xref: /freebsd/sys/amd64/vmm/vmm.c (revision f5f7c05209ca2c3748fd8b27c5e80ffad49120eb)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/sysctl.h>
37 #include <sys/malloc.h>
38 #include <sys/pcpu.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/systm.h>
45 
46 #include <vm/vm.h>
47 
48 #include <machine/vm.h>
49 #include <machine/pcb.h>
50 #include <machine/smp.h>
51 #include <x86/apicreg.h>
52 
53 #include <machine/vmm.h>
54 #include "vmm_host.h"
55 #include "vmm_mem.h"
56 #include "vmm_util.h"
57 #include <machine/vmm_dev.h>
58 #include "vlapic.h"
59 #include "vmm_msr.h"
60 #include "vmm_ipi.h"
61 #include "vmm_stat.h"
62 #include "vmm_lapic.h"
63 
64 #include "io/ppt.h"
65 #include "io/iommu.h"
66 
67 struct vlapic;
68 
69 struct vcpu {
70 	int		flags;
71 	enum vcpu_state	state;
72 	struct mtx	mtx;
73 	int		pincpu;		/* host cpuid this vcpu is bound to */
74 	int		hostcpu;	/* host cpuid this vcpu last ran on */
75 	uint64_t	guest_msrs[VMM_MSR_NUM];
76 	struct vlapic	*vlapic;
77 	int		 vcpuid;
78 	struct savefpu	*guestfpu;	/* guest fpu state */
79 	void		*stats;
80 	struct vm_exit	exitinfo;
81 	enum x2apic_state x2apic_state;
82 	int		nmi_pending;
83 };
84 #define	VCPU_F_PINNED	0x0001
85 
86 #define	VCPU_PINCPU(vm, vcpuid)	\
87     ((vm->vcpu[vcpuid].flags & VCPU_F_PINNED) ? vm->vcpu[vcpuid].pincpu : -1)
88 
89 #define	VCPU_UNPIN(vm, vcpuid)	(vm->vcpu[vcpuid].flags &= ~VCPU_F_PINNED)
90 
91 #define	VCPU_PIN(vm, vcpuid, host_cpuid)				\
92 do {									\
93 	vm->vcpu[vcpuid].flags |= VCPU_F_PINNED;			\
94 	vm->vcpu[vcpuid].pincpu = host_cpuid;				\
95 } while(0)
96 
97 #define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
98 #define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
99 #define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
100 
101 #define	VM_MAX_MEMORY_SEGMENTS	2
102 
103 struct vm {
104 	void		*cookie;	/* processor-specific data */
105 	void		*iommu;		/* iommu-specific data */
106 	struct vcpu	vcpu[VM_MAXCPU];
107 	int		num_mem_segs;
108 	struct vm_memory_segment mem_segs[VM_MAX_MEMORY_SEGMENTS];
109 	char		name[VM_MAX_NAMELEN];
110 
111 	/*
112 	 * Set of active vcpus.
113 	 * An active vcpu is one that has been started implicitly (BSP) or
114 	 * explicitly (AP) by sending it a startup ipi.
