1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vpmtmr.h" 78 #include "vmm_ipi.h" 79 #include "vmm_stat.h" 80 #include "vmm_lapic.h" 81 82 #include "io/ppt.h" 83 #include "io/iommu.h" 84 85 struct vlapic; 86 87 /* 88 * Initialization: 89 * (a) allocated when vcpu is created 90 * (i) initialized when vcpu is created and when it is reinitialized 91 * (o) initialized the first time the vcpu is created 92 * (x) initialized before use 93 */ 94 struct vcpu { 95 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 96 enum vcpu_state state; /* (o) vcpu state */ 97 int hostcpu; /* (o) vcpu's host cpu */ 98 struct vlapic *vlapic; /* (i) APIC device model */ 99 enum x2apic_state x2apic_state; /* (i) APIC mode */ 100 uint64_t exitintinfo; /* (i) events pending at VM exit */ 101 int nmi_pending; /* (i) NMI pending */ 102 int extint_pending; /* (i) INTR pending */ 103 struct vm_exception exception; /* (x) exception collateral */ 104 int exception_pending; /* (i) exception pending */ 105 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 106 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 107 void *stats; /* (a,i) statistics */ 108 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 109 }; 110 111 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 112 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 113 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 114 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 115 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 116 117 struct mem_seg { 118 vm_paddr_t gpa; 119 size_t len; 120 boolean_t wired; 121 vm_object_t object; 122 }; 123 #define VM_MAX_MEMORY_SEGMENTS 2 124 125 /* 126 * Initialization: 127 * (o) initialized the first time the VM is created 128 * (i) initialized when VM is created and when it is reinitialized 129 * (x) initialized before use 130 */ 131 struct vm { 132 void *cookie; /* (i) cpu-specific data */ 133 void *iommu; /* (x) iommu-specific data */ 134 struct vhpet *vhpet; /* (i) virtual HPET */ 135 struct vioapic *vioapic; /* (i) virtual ioapic */ 136 struct vatpic *vatpic; /* (i) virtual atpic */ 137 struct vatpit *vatpit; /* (i) virtual atpit */ 138 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 139 volatile cpuset_t active_cpus; /* (i) active vcpus */ 140 int suspend; /* (i) stop VM execution */ 141 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 142 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 143 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 144 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 145 void *rendezvous_arg; /* (x) rendezvous func/arg */ 146 vm_rendezvous_func_t rendezvous_func; 147 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 148 int num_mem_segs; /* (o) guest memory segments */ 149 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 150 struct vmspace *vmspace; /* (o) guest's address space */ 151 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 152 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 153 }; 154 155 static int vmm_initialized; 156 157 static struct vmm_ops *ops; 158 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 159 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 160 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 161 162 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 163 #define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \ 164 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO) 165 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 166 #define VMSPACE_ALLOC(min, max) \ 167 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 168 #define VMSPACE_FREE(vmspace) \ 169 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 170 #define VMGETREG(vmi, vcpu, num, retval) \ 171 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 172 #define VMSETREG(vmi, vcpu, num, val) \ 173 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 174 #define VMGETDESC(vmi, vcpu, num, desc) \ 175 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 176 #define VMSETDESC(vmi, vcpu, num, desc) \ 177 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 178 #define VMGETCAP(vmi, vcpu, num, retval) \ 179 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 180 #define VMSETCAP(vmi, vcpu, num, val) \ 181 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 182 #define VLAPIC_INIT(vmi, vcpu) \ 183 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 184 #define VLAPIC_CLEANUP(vmi, vlapic) \ 185 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 186 187 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 188 #define fpu_stop_emulating() clts() 189 190 static MALLOC_DEFINE(M_VM, "vm", "vm"); 191 192 /* statistics */ 193 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 194 195 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 196 197 /* 198 * Halt the guest if all vcpus are executing a HLT instruction with 199 * interrupts disabled. 200 */ 201 static int halt_detection_enabled = 1; 202 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 203 &halt_detection_enabled, 0, 204 "Halt VM if all vcpus execute HLT with interrupts disabled"); 205 206 static int vmm_ipinum; 207 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 208 "IPI vector used for vcpu notifications"); 209 210 static void 211 vcpu_cleanup(struct vm *vm, int i, bool destroy) 212 { 213 struct vcpu *vcpu = &vm->vcpu[i]; 214 215 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 216 if (destroy) { 217 vmm_stat_free(vcpu->stats); 218 fpu_save_area_free(vcpu->guestfpu); 219 } 220 } 221 222 static void 223 vcpu_init(struct vm *vm, int vcpu_id, bool create) 224 { 225 struct vcpu *vcpu; 226 227 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 228 ("vcpu_init: invalid vcpu %d", vcpu_id)); 229 230 vcpu = &vm->vcpu[vcpu_id]; 231 232 if (create) { 233 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 234 "initialized", vcpu_id)); 235 vcpu_lock_init(vcpu); 236 vcpu->state = VCPU_IDLE; 237 vcpu->hostcpu = NOCPU; 238 vcpu->guestfpu = fpu_save_area_alloc(); 239 vcpu->stats = vmm_stat_alloc(); 240 } 241 242 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 243 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 244 vcpu->exitintinfo = 0; 245 vcpu->nmi_pending = 0; 246 vcpu->extint_pending = 0; 247 vcpu->exception_pending = 0; 248 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 249 fpu_save_area_reset(vcpu->guestfpu); 250 vmm_stat_init(vcpu->stats); 251 } 252 253 struct vm_exit * 254 vm_exitinfo(struct vm *vm, int cpuid) 255 { 256 struct vcpu *vcpu; 257 258 if (cpuid < 0 || cpuid >= VM_MAXCPU) 259 panic("vm_exitinfo: invalid cpuid %d", cpuid); 260 261 vcpu = &vm->vcpu[cpuid]; 262 263 return (&vcpu->exitinfo); 264 } 265 266 static void 267 vmm_resume(void) 268 { 269 VMM_RESUME(); 270 } 271 272 static int 273 vmm_init(void) 274 { 275 int error; 276 277 vmm_host_state_init(); 278 279 vmm_ipinum = vmm_ipi_alloc(); 280 if (vmm_ipinum == 0) 281 vmm_ipinum = IPI_AST; 282 283 error = vmm_mem_init(); 284 if (error) 285 return (error); 286 287 if (vmm_is_intel()) 288 ops = &vmm_ops_intel; 289 else if (vmm_is_amd()) 290 ops = &vmm_ops_amd; 291 else 292 return (ENXIO); 293 294 vmm_resume_p = vmm_resume; 295 296 return (VMM_INIT(vmm_ipinum)); 297 } 298 299 static int 300 vmm_handler(module_t mod, int what, void *arg) 301 { 302 int error; 303 304 switch (what) { 305 case MOD_LOAD: 306 vmmdev_init(); 307 if (ppt_avail_devices() > 0) 308 iommu_init(); 309 error = vmm_init(); 310 if (error == 0) 311 vmm_initialized = 1; 312 break; 313 case MOD_UNLOAD: 314 error = vmmdev_cleanup(); 315 if (error == 0) { 316 vmm_resume_p = NULL; 317 iommu_cleanup(); 318 if (vmm_ipinum != IPI_AST) 319 vmm_ipi_free(vmm_ipinum); 320 error = VMM_CLEANUP(); 321 /* 322 * Something bad happened - prevent new 323 * VMs from being created 324 */ 325 if (error) 326 vmm_initialized = 0; 327 } 328 break; 329 default: 330 error = 0; 331 break; 332 } 333 return (error); 334 } 335 336 static moduledata_t vmm_kmod = { 337 "vmm", 338 vmm_handler, 339 NULL 340 }; 341 342 /* 343 * vmm initialization has the following dependencies: 344 * 345 * - iommu initialization must happen after the pci passthru driver has had 346 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 347 * 348 * - VT-x initialization requires smp_rendezvous() and therefore must happen 349 * after SMP is fully functional (after SI_SUB_SMP). 