_region_read_t memread,
1055     mem_region_write_t memwrite, void *arg)
1056 {
1057 #ifdef _KERNEL
1058 	struct vm_copyinfo copyinfo[2];
1059 #else
1060 	struct iovec copyinfo[2];
1061 #endif
1062 	struct seg_desc ss_desc;
1063 	uint64_t cr0, rflags, rsp, stack_gla, val;
1064 	int error, size, stackaddrsize, pushop;
1065 
1066 	val = 0;
1067 	size = vie->opsize;
1068 	pushop = (vie->op.op_type == VIE_OP_TYPE_PUSH) ? 1 : 0;
1069 
1070 	/*
1071 	 * From "Address-Size Attributes for Stack Accesses", Intel SDL, Vol 1
1072 	 */
1073 	if (paging->cpu_mode == CPU_MODE_REAL) {
1074 		stackaddrsize = 2;
1075 	} else if (paging->cpu_mode == CPU_MODE_64BIT) {
1076 		/*
1077 		 * "Stack Manipulation Instructions in 64-bit Mode", SDM, Vol 3
1078 		 * - Stack pointer size is always 64-bits.
1079 		 * - PUSH/POP of 32-bit values is not possible in 64-bit mode.
1080 		 * - 16-bit PUSH/POP is supported by using the operand size
1081 		 *   override prefix (66H).
1082 		 */
1083 		stackaddrsize = 8;
1084 		size = vie->opsize_override ? 2 : 8;
1085 	} else {
1086 		/*
1087 		 * In protected or compability mode the 'B' flag in the
1088 		 * stack-segment descriptor determines the size of the
1089 		 * stack pointer.
1090 		 */
1091 		error = vm_get_seg_desc(vm, vcpuid, VM_REG_GUEST_SS, &ss_desc);
1092 		KASSERT(error == 0, ("%s: error %d getting SS descriptor",
1093 		    __func__, error));
1094 		if (SEG_DESC_DEF32(ss_desc.access))
1095 			stackaddrsize = 4;
1096 		else
1097 			stackaddrsize = 2;
1098 	}
1099 
1100 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_CR0, &cr0);
1101 	KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
1102 
1103 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
1104 	KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
1105 
1106 	error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RSP, &rsp);
1107 	KASSERT(error == 0, ("%s: error %d getting rsp", __func__, error));
1108 	if (pushop) {
1109 		rsp -= size;
1110 	}
1111 
1112 	if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS, &ss_desc,
1113 	    rsp, size, stackaddrsize, pushop ? PROT_WRITE : PROT_READ,
1114 	    &stack_gla)) {
1115 		vm_inject_ss(vm, vcpuid, 0);
1116 		return (0);
1117 	}
1118 
1119 	if (vie_canonical_check(paging->cpu_mode, stack_gla)) {
1120 		vm_inject_ss(vm, vcpuid, 0);
1121 		return (0);
1122 	}
1123 
1124 	if (vie_alignment_check(paging->cpl, size, cr0, rflags, stack_gla)) {
1125 		vm_inject_ac(vm, vcpuid, 0);
1126 		return (0);
1127 	}
1128 
1129 	error = vm_copy_setup(vm, vcpuid, paging, stack_gla, size,
1130 	    pushop ? PROT_WRITE : PROT_READ, copyinfo, nitems(copyinfo));
1131 	if (error == -1) {
1132 		/*
1133 		 * XXX cannot return a negative error value here because it
1134 		 * ends up being the return value of the VM_RUN() ioctl and
1135 		 * is interpreted as a pseudo-error (for e.g. ERESTART).
1136 		 */
1137 		return (EFAULT);
1138 	} else if (error == 1) {
1139 		/* Resume guest execution to handle page fault */
1140 		return (0);
1141 	}
1142 
1143 	if (pushop) {
1144 		error = memread(vm, vcpuid, mmio_gpa, &val, size, arg);
1145 		if (error == 0)
1146 			vm_copyout(vm, vcpuid, &val, copyinfo, size);
1147 	} else {
1148 		vm_copyin(vm, vcpuid, copyinfo, &val, size);
1149 		error = memwrite(vm, vcpuid, mmio_gpa, val, size, arg);
1150 		rsp += size;
1151 	}
1152 	vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
1153 
1154 	if (error == 0) {
1155 		error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RSP, rsp,
1156 		    stackaddrsize);
1157 		KASSERT(error == 0, ("error %d updating rsp", error));
1158 	}
1159 	return (error);
1160 }
1161 
1162 static int
1163 emulate_push(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
1164     struct vm_guest_paging *paging, mem_region_read_t memread,
1165     mem_region_write_t memwrite, void *arg)
1166 {
1167 	int error;
1168 
1169 	/*
1170 	 * Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
1171 	 *
1172 	 * PUSH is part of the group 5 extended opcodes and is identified
1173 	 * by ModRM:reg = b110.
1174 	 */
1175 	if ((vie->reg & 7) != 6)
1176 		return (EINVAL);
1177 
1178 	error = emulate_stack_op(vm, vcpuid, mmio_gpa, vie, paging, memread,
1179 	    memwrite, arg);
1180 	return (error);
1181 }
1182 
1183 static int
1184 emulate_pop(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
1185     struct vm_guest_paging *paging, mem_region_read_t memread,
1186     mem_region_write_t memwrite, void *arg)
1187 {
1188 	int error;
1189 
1190 	/*
1191 	 * Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
1192 	 *
1193 	 * POP is part of the group 1A extended opcodes and is identified
1194 	 * by ModRM:reg = b000.