115 	 */
116 	cpuset_t	active_cpus;
117 };
118 
119 static struct vmm_ops *ops;
120 #define	VMM_INIT()	(ops != NULL ? (*ops->init)() : 0)
121 #define	VMM_CLEANUP()	(ops != NULL ? (*ops->cleanup)() : 0)
122 
123 #define	VMINIT(vm)	(ops != NULL ? (*ops->vminit)(vm): NULL)
124 #define	VMRUN(vmi, vcpu, rip) \
125 	(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip) : ENXIO)
126 #define	VMCLEANUP(vmi)	(ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
127 #define	VMMMAP_SET(vmi, gpa, hpa, len, attr, prot, spm)			\
128     	(ops != NULL ? 							\
129     	(*ops->vmmmap_set)(vmi, gpa, hpa, len, attr, prot, spm) :	\
130 	ENXIO)
131 #define	VMMMAP_GET(vmi, gpa) \
132 	(ops != NULL ? (*ops->vmmmap_get)(vmi, gpa) : ENXIO)
133 #define	VMGETREG(vmi, vcpu, num, retval)		\
134 	(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
135 #define	VMSETREG(vmi, vcpu, num, val)		\
136 	(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
137 #define	VMGETDESC(vmi, vcpu, num, desc)		\
138 	(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
139 #define	VMSETDESC(vmi, vcpu, num, desc)		\
140 	(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
141 #define	VMINJECT(vmi, vcpu, type, vec, ec, ecv)	\
142 	(ops != NULL ? (*ops->vminject)(vmi, vcpu, type, vec, ec, ecv) : ENXIO)
143 #define	VMGETCAP(vmi, vcpu, num, retval)	\
144 	(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
145 #define	VMSETCAP(vmi, vcpu, num, val)		\
146 	(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
147 
148 #define	fpu_start_emulating()	load_cr0(rcr0() | CR0_TS)
149 #define	fpu_stop_emulating()	clts()
150 
151 static MALLOC_DEFINE(M_VM, "vm", "vm");
152 CTASSERT(VMM_MSR_NUM <= 64);	/* msr_mask can keep track of up to 64 msrs */
153 
154 /* statistics */
155 static VMM_STAT_DEFINE(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
156 
157 static void
158 vcpu_cleanup(struct vcpu *vcpu)
159 {
160 	vlapic_cleanup(vcpu->vlapic);
161 	vmm_stat_free(vcpu->stats);
162 	fpu_save_area_free(vcpu->guestfpu);
163 }
164 
165 static void
166 vcpu_init(struct vm *vm, uint32_t vcpu_id)
167 {
168 	struct vcpu *vcpu;
169 
170 	vcpu = &vm->vcpu[vcpu_id];
171 
172 	vcpu_lock_init(vcpu);
173 	vcpu->hostcpu = NOCPU;
174 	vcpu->vcpuid = vcpu_id;
175 	vcpu->vlapic = vlapic_init(vm, vcpu_id);
176 	vm_set_x2apic_state(vm, vcpu_id, X2APIC_ENABLED);
177 	vcpu->guestfpu = fpu_save_area_alloc();
178 	fpu_save_area_reset(vcpu->guestfpu);
179 	vcpu->stats = vmm_stat_alloc();
180 }
181 
182 struct vm_exit *
183 vm_exitinfo(struct vm *vm, int cpuid)
184 {
185 	struct vcpu *vcpu;
186 
187 	if (cpuid < 0 || cpuid >= VM_MAXCPU)
188 		panic("vm_exitinfo: invalid cpuid %d", cpuid);
189 
190 	vcpu = &vm->vcpu[cpuid];
191 
192 	return (&vcpu->exitinfo);
193 }
194 
195 static int
196 vmm_init(void)
197 {
198 	int error;
199 
200 	vmm_host_state_init();
201 	vmm_ipi_init();
202 
203 	error = vmm_mem_init();
204 	if (error)
205 		return (error);
206 
207 	if (vmm_is_intel())
208 		ops = &vmm_ops_intel;
209 	else if (vmm_is_amd())
210 		ops = &vmm_ops_amd;
211 	else
212 		return (ENXIO);
213 
214 	vmm_msr_init();
215 
216 	return (VMM_INIT());
217 }
218 
219 static int
220 vmm_handler(module_t mod, int what, void *arg)
221 {
222 	int error;
223 
224 	switch (what) {
225 	case MOD_LOAD:
226 		vmmdev_init();
227 		iommu_init();
228 		error = vmm_init();
229 		break;
230 	case MOD_UNLOAD:
231 		error = vmmdev_cleanup();
232 		if (error == 0) {
233 			iommu_cleanup();
234 			vmm_ipi_cleanup();
235 			error = VMM_CLEANUP();
236 		}
237 		break;
238 	default:
239 		error = 0;
240 		break;
241 	}
242 	return (error);
243 }
244 
245 static moduledata_t vmm_kmod = {
246 	"vmm",
247 	vmm_handler,
248 	NULL
249 };
250 
251 /*
252  * vmm initialization has the following dependencies:
253  *
254  * - iommu initialization must happen after the pci passthru driver has had
255  *   a chance to attach to any passthru devices (after SI_SUB_CONFIGURE).