350 */ 351 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 352 MODULE_VERSION(vmm, 1); 353 354 static void 355 vm_init(struct vm *vm, bool create) 356 { 357 int i; 358 359 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 360 vm->iommu = NULL; 361 vm->vioapic = vioapic_init(vm); 362 vm->vhpet = vhpet_init(vm); 363 vm->vatpic = vatpic_init(vm); 364 vm->vatpit = vatpit_init(vm); 365 vm->vpmtmr = vpmtmr_init(vm); 366 367 CPU_ZERO(&vm->active_cpus); 368 369 vm->suspend = 0; 370 CPU_ZERO(&vm->suspended_cpus); 371 372 for (i = 0; i < VM_MAXCPU; i++) 373 vcpu_init(vm, i, create); 374 } 375 376 int 377 vm_create(const char *name, struct vm **retvm) 378 { 379 struct vm *vm; 380 struct vmspace *vmspace; 381 382 /* 383 * If vmm.ko could not be successfully initialized then don't attempt 384 * to create the virtual machine. 385 */ 386 if (!vmm_initialized) 387 return (ENXIO); 388 389 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 390 return (EINVAL); 391 392 vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); 393 if (vmspace == NULL) 394 return (ENOMEM); 395 396 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 397 strcpy(vm->name, name); 398 vm->num_mem_segs = 0; 399 vm->vmspace = vmspace; 400 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 401 402 vm_init(vm, true); 403 404 *retvm = vm; 405 return (0); 406 } 407 408 static void 409 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 410 { 411 412 if (seg->object != NULL) 413 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 414 415 bzero(seg, sizeof(*seg)); 416 } 417 418 static void 419 vm_cleanup(struct vm *vm, bool destroy) 420 { 421 int i; 422 423 ppt_unassign_all(vm); 424 425 if (vm->iommu != NULL) 426 iommu_destroy_domain(vm->iommu); 427 428 vpmtmr_cleanup(vm->vpmtmr); 429 vatpit_cleanup(vm->vatpit); 430 vhpet_cleanup(vm->vhpet); 431 vatpic_cleanup(vm->vatpic); 432 vioapic_cleanup(vm->vioapic); 433 434 for (i = 0; i < VM_MAXCPU; i++) 435 vcpu_cleanup(vm, i, destroy); 436 437 VMCLEANUP(vm->cookie); 438 439 if (destroy) { 440 for (i = 0; i < vm->num_mem_segs; i++) 441 vm_free_mem_seg(vm, &vm->mem_segs[i]); 442 443 vm->num_mem_segs = 0; 444 445 VMSPACE_FREE(vm->vmspace); 446 vm->vmspace = NULL; 447 } 448 } 449 450 void 451 vm_destroy(struct vm *vm) 452 { 453 vm_cleanup(vm, true); 454 free(vm, M_VM); 455 } 456 457 int 458 vm_reinit(struct vm *vm) 459 { 460 int error; 461 462 /* 463 * A virtual machine can be reset only if all vcpus are suspended. 464 */ 465 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 466 vm_cleanup(vm, false); 467 vm_init(vm, false); 468 error = 0; 469 } else { 470 error = EBUSY; 471 } 472 473 return (error); 474 } 475 476 const char * 477 vm_name(struct vm *vm) 478 { 479 return (vm->name); 480 } 481 482 int 483 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 484 { 485 vm_object_t obj; 486 487 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 488 return (ENOMEM); 489 else 490 return (0); 491 } 492 493 int 494 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 495 { 496 497 vmm_mmio_free(vm->vmspace, gpa, len); 498 return (0); 499 } 500 501 boolean_t 502 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 503 { 504 int i; 505 vm_paddr_t gpabase, gpalimit; 506 507 for (i = 0; i < vm->num_mem_segs; i++) { 508 gpabase = vm->mem_segs[i].gpa; 509 gpalimit = gpabase + vm->mem_segs[i].len; 510 if (gpa >= gpabase && gpa < gpalimit) 511 return (TRUE); /* 'gpa' is regular memory */ 512 } 513 514 if (ppt_is_mmio(vm, gpa)) 515 return (TRUE); /* 'gpa' is pci passthru mmio */ 516 517 return (FALSE); 518 } 519 520 int 521 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 522 { 523 int available, allocated; 524 struct mem_seg *seg; 525 vm_object_t object; 526 vm_paddr_t g; 527 528 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 529 return (EINVAL); 530 531 available = allocated = 0; 532 g = gpa; 533 while (g < gpa + len) { 534 if (vm_mem_allocated(vm, g)) 535 allocated++; 536 else 537 available++; 538 539 g += PAGE_SIZE; 540 } 541 542 /* 543 * If there are some allocated and some available pages in the address 544 * range then it is an error. 545 */ 546 if (allocated && available) 547 return (EINVAL); 548 549 /* 550 * If the entire address range being requested has already been 551 * allocated then there isn't anything more to do. 552 */ 553 if (allocated && available == 0) 554 return (0); 555 556 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 557 return (E2BIG); 558 559 seg = &vm->mem_segs[vm->num_mem_segs]; 560 561 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 562 return (ENOMEM); 563 564 seg->gpa = gpa; 565 seg->len = len; 566 seg->object = object; 567 seg->wired = FALSE; 568 569 vm->num_mem_segs++; 570 571 return (0); 572 } 573 574 static vm_paddr_t 575 vm_maxmem(struct vm *vm) 576 { 577 int i; 578 vm_paddr_t gpa, maxmem; 579 580 maxmem = 0; 581 for (i = 0; i < vm->num_mem_segs; i++) { 582 gpa = vm->mem_segs[i].gpa + vm->mem_segs[i].len; 583 if (gpa > maxmem) 584 maxmem = gpa; 585 } 586 return (maxmem); 587 } 588 589 static void 590 vm_gpa_unwire(struct vm *vm) 591 { 592 int i, rv; 593 struct mem_seg *seg; 594 595 for (i = 0; i < vm->num_mem_segs; i++) { 596 seg = &vm->mem_segs[i]; 597 if (!seg->wired) 598 continue; 599 600 rv = vm_map_unwire(&vm->vmspace->vm_map, 601 seg->gpa, seg->gpa + seg->len, 602 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 603 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 604 "%#lx/%ld could not be unwired: %d", 605 vm_name(vm), seg->gpa, seg->len, rv)); 606 607 seg->wired = FALSE; 608 } 609 } 610 611 static int 612 vm_gpa_wire(struct vm *vm) 613 { 614 int i, rv; 615 struct mem_seg *seg; 616 617 for (i = 0; i < vm->num_mem_segs; i++) { 618 seg = &vm->mem_segs[i]; 619 if (seg->wired) 620 continue; 621 622 /* XXX rlimits? */ 623 rv = vm_map_wire(&vm->vmspace->vm_map, 624 seg->gpa, seg->gpa + seg->len, 625 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 626 if (rv != KERN_SUCCESS) 627 break; 628 629 seg->wired = TRUE; 630 } 631 632 if (i < vm->num_mem_segs) { 633 /* 634 * Undo the wiring before returning an error. 