1195 	 */
1196 	if ((vie->reg & 7) != 0)
1197 		return (EINVAL);
1198 
1199 	error = emulate_stack_op(vm, vcpuid, mmio_gpa, vie, paging, memread,
1200 	    memwrite, arg);
1201 	return (error);
1202 }
1203 
1204 int
1205 vmm_emulate_instruction(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
1206     struct vm_guest_paging *paging, mem_region_read_t memread,
1207     mem_region_write_t memwrite, void *memarg)
1208 {
1209 	int error;
1210 
1211 	if (!vie->decoded)
1212 		return (EINVAL);
1213 
1214 	switch (vie->op.op_type) {
1215 	case VIE_OP_TYPE_POP:
1216 		error = emulate_pop(vm, vcpuid, gpa, vie, paging, memread,
1217 		    memwrite, memarg);
1218 		break;
1219 	case VIE_OP_TYPE_PUSH:
1220 		error = emulate_push(vm, vcpuid, gpa, vie, paging, memread,
1221 		    memwrite, memarg);
1222 		break;
1223 	case VIE_OP_TYPE_CMP:
1224 		error = emulate_cmp(vm, vcpuid, gpa, vie,
1225 				    memread, memwrite, memarg);
1226 		break;
1227 	case VIE_OP_TYPE_MOV:
1228 		error = emulate_mov(vm, vcpuid, gpa, vie,
1229 				    memread, memwrite, memarg);
1230 		break;
1231 	case VIE_OP_TYPE_MOVSX:
1232 	case VIE_OP_TYPE_MOVZX:
1233 		error = emulate_movx(vm, vcpuid, gpa, vie,
1234 				     memread, memwrite, memarg);
1235 		break;
1236 	case VIE_OP_TYPE_MOVS:
1237 		error = emulate_movs(vm, vcpuid, gpa, vie, paging, memread,
1238 		    memwrite, memarg);
1239 		break;
1240 	case VIE_OP_TYPE_AND:
1241 		error = emulate_and(vm, vcpuid, gpa, vie,
1242 				    memread, memwrite, memarg);
1243 		break;
1244 	case VIE_OP_TYPE_OR:
1245 		error = emulate_or(vm, vcpuid, gpa, vie,
1246 				    memread, memwrite, memarg);
1247 		break;
1248 	case VIE_OP_TYPE_SUB:
1249 		error = emulate_sub(vm, vcpuid, gpa, vie,
1250 				    memread, memwrite, memarg);
1251 		break;
1252 	default:
1253 		error = EINVAL;
1254 		break;
1255 	}
1256 
1257 	return (error);
1258 }
1259 
1260 int
1261 vie_alignment_check(int cpl, int size, uint64_t cr0, uint64_t rf, uint64_t gla)
1262 {
1263 	KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
1264 	    ("%s: invalid size %d", __func__, size));
1265 	KASSERT(cpl >= 0 && cpl <= 3, ("%s: invalid cpl %d", __func__, cpl));
1266 
1267 	if (cpl != 3 || (cr0 & CR0_AM) == 0 || (rf & PSL_AC) == 0)
1268 		return (0);
1269 
1270 	return ((gla & (size - 1)) ? 1 : 0);
1271 }
1272 
1273 int
1274 vie_canonical_check(enum vm_cpu_mode cpu_mode, uint64_t gla)
1275 {
1276 	uint64_t mask;
1277 
1278 	if (cpu_mode != CPU_MODE_64BIT)
1279 		return (0);
1280 
1281 	/*
1282 	 * The value of the bit 47 in the 'gla' should be replicated in the
1283 	 * most significant 16 bits.
1284 	 */
1285 	mask = ~((1UL << 48) - 1);
1286 	if (gla & (1UL << 47))
1287 		return ((gla & mask) != mask);
1288 	else
1289 		return ((gla & mask) != 0);
1290 }
1291 
1292 uint64_t
1293 vie_size2mask(int size)
1294 {
1295 	KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
1296 	    ("vie_size2mask: invalid size %d", size));
1297 	return (size2mask[size]);
1298 }
1299 
1300 int
1301 vie_calculate_gla(enum vm_cpu_mode cpu_mode, enum vm_reg_name seg,
1302     struct seg_desc *desc, uint64_t offset, int length, int addrsize,
1303     int prot, uint64_t *gla)
1304 {
1305 	uint64_t firstoff, low_limit, high_limit, segbase;
1306 	int glasize, type;
1307 
1308 	KASSERT(seg >= VM_REG_GUEST_ES && seg <= VM_REG_GUEST_GS,
1309 	    ("%s: invalid segment %d", __func__, seg));
1310 	KASSERT(length == 1 || length == 2 || length == 4 || length == 8,
1311 	    ("%s: invalid operand size %d", __func__, length));
1312 	KASSERT((prot & ~(PROT_READ | PROT_WRITE)) == 0,
1313 	    ("%s: invalid prot %#x", __func__, prot));
1314 
1315 	firstoff = offset;
1316 	if (cpu_mode == CPU_MODE_64BIT) {
1317 		KASSERT(addrsize == 4 || addrsize == 8, ("%s: invalid address "
1318 		    "size %d for cpu_mode %d", __func__, addrsize, cpu_mode));
1319 		glasize = 8;
1320 	} else {
1321 		KASSERT(addrsize == 2 || addrsize == 4, ("%s: invalid address "
1322 		    "size %d for cpu mode %d", __func__, addrsize, cpu_mode));
1323 		glasize = 4;
1324 		/*
1325 		 * If the segment selector is loaded with a NULL selector
1326 		 * then the descriptor is unusable and attempting to use
1327 		 * it results in a #GP(0).