256  *
257  * - VT-x initialization requires smp_rendezvous() and therefore must happen
258  *   after SMP is fully functional (after SI_SUB_SMP).
259  */
260 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
261 MODULE_VERSION(vmm, 1);
262 
263 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
264 
265 struct vm *
266 vm_create(const char *name)
267 {
268 	int i;
269 	struct vm *vm;
270 	vm_paddr_t maxaddr;
271 
272 	const int BSP = 0;
273 
274 	if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
275 		return (NULL);
276 
277 	vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
278 	strcpy(vm->name, name);
279 	vm->cookie = VMINIT(vm);
280 
281 	for (i = 0; i < VM_MAXCPU; i++) {
282 		vcpu_init(vm, i);
283 		guest_msrs_init(vm, i);
284 	}
285 
286 	maxaddr = vmm_mem_maxaddr();
287 	vm->iommu = iommu_create_domain(maxaddr);
288 	vm_activate_cpu(vm, BSP);
289 
290 	return (vm);
291 }
292 
293 static void
294 vm_free_mem_seg(struct vm *vm, struct vm_memory_segment *seg)
295 {
296 	size_t len;
297 	vm_paddr_t hpa;
298 	void *host_domain;
299 
300 	host_domain = iommu_host_domain();
301 
302 	len = 0;
303 	while (len < seg->len) {
304 		hpa = vm_gpa2hpa(vm, seg->gpa + len, PAGE_SIZE);
305 		if (hpa == (vm_paddr_t)-1) {
306 			panic("vm_free_mem_segs: cannot free hpa "
307 			      "associated with gpa 0x%016lx", seg->gpa + len);
308 		}
309 
310 		/*
311 		 * Remove the 'gpa' to 'hpa' mapping in VMs domain.
312 		 * And resurrect the 1:1 mapping for 'hpa' in 'host_domain'.
313 		 */
314 		iommu_remove_mapping(vm->iommu, seg->gpa + len, PAGE_SIZE);
315 		iommu_create_mapping(host_domain, hpa, hpa, PAGE_SIZE);
316 
317 		vmm_mem_free(hpa, PAGE_SIZE);
318 
319 		len += PAGE_SIZE;
320 	}
321 
322 	/*
323 	 * Invalidate cached translations associated with 'vm->iommu' since
324 	 * we have now moved some pages from it.