635 */ 636 vm_gpa_unwire(vm); 637 return (EAGAIN); 638 } 639 640 return (0); 641 } 642 643 static void 644 vm_iommu_modify(struct vm *vm, boolean_t map) 645 { 646 int i, sz; 647 vm_paddr_t gpa, hpa; 648 struct mem_seg *seg; 649 void *vp, *cookie, *host_domain; 650 651 sz = PAGE_SIZE; 652 host_domain = iommu_host_domain(); 653 654 for (i = 0; i < vm->num_mem_segs; i++) { 655 seg = &vm->mem_segs[i]; 656 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 657 vm_name(vm), seg->gpa, seg->len)); 658 659 gpa = seg->gpa; 660 while (gpa < seg->gpa + seg->len) { 661 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 662 &cookie); 663 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 664 vm_name(vm), gpa)); 665 666 vm_gpa_release(cookie); 667 668 hpa = DMAP_TO_PHYS((uintptr_t)vp); 669 if (map) { 670 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 671 iommu_remove_mapping(host_domain, hpa, sz); 672 } else { 673 iommu_remove_mapping(vm->iommu, gpa, sz); 674 iommu_create_mapping(host_domain, hpa, hpa, sz); 675 } 676 677 gpa += PAGE_SIZE; 678 } 679 } 680 681 /* 682 * Invalidate the cached translations associated with the domain 683 * from which pages were removed. 684 */ 685 if (map) 686 iommu_invalidate_tlb(host_domain); 687 else 688 iommu_invalidate_tlb(vm->iommu); 689 } 690 691 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 692 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 693 694 int 695 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 696 { 697 int error; 698 699 error = ppt_unassign_device(vm, bus, slot, func); 700 if (error) 701 return (error); 702 703 if (ppt_assigned_devices(vm) == 0) { 704 vm_iommu_unmap(vm); 705 vm_gpa_unwire(vm); 706 } 707 return (0); 708 } 709 710 int 711 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 712 { 713 int error; 714 vm_paddr_t maxaddr; 715 716 /* 717 * Virtual machines with pci passthru devices get special treatment: 718 * - the guest physical memory is wired 719 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 720 * 721 * We need to do this before the first pci passthru device is attached. 722 */ 723 if (ppt_assigned_devices(vm) == 0) { 724 KASSERT(vm->iommu == NULL, 725 ("vm_assign_pptdev: iommu must be NULL")); 726 maxaddr = vm_maxmem(vm); 727 vm->iommu = iommu_create_domain(maxaddr); 728 729 error = vm_gpa_wire(vm); 730 if (error) 731 return (error); 732 733 vm_iommu_map(vm); 734 } 735 736 error = ppt_assign_device(vm, bus, slot, func); 737 return (error); 738 } 739 740 void * 741 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 742 void **cookie) 743 { 744 int count, pageoff; 745 vm_page_t m; 746 747 pageoff = gpa & PAGE_MASK; 748 if (len > PAGE_SIZE - pageoff) 749 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 750 751 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 752 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 753 754 if (count == 1) { 755 *cookie = m; 756 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 757 } else { 758 *cookie = NULL; 759 return (NULL); 760 } 761 } 762 763 void 764 vm_gpa_release(void *cookie) 765 { 766 vm_page_t m = cookie; 767 768 vm_page_lock(m); 769 vm_page_unhold(m); 770 vm_page_unlock(m); 771 } 772 773 int 774 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 775 struct vm_memory_segment *seg) 776 { 777 int i; 778 779 for (i = 0; i < vm->num_mem_segs; i++) { 780 if (gpabase == vm->mem_segs[i].gpa) { 781 seg->gpa = vm->mem_segs[i].gpa; 782 seg->len = vm->mem_segs[i].len; 783 seg->wired = vm->mem_segs[i].wired; 784 return (0); 785 } 786 } 787 return (-1); 788 } 789 790 int 791 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 792 vm_offset_t *offset, struct vm_object **object) 793 { 794 int i; 795 size_t seg_len; 796 vm_paddr_t seg_gpa; 797 vm_object_t seg_obj; 798 799 for (i = 0; i < vm->num_mem_segs; i++) { 800 if ((seg_obj = vm->mem_segs[i].object) == NULL) 801 continue; 802 803 seg_gpa = vm->mem_segs[i].gpa; 804 seg_len = vm->mem_segs[i].len; 805 806 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 807 *offset = gpa - seg_gpa; 808 *object = seg_obj; 809 vm_object_reference(seg_obj); 810 return (0); 811 } 812 } 813 814 return (EINVAL); 815 } 816 817 int 818 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 819 { 820 821 if (vcpu < 0 || vcpu >= VM_MAXCPU) 822 return (EINVAL); 823 824 if (reg >= VM_REG_LAST) 825 return (EINVAL); 826 827 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 828 } 829 830 int 831 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val) 832 { 833 834 if (vcpu < 0 || vcpu >= VM_MAXCPU) 835 return (EINVAL); 836 837 if (reg >= VM_REG_LAST) 838 return (EINVAL); 839 840 return (VMSETREG(vm->cookie, vcpu, reg, val)); 841 } 842 843 static boolean_t 844 is_descriptor_table(int reg) 845 { 846 847 switch (reg) { 848 case VM_REG_GUEST_IDTR: 849 case VM_REG_GUEST_GDTR: 850 return (TRUE); 851 default: 852 return (FALSE); 853 } 854 } 855 856 static boolean_t 857 is_segment_register(int reg) 858 { 859 860 switch (reg) { 861 case VM_REG_GUEST_ES: 862 case VM_REG_GUEST_CS: 863 case VM_REG_GUEST_SS: 864 case VM_REG_GUEST_DS: 865 case VM_REG_GUEST_FS: 866 case VM_REG_GUEST_GS: 867 case VM_REG_GUEST_TR: 868 case VM_REG_GUEST_LDTR: 869 return (TRUE); 870 default: 871 return (FALSE); 872 } 873 } 874 875 int 876 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 877 struct seg_desc *desc) 878 { 879 880 if (vcpu < 0 || vcpu >= VM_MAXCPU) 881 return (EINVAL); 882 883 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 884 return (EINVAL); 885 886 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 887 } 888 889 int 890 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 891 struct seg_desc *desc) 892 { 893 if (vcpu < 0 || vcpu >= VM_MAXCPU) 894 return (EINVAL); 895 896 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 897 return (EINVAL); 898 899 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 900 } 901 902 static void 903 restore_guest_fpustate(struct vcpu *vcpu) 904 { 905 906 /* flush host state to the pcb */ 907 fpuexit(curthread); 908 909 /* restore guest FPU state */ 910 fpu_stop_emulating(); 911 fpurestore(vcpu->guestfpu); 912 913 /* restore guest XCR0 if XSAVE is enabled in the host */ 914 if (rcr4() & CR4_XSAVE) 915 load_xcr(0, vcpu->guest_xcr0); 916 917 /* 918 * The FPU is now "dirty" with the guest's state so turn on emulation 919 * to trap any access to the FPU by the host. 920 */ 921 fpu_start_emulating(); 922 } 923 924 static void 925 save_guest_fpustate(struct vcpu *vcpu) 926 { 927 928 if ((rcr0() & CR0_TS) == 0) 929 panic("fpu emulation not enabled in host!"); 930 931 /* save guest XCR0 and restore host XCR0 */ 932 if (rcr4() & CR4_XSAVE) { 933 vcpu->guest_xcr0 = rxcr(0); 934 load_xcr(0, vmm_get_host_xcr0()); 935 } 936 937 /* save guest FPU state */ 938 fpu_stop_emulating(); 939 fpusave(vcpu->guestfpu); 940 fpu_start_emulating(); 941 } 942 943 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 944 945 static int 946 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 947 bool from_idle) 948 { 949 int error; 950 951 vcpu_assert_locked(vcpu); 952 953 /* 954 * State transitions from the vmmdev_ioctl() must always begin from 955 * the VCPU_IDLE state. This guarantees that there is only a single 956 * ioctl() operating on a vcpu at any point. 