1328 		 */
1329 		if (SEG_DESC_UNUSABLE(desc->access))
1330 			return (-1);
1331 
1332 		/*
1333 		 * The processor generates a #NP exception when a segment
1334 		 * register is loaded with a selector that points to a
1335 		 * descriptor that is not present. If this was the case then
1336 		 * it would have been checked before the VM-exit.
1337 		 */
1338 		KASSERT(SEG_DESC_PRESENT(desc->access),
1339 		    ("segment %d not present: %#x", seg, desc->access));
1340 
1341 		/*
1342 		 * The descriptor type must indicate a code/data segment.
1343 		 */
1344 		type = SEG_DESC_TYPE(desc->access);
1345 		KASSERT(type >= 16 && type <= 31, ("segment %d has invalid "
1346 		    "descriptor type %#x", seg, type));
1347 
1348 		if (prot & PROT_READ) {
1349 			/* #GP on a read access to a exec-only code segment */
1350 			if ((type & 0xA) == 0x8)
1351 				return (-1);
1352 		}
1353 
1354 		if (prot & PROT_WRITE) {
1355 			/*
1356 			 * #GP on a write access to a code segment or a
1357 			 * read-only data segment.
1358 			 */
1359 			if (type & 0x8)			/* code segment */
1360 				return (-1);
1361 
1362 			if ((type & 0xA) == 0)		/* read-only data seg */
1363 				return (-1);
1364 		}
1365 
1366 		/*
1367 		 * 'desc->limit' is fully expanded taking granularity into
1368 		 * account.
1369 		 */
1370 		if ((type & 0xC) == 0x4) {
1371 			/* expand-down data segment */
1372 			low_limit = desc->limit + 1;
1373 			high_limit = SEG_DESC_DEF32(desc->access) ?
1374 			    0xffffffff : 0xffff;
1375 		} else {
1376 			/* code segment or expand-up data segment */
1377 			low_limit = 0;
1378 			high_limit = desc->limit;
1379 		}
1380 
1381 		while (length > 0) {
1382 			offset &= vie_size2mask(addrsize);
1383 			if (offset < low_limit || offset > high_limit)
1384 				return (-1);
1385 			offset++;
1386 			length--;
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * In 64-bit mode all segments except %fs and %gs have a segment
1392 	 * base address of 0.
1393 	 */
1394 	if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
1395 	    seg != VM_REG_GUEST_GS) {
1396 		segbase = 0;
1397 	} else {
1398 		segbase = desc->base;
1399 	}
1400 
1401 	/*
1402 	 * Truncate 'firstoff' to the effective address size before adding
1403 	 * it to the segment base.
1404 	 */
1405 	firstoff &= vie_size2mask(addrsize);
1406 	*gla = (segbase + firstoff) & vie_size2mask(glasize);
1407 	return (0);
1408 }
1409 
1410 #ifdef _KERNEL
1411 void
1412 vie_init(struct vie *vie, const char *inst_bytes, int inst_length)
1413 {
1414 	KASSERT(inst_length >= 0 && inst_length <= VIE_INST_SIZE,
1415 	    ("%s: invalid instruction length (%d)", __func__, inst_length));
1416 
1417 	bzero(vie, sizeof(struct vie));
1418 
1419 	vie->base_register = VM_REG_LAST;
1420 	vie->index_register = VM_REG_LAST;
1421 	vie->segment_register = VM_REG_LAST;
1422 
1423 	if (inst_length) {
1424 		bcopy(inst_bytes, vie->inst, inst_length);
1425 		vie->num_valid = inst_length;
1426 	}
1427 }
1428 
1429 static int
1430 pf_error_code(int usermode, int prot, int rsvd, uint64_t pte)
1431 {
1432 	int error_code = 0;
1433 
1434 	if (pte & PG_V)
1435 		error_code |= PGEX_P;
1436 	if (prot & VM_PROT_WRITE)
1437 		error_code |= PGEX_W;
1438 	if (usermode)
1439 		error_code |= PGEX_U;
1440 	if (rsvd)
1441 		error_code |= PGEX_RSV;
1442 	if (prot & VM_PROT_EXECUTE)
1443 		error_code |= PGEX_I;
1444 
1445 	return (error_code);
1446 }
1447 
1448 static void
1449 ptp_release(void **cookie)
1450 {
1451 	if (*cookie != NULL) {
1452 		vm_gpa_release(*cookie);
1453 		*cookie = NULL;
1454 	}
1455 }
1456 
1457 static void *
1458 ptp_hold(struct vm *vm, vm_paddr_t ptpphys, size_t len, void **cookie)
1459 {
1460 	void *ptr;
1461 
1462 	ptp_release(cookie);
1463 	ptr = vm_gpa_hold(vm, ptpphys, len, VM_PROT_RW, cookie);
1464 	return (ptr);
1465 }
1466 
1467 int
1468 vmm_gla2gpa(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
1469     uint64_t gla, int prot, uint64_t *gpa)
1470 {
1471 	int nlevels, pfcode, ptpshift, ptpindex, retval, usermode, writable;
1472 	u_int retries;
1473 	uint64_t *ptpbase, ptpphys, pte, pgsize;
1474 	uint32_t *ptpbase32, pte32;
1475 	void *cookie;
1476 
1477 	usermode = (paging->cpl == 3 ? 1 : 0);
1478 	writable = prot & VM_PROT_WRITE;
1479 	cookie = NULL;
1480 	retval = 0;
1481 	retries = 0;
1482 restart:
1483 	ptpphys = paging->cr3;		/* root of the page tables */
1484 	ptp_release(&cookie);
1485 	if (retries++ > 0)
1486 		maybe_yield();
1487 
1488 	if (vie_canonical_check(paging->cpu_mode, gla)) {
1489 		/*
1490 		 * XXX assuming a non-stack reference otherwise a stack fault
1491 		 * should be generated.