325 	 */
326 	iommu_invalidate_tlb(vm->iommu);
327 
328 	bzero(seg, sizeof(struct vm_memory_segment));
329 }
330 
331 void
332 vm_destroy(struct vm *vm)
333 {
334 	int i;
335 
336 	ppt_unassign_all(vm);
337 
338 	for (i = 0; i < vm->num_mem_segs; i++)
339 		vm_free_mem_seg(vm, &vm->mem_segs[i]);
340 
341 	vm->num_mem_segs = 0;
342 
343 	for (i = 0; i < VM_MAXCPU; i++)
344 		vcpu_cleanup(&vm->vcpu[i]);
345 
346 	iommu_destroy_domain(vm->iommu);
347 
348 	VMCLEANUP(vm->cookie);
349 
350 	free(vm, M_VM);
351 }
352 
353 const char *
354 vm_name(struct vm *vm)
355 {
356 	return (vm->name);
357 }
358 
359 int
360 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
361 {
362 	const boolean_t spok = TRUE;	/* superpage mappings are ok */
363 
364 	return (VMMMAP_SET(vm->cookie, gpa, hpa, len, VM_MEMATTR_UNCACHEABLE,
365 			   VM_PROT_RW, spok));
366 }
367 
368 int
369 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
370 {
371 	const boolean_t spok = TRUE;	/* superpage mappings are ok */
372 
373 	return (VMMMAP_SET(vm->cookie, gpa, 0, len, 0,
374 			   VM_PROT_NONE, spok));
375 }
376 
377 /*
378  * Returns TRUE if 'gpa' is available for allocation and FALSE otherwise
379  */
380 static boolean_t
381 vm_gpa_available(struct vm *vm, vm_paddr_t gpa)
382 {
383 	int i;
384 	vm_paddr_t gpabase, gpalimit;
385 
386 	if (gpa & PAGE_MASK)
387 		panic("vm_gpa_available: gpa (0x%016lx) not page aligned", gpa);
388 
389 	for (i = 0; i < vm->num_mem_segs; i++) {
390 		gpabase = vm->mem_segs[i].gpa;
391 		gpalimit = gpabase + vm->mem_segs[i].len;
392 		if (gpa >= gpabase && gpa < gpalimit)
393 			return (FALSE);
394 	}
395 
396 	return (TRUE);
397 }
398 
399 int
400 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len)
401 {
402 	int error, available, allocated;
403 	struct vm_memory_segment *seg;
404 	vm_paddr_t g, hpa;
405 	void *host_domain;
406 
407 	const boolean_t spok = TRUE;	/* superpage mappings are ok */
408 
409 	if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0)
410 		return (EINVAL);
411 
412 	available = allocated = 0;
413 	g = gpa;
414 	while (g < gpa + len) {
415 		if (vm_gpa_available(vm, g))
416 			available++;
417 		else
418 			allocated++;
419 
420 		g += PAGE_SIZE;
421 	}
422 
423 	/*
424 	 * If there are some allocated and some available pages in the address
425 	 * range then it is an error.
426 	 */
427 	if (allocated && available)
428 		return (EINVAL);
429 
430 	/*
431 	 * If the entire address range being requested has already been
432 	 * allocated then there isn't anything more to do.
433 	 */
434 	if (allocated && available == 0)
435 		return (0);
436 
437 	if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS)
438 		return (E2BIG);
439 
440 	host_domain = iommu_host_domain();
441 
442 	seg = &vm->mem_segs[vm->num_mem_segs];
443 
444 	error = 0;
445 	seg->gpa = gpa;
446 	seg->len = 0;
447 	while (seg->len < len) {
448 		hpa = vmm_mem_alloc(PAGE_SIZE);
449 		if (hpa == 0) {
450 			error = ENOMEM;
451 			break;
452 		}
453 
454 		error = VMMMAP_SET(vm->cookie, gpa + seg->len, hpa, PAGE_SIZE,
455 				   VM_MEMATTR_WRITE_BACK, VM_PROT_ALL, spok);
456 		if (error)
457 			break;
458 
459 		/*
460 		 * Remove the 1:1 mapping for 'hpa' from the 'host_domain'.
461 		 * Add mapping for 'gpa + seg->len' to 'hpa' in the VMs domain.
462 		 */
463 		iommu_remove_mapping(host_domain, hpa, PAGE_SIZE);
464 		iommu_create_mapping(vm->iommu, gpa + seg->len, hpa, PAGE_SIZE);
465 
466 		seg->len += PAGE_SIZE;
467 	}
468 
469 	if (error) {
470 		vm_free_mem_seg(vm, seg);
471 		return (error);
472 	}
473 
474 	/*
475 	 * Invalidate cached translations associated with 'host_domain' since
476 	 * we have now moved some pages from it.