957 */ 958 if (from_idle) { 959 while (vcpu->state != VCPU_IDLE) 960 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 961 } else { 962 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 963 "vcpu idle state")); 964 } 965 966 if (vcpu->state == VCPU_RUNNING) { 967 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 968 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 969 } else { 970 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 971 "vcpu that is not running", vcpu->hostcpu)); 972 } 973 974 /* 975 * The following state transitions are allowed: 976 * IDLE -> FROZEN -> IDLE 977 * FROZEN -> RUNNING -> FROZEN 978 * FROZEN -> SLEEPING -> FROZEN 979 */ 980 switch (vcpu->state) { 981 case VCPU_IDLE: 982 case VCPU_RUNNING: 983 case VCPU_SLEEPING: 984 error = (newstate != VCPU_FROZEN); 985 break; 986 case VCPU_FROZEN: 987 error = (newstate == VCPU_FROZEN); 988 break; 989 default: 990 error = 1; 991 break; 992 } 993 994 if (error) 995 return (EBUSY); 996 997 vcpu->state = newstate; 998 if (newstate == VCPU_RUNNING) 999 vcpu->hostcpu = curcpu; 1000 else 1001 vcpu->hostcpu = NOCPU; 1002 1003 if (newstate == VCPU_IDLE) 1004 wakeup(&vcpu->state); 1005 1006 return (0); 1007 } 1008 1009 static void 1010 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1011 { 1012 int error; 1013 1014 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1015 panic("Error %d setting state to %d\n", error, newstate); 1016 } 1017 1018 static void 1019 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1020 { 1021 int error; 1022 1023 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1024 panic("Error %d setting state to %d", error, newstate); 1025 } 1026 1027 static void 1028 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1029 { 1030 1031 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1032 1033 /* 1034 * Update 'rendezvous_func' and execute a write memory barrier to 1035 * ensure that it is visible across all host cpus. This is not needed 1036 * for correctness but it does ensure that all the vcpus will notice 1037 * that the rendezvous is requested immediately. 1038 */ 1039 vm->rendezvous_func = func; 1040 wmb(); 1041 } 1042 1043 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1044 do { \ 1045 if (vcpuid >= 0) \ 1046 VCPU_CTR0(vm, vcpuid, fmt); \ 1047 else \ 1048 VM_CTR0(vm, fmt); \ 1049 } while (0) 1050 1051 static void 1052 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1053 { 1054 1055 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1056 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1057 1058 mtx_lock(&vm->rendezvous_mtx); 1059 while (vm->rendezvous_func != NULL) { 1060 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1061 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1062 1063 if (vcpuid != -1 && 1064 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1065 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1066 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1067 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1068 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1069 } 1070 if (CPU_CMP(&vm->rendezvous_req_cpus, 1071 &vm->rendezvous_done_cpus) == 0) { 1072 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1073 vm_set_rendezvous_func(vm, NULL); 1074 wakeup(&vm->rendezvous_func); 1075 break; 1076 } 1077 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1078 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1079 "vmrndv", 0); 1080 } 1081 mtx_unlock(&vm->rendezvous_mtx); 1082 } 1083 1084 /* 1085 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1086 */ 1087 static int 1088 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1089 { 1090 struct vcpu *vcpu; 1091 const char *wmesg; 1092 int error, t, vcpu_halted, vm_halted; 1093 1094 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1095 1096 vcpu = &vm->vcpu[vcpuid]; 1097 vcpu_halted = 0; 1098 vm_halted = 0; 1099 1100 /* 1101 * The typical way to halt a cpu is to execute: "sti; hlt" 1102 * 1103 * STI sets RFLAGS.IF to enable interrupts. However, the processor 1104 * remains in an "interrupt shadow" for an additional instruction 1105 * following the STI. This guarantees that "sti; hlt" sequence is 1106 * atomic and a pending interrupt will be recognized after the HLT. 1107 * 1108 * After the HLT emulation is done the vcpu is no longer in an 1109 * interrupt shadow and a pending interrupt can be injected on 1110 * the next entry into the guest. 1111 */ 1112 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 1113 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 1114 __func__, error)); 1115 1116 vcpu_lock(vcpu); 1117 while (1) { 1118 /* 1119 * Do a final check for pending NMI or interrupts before 1120 * really putting this thread to sleep. Also check for 1121 * software events that would cause this vcpu to wakeup. 1122 * 1123 * These interrupts/events could have happened after the 1124 * vcpu returned from VMRUN() and before it acquired the 1125 * vcpu lock above. 1126 */ 1127 if (vm->rendezvous_func != NULL || vm->suspend) 1128 break; 1129 if (vm_nmi_pending(vm, vcpuid)) 1130 break; 1131 if (!intr_disabled) { 1132 if (vm_extint_pending(vm, vcpuid) || 1133 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1134 break; 1135 } 1136 } 1137 1138 /* Don't go to sleep if the vcpu thread needs to yield */ 1139 if (vcpu_should_yield(vm, vcpuid)) 1140 break; 1141 1142 /* 1143 * Some Linux guests implement "halt" by having all vcpus 1144 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1145 * track of the vcpus that have entered this state. When all 1146 * vcpus enter the halted state the virtual machine is halted. 1147 */ 1148 if (intr_disabled) { 1149 wmesg = "vmhalt"; 1150 VCPU_CTR0(vm, vcpuid, "Halted"); 1151 if (!vcpu_halted && halt_detection_enabled) { 1152 vcpu_halted = 1; 1153 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1154 } 1155 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1156 vm_halted = 1; 1157 break; 1158 } 1159 } else { 1160 wmesg = "vmidle"; 1161 } 1162 1163 t = ticks; 1164 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1165 /* 1166 * XXX msleep_spin() cannot be interrupted by signals so 1167 * wake up periodically to check pending signals. 1168 */ 1169 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1170 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1171 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1172 } 1173 1174 if (vcpu_halted) 1175 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1176 1177 vcpu_unlock(vcpu); 1178 1179 if (vm_halted) 1180 vm_suspend(vm, VM_SUSPEND_HALT); 1181 1182 return (0); 1183 } 1184 1185 static int 1186 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1187 { 1188 int rv, ftype; 1189 struct vm_map *map; 1190 struct vcpu *vcpu; 1191 struct vm_exit *vme; 1192 1193 vcpu = &vm->vcpu[vcpuid]; 1194 vme = &vcpu->exitinfo; 1195 1196 ftype = vme->u.paging.fault_type; 1197 KASSERT(ftype == VM_PROT_READ || 1198 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1199 ("vm_handle_paging: invalid fault_type %d", ftype)); 1200 1201 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1202 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1203 vme->u.paging.gpa, ftype); 1204 if (rv == 0) { 1205 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1206 ftype == VM_PROT_READ ? "accessed" : "dirty", 1207 vme->u.paging.gpa); 1208 goto done; 1209 } 1210 } 1211 1212 map = &vm->vmspace->vm_map; 