1492 		 */
1493 		vm_inject_gp(vm, vcpuid);
1494 		goto fault;
1495 	}
1496 
1497 	if (paging->paging_mode == PAGING_MODE_FLAT) {
1498 		*gpa = gla;
1499 		goto done;
1500 	}
1501 
1502 	if (paging->paging_mode == PAGING_MODE_32) {
1503 		nlevels = 2;
1504 		while (--nlevels >= 0) {
1505 			/* Zero out the lower 12 bits. */
1506 			ptpphys &= ~0xfff;
1507 
1508 			ptpbase32 = ptp_hold(vm, ptpphys, PAGE_SIZE, &cookie);
1509 
1510 			if (ptpbase32 == NULL)
1511 				goto error;
1512 
1513 			ptpshift = PAGE_SHIFT + nlevels * 10;
1514 			ptpindex = (gla >> ptpshift) & 0x3FF;
1515 			pgsize = 1UL << ptpshift;
1516 
1517 			pte32 = ptpbase32[ptpindex];
1518 
1519 			if ((pte32 & PG_V) == 0 ||
1520 			    (usermode && (pte32 & PG_U) == 0) ||
1521 			    (writable && (pte32 & PG_RW) == 0)) {
1522 				pfcode = pf_error_code(usermode, prot, 0,
1523 				    pte32);
1524 				vm_inject_pf(vm, vcpuid, pfcode, gla);
1525 				goto fault;
1526 			}
1527 
1528 			/*
1529 			 * Emulate the x86 MMU's management of the accessed
1530 			 * and dirty flags. While the accessed flag is set
1531 			 * at every level of the page table, the dirty flag
1532 			 * is only set at the last level providing the guest
1533 			 * physical address.
1534 			 */
1535 			if ((pte32 & PG_A) == 0) {
1536 				if (atomic_cmpset_32(&ptpbase32[ptpindex],
1537 				    pte32, pte32 | PG_A) == 0) {
1538 					goto restart;
1539 				}
1540 			}
1541 
1542 			/* XXX must be ignored if CR4.PSE=0 */
1543 			if (nlevels > 0 && (pte32 & PG_PS) != 0)
1544 				break;
1545 
1546 			ptpphys = pte32;
1547 		}
1548 
1549 		/* Set the dirty bit in the page table entry if necessary */
1550 		if (writable && (pte32 & PG_M) == 0) {
1551 			if (atomic_cmpset_32(&ptpbase32[ptpindex],
1552 			    pte32, pte32 | PG_M) == 0) {
1553 				goto restart;
1554 			}
1555 		}
1556 
1557 		/* Zero out the lower 'ptpshift' bits */
1558 		pte32 >>= ptpshift; pte32 <<= ptpshift;
1559 		*gpa = pte32 | (gla & (pgsize - 1));
1560 		goto done;
1561 	}
1562 
1563 	if (paging->paging_mode == PAGING_MODE_PAE) {
1564 		/* Zero out the lower 5 bits and the upper 32 bits */
1565 		ptpphys &= 0xffffffe0UL;
1566 
1567 		ptpbase = ptp_hold(vm, ptpphys, sizeof(*ptpbase) * 4, &cookie);
1568 		if (ptpbase == NULL)
1569 			goto error;
1570 
1571 		ptpindex = (gla >> 30) & 0x3;
1572 
1573 		pte = ptpbase[ptpindex];
1574 
1575 		if ((pte & PG_V) == 0) {
1576 			pfcode = pf_error_code(usermode, prot, 0, pte);
1577 			vm_inject_pf(vm, vcpuid, pfcode, gla);
1578 			goto fault;
1579 		}
1580 
1581 		ptpphys = pte;
1582 
1583 		nlevels = 2;
1584 	} else
1585 		nlevels = 4;
1586 	while (--nlevels >= 0) {
1587 		/* Zero out the lower 12 bits and the upper 12 bits */
1588 		ptpphys >>= 12; ptpphys <<= 24; ptpphys >>= 12;
1589 
1590 		ptpbase = ptp_hold(vm, ptpphys, PAGE_SIZE, &cookie);
1591 		if (ptpbase == NULL)
1592 			goto error;
1593 
1594 		ptpshift = PAGE_SHIFT + nlevels * 9;
1595 		ptpindex = (gla >> ptpshift) & 0x1FF;
1596 		pgsize = 1UL << ptpshift;
1597 
1598 		pte = ptpbase[ptpindex];
1599 
1600 		if ((pte & PG_V) == 0 ||
1601 		    (usermode && (pte & PG_U) == 0) ||
1602 		    (writable && (pte & PG_RW) == 0)) {
1603 			pfcode = pf_error_code(usermode, prot, 0, pte);
1604 			vm_inject_pf(vm, vcpuid, pfcode, gla);
1605 			goto fault;
1606 		}
1607 
1608 		/* Set the accessed bit in the page table entry */
1609 		if ((pte & PG_A) == 0) {