477 	 */
478 	iommu_invalidate_tlb(host_domain);
479 
480 	vm->num_mem_segs++;
481 
482 	return (0);
483 }
484 
485 vm_paddr_t
486 vm_gpa2hpa(struct vm *vm, vm_paddr_t gpa, size_t len)
487 {
488 	vm_paddr_t nextpage;
489 
490 	nextpage = rounddown(gpa + PAGE_SIZE, PAGE_SIZE);
491 	if (len > nextpage - gpa)
492 		panic("vm_gpa2hpa: invalid gpa/len: 0x%016lx/%lu", gpa, len);
493 
494 	return (VMMMAP_GET(vm->cookie, gpa));
495 }
496 
497 int
498 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase,
499 		  struct vm_memory_segment *seg)
500 {
501 	int i;
502 
503 	for (i = 0; i < vm->num_mem_segs; i++) {
504 		if (gpabase == vm->mem_segs[i].gpa) {
505 			*seg = vm->mem_segs[i];
506 			return (0);
507 		}
508 	}
509 	return (-1);
510 }
511 
512 int
513 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
514 {
515 
516 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
517 		return (EINVAL);
518 
519 	if (reg >= VM_REG_LAST)
520 		return (EINVAL);
521 
522 	return (VMGETREG(vm->cookie, vcpu, reg, retval));
523 }
524 
525 int
526 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val)
527 {
528 
529 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
530 		return (EINVAL);
531 
532 	if (reg >= VM_REG_LAST)
533 		return (EINVAL);
534 
535 	return (VMSETREG(vm->cookie, vcpu, reg, val));
536 }
537 
538 static boolean_t
539 is_descriptor_table(int reg)
540 {
541 
542 	switch (reg) {
543 	case VM_REG_GUEST_IDTR:
544 	case VM_REG_GUEST_GDTR:
545 		return (TRUE);
546 	default:
547 		return (FALSE);
548 	}
549 }
550 
551 static boolean_t
552 is_segment_register(int reg)
553 {
554 
555 	switch (reg) {
556 	case VM_REG_GUEST_ES:
557 	case VM_REG_GUEST_CS:
558 	case VM_REG_GUEST_SS:
559 	case VM_REG_GUEST_DS:
560 	case VM_REG_GUEST_FS:
561 	case VM_REG_GUEST_GS:
562 	case VM_REG_GUEST_TR:
563 	case VM_REG_GUEST_LDTR:
564 		return (TRUE);
565 	default:
566 		return (FALSE);
567 	}
568 }
569 
570 int
571 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
572 		struct seg_desc *desc)
573 {
574 
575 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
576 		return (EINVAL);
577 
578 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
579 		return (EINVAL);
580 
581 	return (VMGETDESC(vm->cookie, vcpu, reg, desc));
582 }
583 
584 int
585 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
586 		struct seg_desc *desc)
587 {
588 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
589 		return (EINVAL);
590 
591 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
592 		return (EINVAL);
593 
594 	return (VMSETDESC(vm->cookie, vcpu, reg, desc));
595 }
596 
597 int
598 vm_get_pinning(struct vm *vm, int vcpuid, int *cpuid)
599 {
600 
601 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
602 		return (EINVAL);
603 
604 	*cpuid = VCPU_PINCPU(vm, vcpuid);
605 
606 	return (0);
607 }
608 
609 int
610 vm_set_pinning(struct vm *vm, int vcpuid, int host_cpuid)
611 {
612 	struct thread *td;
613 
614 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
615 		return (EINVAL);
616 
617 	td = curthread;		/* XXXSMP only safe when muxing vcpus */
618 
619 	/* unpin */
620 	if (host_cpuid < 0) {
621 		VCPU_UNPIN(vm, vcpuid);
622 		thread_lock(td);
623 		sched_unbind(td);
624 		thread_unlock(td);
625 		return (0);
626 	}
627 
628 	if (CPU_ABSENT(host_cpuid))
629 		return (EINVAL);
630 
631 	/*
632 	 * XXX we should check that 'host_cpuid' has not already been pinned
633 	 * by another vm.