1213 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1214 1215 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1216 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1217 1218 if (rv != KERN_SUCCESS) 1219 return (EFAULT); 1220 done: 1221 /* restart execution at the faulting instruction */ 1222 vme->inst_length = 0; 1223 1224 return (0); 1225 } 1226 1227 static int 1228 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1229 { 1230 struct vie *vie; 1231 struct vcpu *vcpu; 1232 struct vm_exit *vme; 1233 uint64_t gla, gpa; 1234 struct vm_guest_paging *paging; 1235 mem_region_read_t mread; 1236 mem_region_write_t mwrite; 1237 enum vm_cpu_mode cpu_mode; 1238 int cs_d, error, length; 1239 1240 vcpu = &vm->vcpu[vcpuid]; 1241 vme = &vcpu->exitinfo; 1242 1243 gla = vme->u.inst_emul.gla; 1244 gpa = vme->u.inst_emul.gpa; 1245 cs_d = vme->u.inst_emul.cs_d; 1246 vie = &vme->u.inst_emul.vie; 1247 paging = &vme->u.inst_emul.paging; 1248 cpu_mode = paging->cpu_mode; 1249 1250 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1251 1252 /* Fetch, decode and emulate the faulting instruction */ 1253 if (vie->num_valid == 0) { 1254 /* 1255 * If the instruction length is not known then assume a 1256 * maximum size instruction. 1257 */ 1258 length = vme->inst_length ? vme->inst_length : VIE_INST_SIZE; 1259 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip, 1260 length, vie); 1261 } else { 1262 /* 1263 * The instruction bytes have already been copied into 'vie' 1264 */ 1265 error = 0; 1266 } 1267 if (error == 1) 1268 return (0); /* Resume guest to handle page fault */ 1269 else if (error == -1) 1270 return (EFAULT); 1271 else if (error != 0) 1272 panic("%s: vmm_fetch_instruction error %d", __func__, error); 1273 1274 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) 1275 return (EFAULT); 1276 1277 /* 1278 * If the instruction length is not specified the update it now. 1279 */ 1280 if (vme->inst_length == 0) 1281 vme->inst_length = vie->num_processed; 1282 1283 /* return to userland unless this is an in-kernel emulated device */ 1284 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1285 mread = lapic_mmio_read; 1286 mwrite = lapic_mmio_write; 1287 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1288 mread = vioapic_mmio_read; 1289 mwrite = vioapic_mmio_write; 1290 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1291 mread = vhpet_mmio_read; 1292 mwrite = vhpet_mmio_write; 1293 } else { 1294 *retu = true; 1295 return (0); 1296 } 1297 1298 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1299 mread, mwrite, retu); 1300 1301 return (error); 1302 } 1303 1304 static int 1305 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1306 { 1307 int i, done; 1308 struct vcpu *vcpu; 1309 1310 done = 0; 1311 vcpu = &vm->vcpu[vcpuid]; 1312 1313 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1314 1315 /* 1316 * Wait until all 'active_cpus' have suspended themselves. 1317 * 1318 * Since a VM may be suspended at any time including when one or 1319 * more vcpus are doing a rendezvous we need to call the rendezvous 1320 * handler while we are waiting to prevent a deadlock. 1321 */ 1322 vcpu_lock(vcpu); 1323 while (1) { 1324 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1325 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1326 break; 1327 } 1328 1329 if (vm->rendezvous_func == NULL) { 1330 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1331 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1332 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1333 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1334 } else { 1335 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1336 vcpu_unlock(vcpu); 1337 vm_handle_rendezvous(vm, vcpuid); 1338 vcpu_lock(vcpu); 1339 } 1340 } 1341 vcpu_unlock(vcpu); 1342 1343 /* 1344 * Wakeup the other sleeping vcpus and return to userspace. 1345 */ 1346 for (i = 0; i < VM_MAXCPU; i++) { 1347 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1348 vcpu_notify_event(vm, i, false); 1349 } 1350 } 1351 1352 *retu = true; 1353 return (0); 1354 } 1355 1356 int 1357 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1358 { 1359 int i; 1360 1361 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1362 return (EINVAL); 1363 1364 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1365 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1366 vm->suspend, how); 1367 return (EALREADY); 1368 } 1369 1370 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1371 1372 /* 1373 * Notify all active vcpus that they are now suspended. 1374 */ 1375 for (i = 0; i < VM_MAXCPU; i++) { 1376 if (CPU_ISSET(i, &vm->active_cpus)) 1377 vcpu_notify_event(vm, i, false); 1378 } 1379 1380 return (0); 1381 } 1382 1383 void 1384 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1385 { 1386 struct vm_exit *vmexit; 1387 1388 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1389 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1390 1391 vmexit = vm_exitinfo(vm, vcpuid); 1392 vmexit->rip = rip; 1393 vmexit->inst_length = 0; 1394 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1395 vmexit->u.suspended.how = vm->suspend; 1396 } 1397 1398 void 1399 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1400 { 1401 struct vm_exit *vmexit; 1402 1403 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1404 1405 vmexit = vm_exitinfo(vm, vcpuid); 1406 vmexit->rip = rip; 1407 vmexit->inst_length = 0; 1408 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1409 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1410 } 1411 1412 void 1413 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1414 { 1415 struct vm_exit *vmexit; 1416 1417 vmexit = vm_exitinfo(vm, vcpuid); 1418 vmexit->rip = rip; 1419 vmexit->inst_length = 0; 1420 vmexit->exitcode = VM_EXITCODE_BOGUS; 1421 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1422 } 1423 1424 int 1425 vm_run(struct vm *vm, struct vm_run *vmrun) 1426 { 1427 int error, vcpuid; 1428 struct vcpu *vcpu; 1429 struct pcb *pcb; 1430 uint64_t tscval, rip; 1431 struct vm_exit *vme; 1432 bool retu, intr_disabled; 1433 pmap_t pmap; 1434 void *rptr, *sptr; 1435 1436 vcpuid = vmrun->cpuid; 1437 1438 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1439 return (EINVAL); 1440 1441 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1442 return (EINVAL); 1443 1444 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1445 return (EINVAL); 1446 1447 rptr = &vm->rendezvous_func; 1448 sptr = &vm->suspend; 1449 pmap = vmspace_pmap(vm->vmspace); 1450 vcpu = &vm->vcpu[vcpuid]; 1451 vme = &vcpu->exitinfo; 1452 rip = vmrun->rip; 1453 restart: 1454 critical_enter(); 1455 1456 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1457 ("vm_run: absurd pm_active")); 1458 1459 tscval = rdtsc(); 1460 1461 pcb = PCPU_GET(curpcb); 1462 set_pcb_flags(pcb, PCB_FULL_IRET); 1463 1464 restore_guest_fpustate(vcpu); 1465 1466 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1467 error = VMRUN(vm->cookie, vcpuid, rip, pmap, rptr, sptr); 1468 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1469 1470 save_guest_fpustate(vcpu); 1471 1472 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1473 1474 critical_exit(); 1475 1476 if (error == 0) { 1477 retu = false; 1478 switch (vme->exitcode) { 1479 case