1610 			if (atomic_cmpset_64(&ptpbase[ptpindex],
1611 			    pte, pte | PG_A) == 0) {
1612 				goto restart;
1613 			}
1614 		}
1615 
1616 		if (nlevels > 0 && (pte & PG_PS) != 0) {
1617 			if (pgsize > 1 * GB) {
1618 				pfcode = pf_error_code(usermode, prot, 1, pte);
1619 				vm_inject_pf(vm, vcpuid, pfcode, gla);
1620 				goto fault;
1621 			}
1622 			break;
1623 		}
1624 
1625 		ptpphys = pte;
1626 	}
1627 
1628 	/* Set the dirty bit in the page table entry if necessary */
1629 	if (writable && (pte & PG_M) == 0) {
1630 		if (atomic_cmpset_64(&ptpbase[ptpindex], pte, pte | PG_M) == 0)
1631 			goto restart;
1632 	}
1633 
1634 	/* Zero out the lower 'ptpshift' bits and the upper 12 bits */
1635 	pte >>= ptpshift; pte <<= (ptpshift + 12); pte >>= 12;
1636 	*gpa = pte | (gla & (pgsize - 1));
1637 done:
1638 	ptp_release(&cookie);
1639 	return (retval);
1640 error:
1641 	retval = -1;
1642 	goto done;
1643 fault:
1644 	retval = 1;
1645 	goto done;
1646 }
1647 
1648 int
1649 vmm_fetch_instruction(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
1650     uint64_t rip, int inst_length, struct vie *vie)
1651 {
1652 	struct vm_copyinfo copyinfo[2];
1653 	int error, prot;
1654 
1655 	if (inst_length > VIE_INST_SIZE)
1656 		panic("vmm_fetch_instruction: invalid length %d", inst_length);
1657 
1658 	prot = PROT_READ | PROT_EXEC;
1659 	error = vm_copy_setup(vm, vcpuid, paging, rip, inst_length, prot,
1660 	    copyinfo, nitems(copyinfo));
1661 	if (error == 0) {
1662 		vm_copyin(vm, vcpuid, copyinfo, vie->inst, inst_length);
1663 		vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
1664 		vie->num_valid = inst_length;
1665 	}
1666 	return (error);
1667 }
1668 
1669 static int
1670 vie_peek(struct vie *vie, uint8_t *x)
1671 {
1672 
1673 	if (vie->num_processed < vie->num_valid) {
1674 		*x = vie->inst[vie->num_processed];
1675 		return (0);
1676 	} else
1677 		return (-1);
1678 }
1679 
1680 static void
1681 vie_advance(struct vie *vie)
1682 {
1683 
1684 	vie->num_processed++;
1685 }
1686 
1687 static bool
1688 segment_override(uint8_t x, int *seg)
1689 {
1690 
1691 	switch (x) {
1692 	case 0x2E:
1693 		*seg = VM_REG_GUEST_CS;
1694 		break;
1695 	case 0x36:
1696 		*seg = VM_REG_GUEST_SS;
1697 		break;
1698 	case 0x3E:
1699 		*seg = VM_REG_GUEST_DS;
1700 		break;
1701 	case 0x26:
1702 		*seg = VM_REG_GUEST_ES;
1703 		break;
1704 	case 0x64:
1705 		*seg = VM_REG_GUEST_FS;
1706 		break;
1707 	case 0x65:
1708 		*seg = VM_REG_GUEST_GS;
1709 		break;
1710 	default:
1711 		return (false);
1712 	}
1713 	return (true);
1714 }
1715 
1716 static int
1717 decode_prefixes(struct vie *vie, enum vm_cpu_mode cpu_mode, int cs_d)
1718 {
1719 	uint8_t x;
1720 
1721 	while (1) {
1722 		if (vie_peek(vie, &x))
1723 			return (-1);
1724 
1725 		if (x == 0x66)
1726 			vie->opsize_override = 1;
1727 		else if (x == 0x67)
1728 			vie->addrsize_override = 1;
1729 		else if (x == 0xF3)
1730 			vie->repz_present = 1;
1731 		else if (x == 0xF2)
1732 			vie->repnz_present = 1;
1733 		else if (segment_override(x, &vie->segment_register))
1734 			vie->segment_override = 1;
1735 		else
1736 			break;
1737 
1738 		vie_advance(vie);
1739 	}
1740 
1741 	/*
1742 	 * From section 2.2.1, "REX Prefixes", Intel SDM Vol 2:
1743 	 * - Only one REX prefix is allowed per instruction.
1744 	 * - The REX prefix must immediately precede the opcode byte or the
1745 	 *   escape opcode byte.