634 	 */
635 	thread_lock(td);
636 	sched_bind(td, host_cpuid);
637 	thread_unlock(td);
638 	VCPU_PIN(vm, vcpuid, host_cpuid);
639 
640 	return (0);
641 }
642 
643 static void
644 restore_guest_fpustate(struct vcpu *vcpu)
645 {
646 
647 	/* flush host state to the pcb */
648 	fpuexit(curthread);
649 
650 	/* restore guest FPU state */
651 	fpu_stop_emulating();
652 	fpurestore(vcpu->guestfpu);
653 
654 	/*
655 	 * The FPU is now "dirty" with the guest's state so turn on emulation
656 	 * to trap any access to the FPU by the host.
657 	 */
658 	fpu_start_emulating();
659 }
660 
661 static void
662 save_guest_fpustate(struct vcpu *vcpu)
663 {
664 
665 	if ((rcr0() & CR0_TS) == 0)
666 		panic("fpu emulation not enabled in host!");
667 
668 	/* save guest FPU state */
669 	fpu_stop_emulating();
670 	fpusave(vcpu->guestfpu);
671 	fpu_start_emulating();
672 }
673 
674 static VMM_STAT_DEFINE(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
675 
676 int
677 vm_run(struct vm *vm, struct vm_run *vmrun)
678 {
679 	int error, vcpuid, sleepticks, t;
680 	struct vcpu *vcpu;
681 	struct pcb *pcb;
682 	uint64_t tscval, rip;
683 	struct vm_exit *vme;
684 
685 	vcpuid = vmrun->cpuid;
686 
687 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
688 		return (EINVAL);
689 
690 	vcpu = &vm->vcpu[vcpuid];
691 	vme = &vmrun->vm_exit;
692 	rip = vmrun->rip;
693 restart:
694 	critical_enter();
695 
696 	tscval = rdtsc();
697 
698 	pcb = PCPU_GET(curpcb);
699 	set_pcb_flags(pcb, PCB_FULL_IRET);
700 
701 	restore_guest_msrs(vm, vcpuid);
702 	restore_guest_fpustate(vcpu);
703 
704 	vcpu->hostcpu = curcpu;
705 	error = VMRUN(vm->cookie, vcpuid, rip);
706 	vcpu->hostcpu = NOCPU;
707 
708 	save_guest_fpustate(vcpu);
709 	restore_host_msrs(vm, vcpuid);
710 
711 	vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
712 
713 	/* copy the exit information */
714 	bcopy(&vcpu->exitinfo, vme, sizeof(struct vm_exit));
715 
716 	critical_exit();
717 
718 	/*
719 	 * Oblige the guest's desire to 'hlt' by sleeping until the vcpu
720 	 * is ready to run.
721 	 */
722 	if (error == 0 && vme->exitcode == VM_EXITCODE_HLT) {
723 		vcpu_lock(vcpu);
724 
725 		/*
726 		 * Figure out the number of host ticks until the next apic
727 		 * timer interrupt in the guest.
728 		 */
729 		sleepticks = lapic_timer_tick(vm, vcpuid);
730 
731 		/*
732 		 * If the guest local apic timer is disabled then sleep for
733 		 * a long time but not forever.
734 		 */
735 		if (sleepticks < 0)
736 			sleepticks = hz;
737 
738 		/*
739 		 * Do a final check for pending NMI or interrupts before
740 		 * really putting this thread to sleep.
741 		 *
742 		 * These interrupts could have happened any time after we
743 		 * returned from VMRUN() and before we grabbed the vcpu lock.