VM_EXITCODE_SUSPENDED: 1480 error = vm_handle_suspend(vm, vcpuid, &retu); 1481 break; 1482 case VM_EXITCODE_IOAPIC_EOI: 1483 vioapic_process_eoi(vm, vcpuid, 1484 vme->u.ioapic_eoi.vector); 1485 break; 1486 case VM_EXITCODE_RENDEZVOUS: 1487 vm_handle_rendezvous(vm, vcpuid); 1488 error = 0; 1489 break; 1490 case VM_EXITCODE_HLT: 1491 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1492 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1493 break; 1494 case VM_EXITCODE_PAGING: 1495 error = vm_handle_paging(vm, vcpuid, &retu); 1496 break; 1497 case VM_EXITCODE_INST_EMUL: 1498 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1499 break; 1500 case VM_EXITCODE_INOUT: 1501 case VM_EXITCODE_INOUT_STR: 1502 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1503 break; 1504 case VM_EXITCODE_MONITOR: 1505 case VM_EXITCODE_MWAIT: 1506 vm_inject_ud(vm, vcpuid); 1507 break; 1508 default: 1509 retu = true; /* handled in userland */ 1510 break; 1511 } 1512 } 1513 1514 if (error == 0 && retu == false) { 1515 rip = vme->rip + vme->inst_length; 1516 goto restart; 1517 } 1518 1519 /* copy the exit information */ 1520 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1521 return (error); 1522 } 1523 1524 int 1525 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1526 { 1527 struct vcpu *vcpu; 1528 int type, vector; 1529 1530 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1531 return (EINVAL); 1532 1533 vcpu = &vm->vcpu[vcpuid]; 1534 1535 if (info & VM_INTINFO_VALID) { 1536 type = info & VM_INTINFO_TYPE; 1537 vector = info & 0xff; 1538 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1539 return (EINVAL); 1540 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1541 return (EINVAL); 1542 if (info & VM_INTINFO_RSVD) 1543 return (EINVAL); 1544 } else { 1545 info = 0; 1546 } 1547 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1548 vcpu->exitintinfo = info; 1549 return (0); 1550 } 1551 1552 enum exc_class { 1553 EXC_BENIGN, 1554 EXC_CONTRIBUTORY, 1555 EXC_PAGEFAULT 1556 }; 1557 1558 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1559 1560 static enum exc_class 1561 exception_class(uint64_t info) 1562 { 1563 int type, vector; 1564 1565 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1566 type = info & VM_INTINFO_TYPE; 1567 vector = info & 0xff; 1568 1569 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1570 switch (type) { 1571 case VM_INTINFO_HWINTR: 1572 case VM_INTINFO_SWINTR: 1573 case VM_INTINFO_NMI: 1574 return (EXC_BENIGN); 1575 default: 1576 /* 1577 * Hardware exception. 1578 * 1579 * SVM and VT-x use identical type values to represent NMI, 1580 * hardware interrupt and software interrupt. 1581 * 1582 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1583 * for exceptions except #BP and #OF. #BP and #OF use a type 1584 * value of '5' or '6'. Therefore we don't check for explicit 1585 * values of 'type' to classify 'intinfo' into a hardware 1586 * exception. 1587 */ 1588 break; 1589 } 1590 1591 switch (vector) { 1592 case IDT_PF: 1593 case IDT_VE: 1594 return (EXC_PAGEFAULT); 1595 case IDT_DE: 1596 case IDT_TS: 1597 case IDT_NP: 1598 case IDT_SS: 1599 case IDT_GP: 1600 return (EXC_CONTRIBUTORY); 1601 default: 1602 return (EXC_BENIGN); 1603 } 1604 } 1605 1606 static int 1607 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1608 uint64_t *retinfo) 1609 { 1610 enum exc_class exc1, exc2; 1611 int type1, vector1; 1612 1613 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1614 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1615 1616 /* 1617 * If an exception occurs while attempting to call the double-fault 1618 * handler the processor enters shutdown mode (aka triple fault). 1619 */ 1620 type1 = info1 & VM_INTINFO_TYPE; 1621 vector1 = info1 & 0xff; 1622 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1623 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1624 info1, info2); 1625 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1626 *retinfo = 0; 1627 return (0); 1628 } 1629 1630 /* 1631 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1632 */ 1633 exc1 = exception_class(info1); 1634 exc2 = exception_class(info2); 1635 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1636 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1637 /* Convert nested fault into a double fault. */ 1638 *retinfo = IDT_DF; 1639 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1640 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1641 } else { 1642 /* Handle exceptions serially */ 1643 *retinfo = info2; 1644 } 1645 return (1); 1646 } 1647 1648 static uint64_t 1649 vcpu_exception_intinfo(struct vcpu *vcpu) 1650 { 1651 uint64_t info = 0; 1652 1653 if (vcpu->exception_pending) { 1654 info = vcpu->exception.vector & 0xff; 1655 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1656 if (vcpu->exception.error_code_valid) { 1657 info |= VM_INTINFO_DEL_ERRCODE; 1658 info |= (uint64_t)vcpu->exception.error_code << 32; 1659 } 1660 } 1661 return (info); 1662 } 1663 1664 int 1665 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1666 { 1667 struct vcpu *vcpu; 1668 uint64_t info1, info2; 1669 int valid; 1670 1671 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1672 1673 vcpu = &vm->vcpu[vcpuid]; 1674 1675 info1 = vcpu->exitintinfo; 1676 vcpu->exitintinfo = 0; 1677 1678 info2 = 0; 1679 if (vcpu->exception_pending) { 1680 info2 = vcpu_exception_intinfo(vcpu); 1681 vcpu->exception_pending = 0; 1682 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1683 vcpu->exception.vector, info2); 1684 } 1685 1686 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1687 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1688 } else if (info1 & VM_INTINFO_VALID) { 1689 *retinfo = info1; 1690 valid = 1; 1691 } else if (info2 & VM_INTINFO_VALID) { 1692 *retinfo = info2; 1693 valid = 1; 1694 } else { 1695 valid = 0; 1696 } 1697 1698 if (valid) { 1699 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1700 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1701 } 1702 1703 return (valid); 1704 } 1705 1706 int 1707 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1708 { 1709 struct vcpu *vcpu; 1710 1711 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1712 return (EINVAL); 1713 1714 vcpu = &vm->vcpu[vcpuid]; 1715 *info1 = vcpu->exitintinfo; 1716 *info2 = vcpu_exception_intinfo(vcpu); 1717 return (0); 1718 } 1719 1720 int 1721 vm_inject_exception(struct vm *vm, int vcpuid, struct vm_exception *exception) 1722 { 1723 struct vcpu *vcpu; 1724 1725 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1726 return (EINVAL); 1727 1728 if (exception->vector < 0 || exception->vector >= 32) 1729 return (EINVAL); 1730 1731 /* 1732 * A double fault exception should never be injected directly into 1733 * the guest. It is a derived exception that results from specific 1734 * combinations of nested faults. 