1746 	 * - If an instruction has a mandatory prefix (0x66, 0xF2 or 0xF3)
1747 	 *   the mandatory prefix must come before the REX prefix.
1748 	 */
1749 	if (cpu_mode == CPU_MODE_64BIT && x >= 0x40 && x <= 0x4F) {
1750 		vie->rex_present = 1;
1751 		vie->rex_w = x & 0x8 ? 1 : 0;
1752 		vie->rex_r = x & 0x4 ? 1 : 0;
1753 		vie->rex_x = x & 0x2 ? 1 : 0;
1754 		vie->rex_b = x & 0x1 ? 1 : 0;
1755 		vie_advance(vie);
1756 	}
1757 
1758 	/*
1759 	 * Section "Operand-Size And Address-Size Attributes", Intel SDM, Vol 1
1760 	 */
1761 	if (cpu_mode == CPU_MODE_64BIT) {
1762 		/*
1763 		 * Default address size is 64-bits and default operand size
1764 		 * is 32-bits.
1765 		 */
1766 		vie->addrsize = vie->addrsize_override ? 4 : 8;
1767 		if (vie->rex_w)
1768 			vie->opsize = 8;
1769 		else if (vie->opsize_override)
1770 			vie->opsize = 2;
1771 		else
1772 			vie->opsize = 4;
1773 	} else if (cs_d) {
1774 		/* Default address and operand sizes are 32-bits */
1775 		vie->addrsize = vie->addrsize_override ? 2 : 4;
1776 		vie->opsize = vie->opsize_override ? 2 : 4;
1777 	} else {
1778 		/* Default address and operand sizes are 16-bits */
1779 		vie->addrsize = vie->addrsize_override ? 4 : 2;
1780 		vie->opsize = vie->opsize_override ? 4 : 2;
1781 	}
1782 	return (0);
1783 }
1784 
1785 static int
1786 decode_two_byte_opcode(struct vie *vie)
1787 {
1788 	uint8_t x;
1789 
1790 	if (vie_peek(vie, &x))
1791 		return (-1);
1792 
1793 	vie->op = two_byte_opcodes[x];
1794 
1795 	if (vie->op.op_type == VIE_OP_TYPE_NONE)
1796 		return (-1);
1797 
1798 	vie_advance(vie);
1799 	return (0);
1800 }
1801 
1802 static int
1803 decode_opcode(struct vie *vie)
1804 {
1805 	uint8_t x;
1806 
1807 	if (vie_peek(vie, &x))
1808 		return (-1);
1809 
1810 	vie->op = one_byte_opcodes[x];
1811 
1812 	if (vie->op.op_type == VIE_OP_TYPE_NONE)
1813 		return (-1);
1814 
1815 	vie_advance(vie);
1816 
1817 	if (vie->op.op_type == VIE_OP_TYPE_TWO_BYTE)
1818 		return (decode_two_byte_opcode(vie));
1819 
1820 	return (0);
1821 }
1822 
1823 static int
1824 decode_modrm(struct vie *vie, enum vm_cpu_mode cpu_mode)
1825 {
1826 	uint8_t x;
1827 
1828 	if (cpu_mode == CPU_MODE_REAL)
1829 		return (-1);
1830 
1831 	if (vie->op.op_flags & VIE_OP_F_NO_MODRM)
1832 		return (0);
1833 
1834 	if (vie_peek(vie, &x))
1835 		return (-1);
1836 
1837 	vie->mod = (x >> 6) & 0x3;
1838 	vie->rm =  (x >> 0) & 0x7;
1839 	vie->reg = (x >> 3) & 0x7;
1840 
1841 	/*
1842 	 * A direct addressing mode makes no sense in the context of an EPT
1843 	 * fault. There has to be a memory access involved to cause the
1844 	 * EPT fault.
1845 	 */
1846 	if (vie->mod == VIE_MOD_DIRECT)
1847 		return (-1);
1848 
1849 	if ((vie->mod == VIE_MOD_INDIRECT && vie->rm == VIE_RM_DISP32) ||
1850 	    (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)) {
1851 		/*
1852 		 * Table 2-5: Special Cases of REX Encodings
1853 		 *
1854 		 * mod=0, r/m=5 is used in the compatibility mode to
1855 		 * indicate a disp32 without a base register.
1856 		 *
1857 		 * mod!=3, r/m=4 is used in the compatibility mode to
1858 		 * indicate that the SIB byte is present.
1859 		 *
1860 		 * The 'b' bit in the REX prefix is don't care in
1861 		 * this case.
1862 		 */
1863 	} else {
1864 		vie->rm |= (vie->rex_b << 3);
1865 	}
1866 
1867 	vie->reg |= (vie->rex_r << 3);
1868 
1869 	/* SIB */
1870 	if (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)
1871 		goto done;
1872 
1873 	vie->base_register = gpr_map[vie->rm];
1874 
1875 	switch (vie->mod) {
1876 	case VIE_MOD_INDIRECT_DISP8:
1877 		vie->disp_bytes = 1;
1878 		break;
1879 	case VIE_MOD_INDIRECT_DISP32:
1880 		vie->disp_bytes = 4;
1881 		break;
1882 	case VIE_MOD_INDIRECT:
1883 		if (vie->rm == VIE_RM_DISP32) {
1884 			vie->disp_bytes = 4;
1885 			/*
1886 			 * Table 2-7. RIP-Relative Addressing
1887 			 *
1888 			 * In 64-bit mode mod=00 r/m=101 implies [rip] + disp32
1889 			 * whereas in compatibility mode it just implies disp32.