744 		 */
745 		if (!vm_nmi_pending(vm, vcpuid) &&
746 		    lapic_pending_intr(vm, vcpuid) < 0) {
747 			if (sleepticks <= 0)
748 				panic("invalid sleepticks %d", sleepticks);
749 			t = ticks;
750 			msleep_spin(vcpu, &vcpu->mtx, "vmidle", sleepticks);
751 			vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
752 		}
753 
754 		vcpu_unlock(vcpu);
755 
756 		rip = vme->rip + vme->inst_length;
757 		goto restart;
758 	}
759 
760 	return (error);
761 }
762 
763 int
764 vm_inject_event(struct vm *vm, int vcpuid, int type,
765 		int vector, uint32_t code, int code_valid)
766 {
767 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
768 		return (EINVAL);
769 
770 	if ((type > VM_EVENT_NONE && type < VM_EVENT_MAX) == 0)
771 		return (EINVAL);
772 
773 	if (vector < 0 || vector > 255)
774 		return (EINVAL);
775 
776 	return (VMINJECT(vm->cookie, vcpuid, type, vector, code, code_valid));
777 }
778 
779 static VMM_STAT_DEFINE(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
780 
781 int
782 vm_inject_nmi(struct vm *vm, int vcpuid)
783 {
784 	struct vcpu *vcpu;
785 
786 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
787 		return (EINVAL);
788 
789 	vcpu = &vm->vcpu[vcpuid];
790 
791 	vcpu->nmi_pending = 1;
792 	vm_interrupt_hostcpu(vm, vcpuid);
793 	return (0);
794 }
795 
796 int
797 vm_nmi_pending(struct vm *vm, int vcpuid)
798 {
799 	struct vcpu *vcpu;
800 
801 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
802 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
803 
804 	vcpu = &vm->vcpu[vcpuid];
805 
806 	return (vcpu->nmi_pending);
807 }
808 
809 void
810 vm_nmi_clear(struct vm *vm, int vcpuid)
811 {
812 	struct vcpu *vcpu;
813 
814 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
815 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
816 
817 	vcpu = &vm->vcpu[vcpuid];
818 
819 	if (vcpu->nmi_pending == 0)
820 		panic("vm_nmi_clear: inconsistent nmi_pending state");
821 
822 	vcpu->nmi_pending = 0;
823 	vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
824 }
825 
826 int
827 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
828 {
829 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
830 		return (EINVAL);
831 
832 	if (type < 0 || type >= VM_CAP_MAX)
833 		return (EINVAL);
834 
835 	return (VMGETCAP(vm->cookie, vcpu, type, retval));
836 }
837 
838 int
839 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
840 {
841 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
842 		return (EINVAL);
843 
844 	if (type < 0 || type >= VM_CAP_MAX)
845 		return (EINVAL);
846 
847 	return (VMSETCAP(vm->cookie, vcpu, type, val));
848 }
849 
850 uint64_t *
851 vm_guest_msrs(struct vm *vm, int cpu)
852 {
853 	return (vm->vcpu[cpu].guest_msrs);
854 }
855 
856 struct vlapic *
857 vm_lapic(struct vm *vm, int cpu)
858 {
859 	return (vm->vcpu[cpu].vlapic);
860 }
861 
862 boolean_t
863 vmm_is_pptdev(int bus, int slot, int func)
864 {
865 	int found, i, n;
866 	int b, s, f;
867 	char *val, *cp, *cp2;
868 
869 	/*
870 	 * XXX
871 	 * The length of an environment variable is limited to 128 bytes which
872 	 * puts an upper limit on the number of passthru devices that may be
873 	 * specified using a single environment variable.
874 	 *
875 	 * Work around this by scanning multiple environment variable
876 	 * names instead of a single one - yuck!