1735 */ 1736 if (exception->vector == IDT_DF) 1737 return (EINVAL); 1738 1739 vcpu = &vm->vcpu[vcpuid]; 1740 1741 if (vcpu->exception_pending) { 1742 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1743 "pending exception %d", exception->vector, 1744 vcpu->exception.vector); 1745 return (EBUSY); 1746 } 1747 1748 vcpu->exception_pending = 1; 1749 vcpu->exception = *exception; 1750 VCPU_CTR1(vm, vcpuid, "Exception %d pending", exception->vector); 1751 return (0); 1752 } 1753 1754 void 1755 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 1756 int errcode) 1757 { 1758 struct vm_exception exception; 1759 struct vm_exit *vmexit; 1760 struct vm *vm; 1761 int error; 1762 1763 vm = vmarg; 1764 1765 exception.vector = vector; 1766 exception.error_code = errcode; 1767 exception.error_code_valid = errcode_valid; 1768 error = vm_inject_exception(vm, vcpuid, &exception); 1769 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1770 1771 /* 1772 * A fault-like exception allows the instruction to be restarted 1773 * after the exception handler returns. 1774 * 1775 * By setting the inst_length to 0 we ensure that the instruction 1776 * pointer remains at the faulting instruction. 1777 */ 1778 vmexit = vm_exitinfo(vm, vcpuid); 1779 vmexit->inst_length = 0; 1780 } 1781 1782 void 1783 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 1784 { 1785 struct vm *vm; 1786 int error; 1787 1788 vm = vmarg; 1789 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 1790 error_code, cr2); 1791 1792 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 1793 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 1794 1795 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 1796 } 1797 1798 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1799 1800 int 1801 vm_inject_nmi(struct vm *vm, int vcpuid) 1802 { 1803 struct vcpu *vcpu; 1804 1805 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1806 return (EINVAL); 1807 1808 vcpu = &vm->vcpu[vcpuid]; 1809 1810 vcpu->nmi_pending = 1; 1811 vcpu_notify_event(vm, vcpuid, false); 1812 return (0); 1813 } 1814 1815 int 1816 vm_nmi_pending(struct vm *vm, int vcpuid) 1817 { 1818 struct vcpu *vcpu; 1819 1820 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1821 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1822 1823 vcpu = &vm->vcpu[vcpuid]; 1824 1825 return (vcpu->nmi_pending); 1826 } 1827 1828 void 1829 vm_nmi_clear(struct vm *vm, int vcpuid) 1830 { 1831 struct vcpu *vcpu; 1832 1833 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1834 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1835 1836 vcpu = &vm->vcpu[vcpuid]; 1837 1838 if (vcpu->nmi_pending == 0) 1839 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1840 1841 vcpu->nmi_pending = 0; 1842 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1843 } 1844 1845 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1846 1847 int 1848 vm_inject_extint(struct vm *vm, int vcpuid) 1849 { 1850 struct vcpu *vcpu; 1851 1852 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1853 return (EINVAL); 1854 1855 vcpu = &vm->vcpu[vcpuid]; 1856 1857 vcpu->extint_pending = 1; 1858 vcpu_notify_event(vm, vcpuid, false); 1859 return (0); 1860 } 1861 1862 int 1863 vm_extint_pending(struct vm *vm, int vcpuid) 1864 { 1865 struct vcpu *vcpu; 1866 1867 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1868 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1869 1870 vcpu = &vm->vcpu[vcpuid]; 1871 1872 return (vcpu->extint_pending); 1873 } 1874 1875 void 1876 vm_extint_clear(struct vm *vm, int vcpuid) 1877 { 1878 struct vcpu *vcpu; 1879 1880 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1881 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1882 1883 vcpu = &vm->vcpu[vcpuid]; 1884 1885 if (vcpu->extint_pending == 0) 1886 panic("vm_extint_clear: inconsistent extint_pending state"); 1887 1888 vcpu->extint_pending = 0; 1889 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1890 } 1891 1892 int 1893 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1894 { 1895 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1896 return (EINVAL); 1897 1898 if (type < 0 || type >= VM_CAP_MAX) 1899 return (EINVAL); 1900 1901 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1902 } 1903 1904 int 1905 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1906 { 1907 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1908 return (EINVAL); 1909 1910 if (type < 0 || type >= VM_CAP_MAX) 1911 return (EINVAL); 1912 1913 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1914 } 1915 1916 struct vlapic * 1917 vm_lapic(struct vm *vm, int cpu) 1918 { 1919 return (vm->vcpu[cpu].vlapic); 1920 } 1921 1922 struct vioapic * 1923 vm_ioapic(struct vm *vm) 1924 { 1925 1926 return (vm->vioapic); 1927 } 1928 1929 struct vhpet * 1930 vm_hpet(struct vm *vm) 1931 { 1932 1933 return (vm->vhpet); 1934 } 1935 1936 boolean_t 1937 vmm_is_pptdev(int bus, int slot, int func) 1938 { 1939 int found, i, n; 1940 int b, s, f; 1941 char *val, *cp, *cp2; 1942 1943 /* 1944 * XXX 1945 * The length of an environment variable is limited to 128 bytes which 1946 * puts an upper limit on the number of passthru devices that may be 1947 * specified using a single environment variable. 1948 * 1949 * Work around this by scanning multiple environment variable 1950 * names instead of a single one - yuck! 1951 */ 1952 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 1953 1954 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 1955 found = 0; 1956 for (i = 0; names[i] != NULL && !found; i++) { 1957 cp = val = kern_getenv(names[i]); 1958 while (cp != NULL && *cp != '\0') { 1959 if ((cp2 = strchr(cp, ' ')) != NULL) 1960 *cp2 = '\0'; 1961 1962 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 1963 if (n == 3 && bus == b && slot == s && func == f) { 1964 found = 1; 1965 break; 1966 } 1967 1968 if (cp2 != NULL) 1969 *cp2++ = ' '; 1970 1971 cp = cp2; 1972 } 1973 freeenv(val); 1974 } 1975 return (found); 1976 } 1977 1978 void * 1979 vm_iommu_domain(struct vm *vm) 1980 { 1981 1982 return (vm->iommu); 1983 } 1984 1985 int 1986 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1987 bool from_idle) 1988 { 1989 int error; 1990 struct vcpu *vcpu; 1991 1992 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1993 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 1994 1995 vcpu = &vm->vcpu[vcpuid]; 1996 1997 vcpu_lock(vcpu); 1998 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1999 vcpu_unlock(vcpu); 2000 2001 return (error); 2002 } 2003 2004 enum vcpu_state 2005 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2006 { 2007 struct vcpu *vcpu; 2008 enum vcpu_state state; 2009 2010 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2011 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2012 2013 vcpu = &vm->vcpu[vcpuid]; 2014 2015 vcpu_lock(vcpu); 2016 state = vcpu->state; 2017 if (hostcpu != NULL) 2018 *hostcpu = vcpu->hostcpu; 2019 vcpu_unlock(vcpu); 2020 2021 return (state); 2022 } 2023 2024 int 2025 vm_activate_cpu(struct vm *vm, int vcpuid) 2026 { 2027 2028 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2029 return (EINVAL); 2030 2031 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2032 return (EBUSY); 2033 2034 VCPU_CTR0(vm, vcpuid, "activated"); 2035 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2036 return (0); 2037 } 2038 2039 cpuset_t 2040 vm_active_cpus(struct vm *vm) 2041 { 2042 2043 return (vm->active_cpus); 2044 } 2045 2046 cpuset_t 2047 vm_suspended_cpus(struct vm *vm) 2048 { 2049 2050 return (vm->suspended_cpus); 2051 } 2052 2053 void * 2054 vcpu_stats(struct vm *vm, int vcpuid) 2055 { 2056 2057 return (vm->vcpu[vcpuid].stats); 2058 } 2059 2060 int 2061 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2062 { 2063 