1890 			 */
1891 
1892 			if (cpu_mode == CPU_MODE_64BIT)
1893 				vie->base_register = VM_REG_GUEST_RIP;
1894 			else
1895 				vie->base_register = VM_REG_LAST;
1896 		}
1897 		break;
1898 	}
1899 
1900 done:
1901 	vie_advance(vie);
1902 
1903 	return (0);
1904 }
1905 
1906 static int
1907 decode_sib(struct vie *vie)
1908 {
1909 	uint8_t x;
1910 
1911 	/* Proceed only if SIB byte is present */
1912 	if (vie->mod == VIE_MOD_DIRECT || vie->rm != VIE_RM_SIB)
1913 		return (0);
1914 
1915 	if (vie_peek(vie, &x))
1916 		return (-1);
1917 
1918 	/* De-construct the SIB byte */
1919 	vie->ss = (x >> 6) & 0x3;
1920 	vie->index = (x >> 3) & 0x7;
1921 	vie->base = (x >> 0) & 0x7;
1922 
1923 	/* Apply the REX prefix modifiers */
1924 	vie->index |= vie->rex_x << 3;
1925 	vie->base |= vie->rex_b << 3;
1926 
1927 	switch (vie->mod) {
1928 	case VIE_MOD_INDIRECT_DISP8:
1929 		vie->disp_bytes = 1;
1930 		break;
1931 	case VIE_MOD_INDIRECT_DISP32:
1932 		vie->disp_bytes = 4;
1933 		break;
1934 	}
1935 
1936 	if (vie->mod == VIE_MOD_INDIRECT &&
1937 	    (vie->base == 5 || vie->base == 13)) {
1938 		/*
1939 		 * Special case when base register is unused if mod = 0
1940 		 * and base = %rbp or %r13.
1941 		 *
1942 		 * Documented in:
1943 		 * Table 2-3: 32-bit Addressing Forms with the SIB Byte
1944 		 * Table 2-5: Special Cases of REX Encodings
1945 		 */
1946 		vie->disp_bytes = 4;
1947 	} else {
1948 		vie->base_register = gpr_map[vie->base];
1949 	}
1950 
1951 	/*
1952 	 * All encodings of 'index' are valid except for %rsp (4).
1953 	 *
1954 	 * Documented in:
1955 	 * Table 2-3: 32-bit Addressing Forms with the SIB Byte
1956 	 * Table 2-5: Special Cases of REX Encodings
1957 	 */
1958 	if (vie->index != 4)
1959 		vie->index_register = gpr_map[vie->index];
1960 
1961 	/* 'scale' makes sense only in the context of an index register */
1962 	if (vie->index_register < VM_REG_LAST)
1963 		vie->scale = 1 << vie->ss;
1964 
1965 	vie_advance(vie);
1966 
1967 	return (0);
1968 }
1969 
1970 static int
1971 decode_displacement(struct vie *vie)
1972 {
1973 	int n, i;
1974 	uint8_t x;
1975 
1976 	union {
1977 		char	buf[4];
1978 		int8_t	signed8;
1979 		int32_t	signed32;
1980 	} u;
1981 
1982 	if ((n = vie->disp_bytes) == 0)
1983 		return (0);
1984 
1985 	if (n != 1 && n != 4)
1986 		panic("decode_displacement: invalid disp_bytes %d", n);
1987 
1988 	for (i = 0; i < n; i++) {
1989 		if (vie_peek(vie, &x))
1990 			return (-1);
1991 
1992 		u.buf[i] = x;
1993 		vie_advance(vie);
1994 	}
1995 
1996 	if (n == 1)
1997 		vie->displacement = u.signed8;		/* sign-extended */
1998 	else
1999 		vie->displacement = u.signed32;		/* sign-extended */
2000 
2001 	return (0);
2002 }
2003 
2004 static int
2005 decode_immediate(struct vie *vie)
2006 {
2007 	int i, n;
2008 	uint8_t x;
2009 	union {
2010 		char	buf[4];
2011 		int8_t	signed8;
2012 		int16_t	signed16;
2013 		int32_t	signed32;
2014 	} u;
2015 
2016 	/* Figure out immediate operand size (if any) */
2017 	if (vie->op.op_flags & VIE_OP_F_IMM) {
2018 		/*
2019 		 * Section 2.2.1.5 "Immediates", Intel SDM:
2020 		 * In 64-bit mode the typical size of immediate operands
2021 		 * remains 32-bits. When the operand size if 64-bits, the
2022 		 * processor sign-extends all immediates to 64-bits prior
2023 		 * to their use.