877 	 */
878 	const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
879 
880 	/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
881 	found = 0;
882 	for (i = 0; names[i] != NULL && !found; i++) {
883 		cp = val = getenv(names[i]);
884 		while (cp != NULL && *cp != '\0') {
885 			if ((cp2 = strchr(cp, ' ')) != NULL)
886 				*cp2 = '\0';
887 
888 			n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
889 			if (n == 3 && bus == b && slot == s && func == f) {
890 				found = 1;
891 				break;
892 			}
893 
894 			if (cp2 != NULL)
895 				*cp2++ = ' ';
896 
897 			cp = cp2;
898 		}
899 		freeenv(val);
900 	}
901 	return (found);
902 }
903 
904 void *
905 vm_iommu_domain(struct vm *vm)
906 {
907 
908 	return (vm->iommu);
909 }
910 
911 int
912 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state state)
913 {
914 	int error;
915 	struct vcpu *vcpu;
916 
917 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
918 		panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
919 
920 	vcpu = &vm->vcpu[vcpuid];
921 
922 	vcpu_lock(vcpu);
923 
924 	/*
925 	 * The following state transitions are allowed:
926 	 * IDLE -> RUNNING -> IDLE
927 	 * IDLE -> CANNOT_RUN -> IDLE
928 	 */
929 	if ((vcpu->state == VCPU_IDLE && state != VCPU_IDLE) ||
930 	    (vcpu->state != VCPU_IDLE && state == VCPU_IDLE)) {
931 		error = 0;
932 		vcpu->state = state;
933 	} else {
934 		error = EBUSY;
935 	}
936 
937 	vcpu_unlock(vcpu);
938 
939 	return (error);
940 }
941 
942 enum vcpu_state
943 vcpu_get_state(struct vm *vm, int vcpuid)
944 {
945 	struct vcpu *vcpu;
946 	enum vcpu_state state;
947 
948 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
949 		panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
950 
951 	vcpu = &vm->vcpu[vcpuid];
952 
953 	vcpu_lock(vcpu);
954 	state = vcpu->state;
955 	vcpu_unlock(vcpu);
956 
957 	return (state);
958 }
959 
960 void
961 vm_activate_cpu(struct vm *vm, int vcpuid)
962 {
963 
964 	if (vcpuid >= 0 && vcpuid < VM_MAXCPU)
965 		CPU_SET(vcpuid, &vm->active_cpus);
966 }
967 
968 cpuset_t
969 vm_active_cpus(struct vm *vm)
970 {
971 
972 	return (vm->active_cpus);
973 }
974 
975 void *
976 vcpu_stats(struct vm *vm, int vcpuid)
977 {
978 
979 	return (vm->vcpu[vcpuid].stats);
980 }
981 
982 int
983 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
984 {
985 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
986 		return (EINVAL);
987 
988 	*state = vm->vcpu[vcpuid].x2apic_state;
989 
990 	return (0);
991 }
992 
993 int
994 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
995 {
996 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
997 		return (EINVAL);
998 
999 	if (state < 0 || state >= X2APIC_STATE_LAST)
1000 		return (EINVAL);
1001 
1002 	vm->vcpu[vcpuid].x2apic_state = state;
1003 
1004 	vlapic_set_x2apic_state(vm, vcpuid, state);
1005 
1006 	return (0);
1007 }
1008 
1009 void
1010 vm_interrupt_hostcpu(struct vm *vm, int vcpuid)
1011 {
1012 	int hostcpu;
1013 	struct vcpu *vcpu;
1014 
1015 	vcpu = &vm->vcpu[vcpuid];
1016 
1017 	vcpu_lock(vcpu);
1018 	hostcpu = vcpu->hostcpu;
1019 	if (hostcpu == NOCPU) {
1020 		/*
1021 		 * If the vcpu is 'RUNNING' but without a valid 'hostcpu' then
1022 		 * the host thread must be sleeping waiting for an event to
1023 		 * kick the vcpu out of 'hlt'.
1024 		 *
1025 		 * XXX this is racy because the condition exists right before
1026 		 * and after calling VMRUN() in vm_run(). The wakeup() is
1027 		 * benign in this case.
1028 		 */
1029 		if (vcpu->state == VCPU_RUNNING)
1030 			wakeup_one(vcpu);
1031 	} else {
1032 		if (vcpu->state != VCPU_RUNNING)
1033 			panic("invalid vcpu state %d", vcpu->state);
1034 		if (hostcpu != curcpu)
1035 			ipi_cpu(hostcpu, vmm_ipinum);
1036 	}
1037 	vcpu_unlock(vcpu);
1038 }
1039