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2064 return (EINVAL); 2065 2066 *state = vm->vcpu[vcpuid].x2apic_state; 2067 2068 return (0); 2069 } 2070 2071 int 2072 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2073 { 2074 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2075 return (EINVAL); 2076 2077 if (state >= X2APIC_STATE_LAST) 2078 return (EINVAL); 2079 2080 vm->vcpu[vcpuid].x2apic_state = state; 2081 2082 vlapic_set_x2apic_state(vm, vcpuid, state); 2083 2084 return (0); 2085 } 2086 2087 /* 2088 * This function is called to ensure that a vcpu "sees" a pending event 2089 * as soon as possible: 2090 * - If the vcpu thread is sleeping then it is woken up. 2091 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2092 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2093 */ 2094 void 2095 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2096 { 2097 int hostcpu; 2098 struct vcpu *vcpu; 2099 2100 vcpu = &vm->vcpu[vcpuid]; 2101 2102 vcpu_lock(vcpu); 2103 hostcpu = vcpu->hostcpu; 2104 if (vcpu->state == VCPU_RUNNING) { 2105 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2106 if (hostcpu != curcpu) { 2107 if (lapic_intr) { 2108 vlapic_post_intr(vcpu->vlapic, hostcpu, 2109 vmm_ipinum); 2110 } else { 2111 ipi_cpu(hostcpu, vmm_ipinum); 2112 } 2113 } else { 2114 /* 2115 * If the 'vcpu' is running on 'curcpu' then it must 2116 * be sending a notification to itself (e.g. SELF_IPI). 2117 * The pending event will be picked up when the vcpu 2118 * transitions back to guest context. 2119 */ 2120 } 2121 } else { 2122 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2123 "with hostcpu %d", vcpu->state, hostcpu)); 2124 if (vcpu->state == VCPU_SLEEPING) 2125 wakeup_one(vcpu); 2126 } 2127 vcpu_unlock(vcpu); 2128 } 2129 2130 struct vmspace * 2131 vm_get_vmspace(struct vm *vm) 2132 { 2133 2134 return (vm->vmspace); 2135 } 2136 2137 int 2138 vm_apicid2vcpuid(struct vm *vm, int apicid) 2139 { 2140 /* 2141 * XXX apic id is assumed to be numerically identical to vcpu id 2142 */ 2143 return (apicid); 2144 } 2145 2146 void 2147 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2148 vm_rendezvous_func_t func, void *arg) 2149 { 2150 int i; 2151 2152 /* 2153 * Enforce that this function is called without any locks 2154 */ 2155 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2156 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2157 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2158 2159 restart: 2160 mtx_lock(&vm->rendezvous_mtx); 2161 if (vm->rendezvous_func != NULL) { 2162 /* 2163 * If a rendezvous is already in progress then we need to 2164 * call the rendezvous handler in case this 'vcpuid' is one 2165 * of the targets of the rendezvous. 2166 */ 2167 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2168 mtx_unlock(&vm->rendezvous_mtx); 2169 vm_handle_rendezvous(vm, vcpuid); 2170 goto restart; 2171 } 2172 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2173 "rendezvous is still in progress")); 2174 2175 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2176 vm->rendezvous_req_cpus = dest; 2177 CPU_ZERO(&vm->rendezvous_done_cpus); 2178 vm->rendezvous_arg = arg; 2179 vm_set_rendezvous_func(vm, func); 2180 mtx_unlock(&vm->rendezvous_mtx); 2181 2182 /* 2183 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2184 * vcpus so they handle the rendezvous as soon as possible. 2185 */ 2186 for (i = 0; i < VM_MAXCPU; i++) { 2187 if (CPU_ISSET(i, &dest)) 2188 vcpu_notify_event(vm, i, false); 2189 } 2190 2191 vm_handle_rendezvous(vm, vcpuid); 2192 } 2193 2194 struct vatpic * 2195 vm_atpic(struct vm *vm) 2196 { 2197 return (vm->vatpic); 2198 } 2199 2200 struct vatpit * 2201 vm_atpit(struct vm *vm) 2202 { 2203 return (vm->vatpit); 2204 } 2205 2206 struct vpmtmr * 2207 vm_pmtmr(struct vm *vm) 2208 { 2209 2210 return (vm->vpmtmr); 2211 } 2212 2213 enum vm_reg_name 2214 vm_segment_name(int seg) 2215 { 2216 static enum vm_reg_name seg_names[] = { 2217 VM_REG_GUEST_ES, 2218 VM_REG_GUEST_CS, 2219 VM_REG_GUEST_SS, 2220 VM_REG_GUEST_DS, 2221 VM_REG_GUEST_FS, 2222 VM_REG_GUEST_GS 2223 }; 2224 2225 KASSERT(seg >= 0 && seg < nitems(seg_names), 2226 ("%s: invalid segment encoding %d", __func__, seg)); 2227 return (seg_names[seg]); 2228 } 2229 2230 void 2231 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2232 int num_copyinfo) 2233 { 2234 int idx; 2235 2236 for (idx = 0; idx < num_copyinfo; idx++) { 2237 if (copyinfo[idx].cookie != NULL) 2238 vm_gpa_release(copyinfo[idx].cookie); 2239 } 2240 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2241 } 2242 2243 int 2244 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2245 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2246 int num_copyinfo) 2247 { 2248 int error, idx, nused; 2249 size_t n, off, remaining; 2250 void *hva, *cookie; 2251 uint64_t gpa; 2252 2253 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2254 2255 nused = 0; 2256 remaining = len; 2257 while (remaining > 0) { 2258 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2259 error = vmm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa); 2260 if (error) 2261 return (error); 2262 off = gpa & PAGE_MASK; 2263 n = min(remaining, PAGE_SIZE - off); 2264 copyinfo[nused].gpa = gpa; 2265 copyinfo[nused].len = n; 2266 remaining -= n; 2267 gla += n; 2268 nused++; 2269 } 2270 2271 for (idx = 0; idx < nused; idx++) { 2272 hva = vm_gpa_hold(vm, copyinfo[idx].gpa, copyinfo[idx].len, 2273 prot, &cookie); 2274 if (hva == NULL) 2275 break; 2276 copyinfo[idx].hva = hva; 2277 copyinfo[idx].cookie = cookie; 2278 } 2279 2280 if (idx != nused) { 2281 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2282 return (-1); 2283 } else { 2284 return (0); 2285 } 2286 } 2287 2288 void 2289 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2290 size_t len) 2291 { 2292 char *dst; 2293 int idx; 2294 2295 dst = kaddr; 2296 idx = 0; 2297 while (len > 0) { 2298 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2299 len -= copyinfo[idx].len; 2300 dst += copyinfo[idx].len; 2301 idx++; 2302 } 2303 } 2304 2305 void 2306 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2307 struct vm_copyinfo *copyinfo, size_t len) 2308 { 2309 const char *src; 2310 int idx; 2311 2312 src = kaddr; 2313 idx = 0; 2314 while (len > 0) { 2315 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2316 len -= copyinfo[idx].len; 2317 src += copyinfo[idx].len; 2318 idx++; 2319 } 2320 } 2321 2322 /* 2323 * Return the amount of in-use and wired memory for the VM. Since 2324 * these are global stats, only return the values with for vCPU 0 2325 */ 2326 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2327 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2328 2329 static void 2330 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2331 { 2332 2333 if (vcpu == 0) { 2334 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2335 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2336 } 2337 } 2338 2339 static void 2340 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2341 { 2342 2343 if (vcpu == 0) { 2344 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2345 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2346 } 2347 } 2348 2349 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2350 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2351