2024 		 */
2025 		if (vie->opsize == 4 || vie->opsize == 8)
2026 			vie->imm_bytes = 4;
2027 		else
2028 			vie->imm_bytes = 2;
2029 	} else if (vie->op.op_flags & VIE_OP_F_IMM8) {
2030 		vie->imm_bytes = 1;
2031 	}
2032 
2033 	if ((n = vie->imm_bytes) == 0)
2034 		return (0);
2035 
2036 	KASSERT(n == 1 || n == 2 || n == 4,
2037 	    ("%s: invalid number of immediate bytes: %d", __func__, n));
2038 
2039 	for (i = 0; i < n; i++) {
2040 		if (vie_peek(vie, &x))
2041 			return (-1);
2042 
2043 		u.buf[i] = x;
2044 		vie_advance(vie);
2045 	}
2046 
2047 	/* sign-extend the immediate value before use */
2048 	if (n == 1)
2049 		vie->immediate = u.signed8;
2050 	else if (n == 2)
2051 		vie->immediate = u.signed16;
2052 	else
2053 		vie->immediate = u.signed32;
2054 
2055 	return (0);
2056 }
2057 
2058 static int
2059 decode_moffset(struct vie *vie)
2060 {
2061 	int i, n;
2062 	uint8_t x;
2063 	union {
2064 		char	buf[8];
2065 		uint64_t u64;
2066 	} u;
2067 
2068 	if ((vie->op.op_flags & VIE_OP_F_MOFFSET) == 0)
2069 		return (0);
2070 
2071 	/*
2072 	 * Section 2.2.1.4, "Direct Memory-Offset MOVs", Intel SDM:
2073 	 * The memory offset size follows the address-size of the instruction.
2074 	 */
2075 	n = vie->addrsize;
2076 	KASSERT(n == 2 || n == 4 || n == 8, ("invalid moffset bytes: %d", n));
2077 
2078 	u.u64 = 0;
2079 	for (i = 0; i < n; i++) {
2080 		if (vie_peek(vie, &x))
2081 			return (-1);
2082 
2083 		u.buf[i] = x;
2084 		vie_advance(vie);
2085 	}
2086 	vie->displacement = u.u64;
2087 	return (0);
2088 }
2089 
2090 /*
2091  * Verify that all the bytes in the instruction buffer were consumed.
2092  */
2093 static int
2094 verify_inst_length(struct vie *vie)
2095 {
2096 
2097 	if (vie->num_processed)
2098 		return (0);
2099 	else
2100 		return (-1);
2101 }
2102 
2103 /*
2104  * Verify that the 'guest linear address' provided as collateral of the nested
2105  * page table fault matches with our instruction decoding.
2106  */
2107 static int
2108 verify_gla(struct vm *vm, int cpuid, uint64_t gla, struct vie *vie)
2109 {
2110 	int error;
2111 	uint64_t base, idx, gla2;
2112 
2113 	/* Skip 'gla' verification */
2114 	if (gla == VIE_INVALID_GLA)
2115 		return (0);
2116 
2117 	base = 0;
2118 	if (vie->base_register != VM_REG_LAST) {
2119 		error = vm_get_register(vm, cpuid, vie->base_register, &base);
2120 		if (error) {
2121 			printf("verify_gla: error %d getting base reg %d\n",
2122 				error, vie->base_register);
2123 			return (-1);
2124 		}
2125 
2126 		/*
2127 		 * RIP-relative addressing starts from the following
2128 		 * instruction
2129 		 */
2130 		if (vie->base_register == VM_REG_GUEST_RIP)
2131 			base += vie->num_valid;
2132 	}
2133 
2134 	idx = 0;
2135 	if (vie->index_register != VM_REG_LAST) {
2136 		error = vm_get_register(vm, cpuid, vie->index_register, &idx);
2137 		if (error) {
2138 			printf("verify_gla: error %d getting index reg %d\n",
2139 				error, vie->index_register);
2140 			return (-1);
2141 		}
2142 	}
2143 
2144 	/* XXX assuming that the base address of the segment is 0 */
2145 	gla2 = base + vie->scale * idx + vie->displacement;
2146 	gla2 &= size2mask[vie->addrsize];
2147 	if (gla != gla2) {
2148 		printf("verify_gla mismatch: "
2149 		       "base(0x%0lx), scale(%d), index(0x%0lx), "
2150 		       "disp(0x%0lx), gla(0x%0lx), gla2(0x%0lx)\n",
2151 		       base, vie->scale, idx, vie->displacement, gla, gla2);
2152 		return (-1);
2153 	}
2154 
2155 	return (0);
2156 }
2157 
2158 int
2159 vmm_decode_instruction(struct vm *vm, int cpuid, uint64_t gla,
2160 		       enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
2161 {
2162 
2163 	if (decode_prefixes(vie, cpu_mode, cs_d))
2164 		return (-1);
2165 
2166 	if (decode_opcode(vie))
2167 		return (-1);
2168 
2169 	if (decode_modrm(vie, cpu_mode))
2170 		return (-1);
2171 
2172 	if (decode_sib(vie))
2173 		return (-1);
2174 
2175 	if (decode_displacement(vie))
2176 		return (-1);
2177 
2178 	if (decode_immediate(vie))
2179 		return (-1);
2180 
2181 	if (decode_moffset(vie))
2182 		return (-1);
2183 
2184 	if (verify_inst_length(vie))
2185 		return (-1);
2186 
2187 	if ((vie->op.op_flags & VIE_OP_F_NO_GLA_VERIFICATION) == 0) {
2188 		if (verify_gla(vm, cpuid, gla, vie))
2189 			return (-1);
2190 	}
2191 
2192 	vie->decoded = 1;	/* success */
2193 
2194 	return (0);
2195 }
2196 #endif	/* _KERNEL */
2197