1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bhyve_snapshot.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vnode_pager.h> 58 #include <vm/swap_pager.h> 59 #include <vm/uma.h> 60 61 #include <machine/cpu.h> 62 #include <machine/pcb.h> 63 #include <machine/smp.h> 64 #include <machine/md_var.h> 65 #include <x86/psl.h> 66 #include <x86/apicreg.h> 67 #include <x86/ifunc.h> 68 69 #include <machine/vmm.h> 70 #include <machine/vmm_dev.h> 71 #include <machine/vmm_instruction_emul.h> 72 #include <machine/vmm_snapshot.h> 73 74 #include "vmm_ioport.h" 75 #include "vmm_ktr.h" 76 #include "vmm_host.h" 77 #include "vmm_mem.h" 78 #include "vmm_util.h" 79 #include "vatpic.h" 80 #include "vatpit.h" 81 #include "vhpet.h" 82 #include "vioapic.h" 83 #include "vlapic.h" 84 #include "vpmtmr.h" 85 #include "vrtc.h" 86 #include "vmm_stat.h" 87 #include "vmm_lapic.h" 88 89 #include "io/ppt.h" 90 #include "io/iommu.h" 91 92 struct vlapic; 93 94 /* 95 * Initialization: 96 * (a) allocated when vcpu is created 97 * (i) initialized when vcpu is created and when it is reinitialized 98 * (o) initialized the first time the vcpu is created 99 * (x) initialized before use 100 */ 101 struct vcpu { 102 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 103 enum vcpu_state state; /* (o) vcpu state */ 104 int vcpuid; /* (o) */ 105 int hostcpu; /* (o) vcpu's host cpu */ 106 int reqidle; /* (i) request vcpu to idle */ 107 struct vm *vm; /* (o) */ 108 void *cookie; /* (i) cpu-specific data */ 109 struct vlapic *vlapic; /* (i) APIC device model */ 110 enum x2apic_state x2apic_state; /* (i) APIC mode */ 111 uint64_t exitintinfo; /* (i) events pending at VM exit */ 112 int nmi_pending; /* (i) NMI pending */ 113 int extint_pending; /* (i) INTR pending */ 114 int exception_pending; /* (i) exception pending */ 115 int exc_vector; /* (x) exception collateral */ 116 int exc_errcode_valid; 117 uint32_t exc_errcode; 118 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 119 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 120 void *stats; /* (a,i) statistics */ 121 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 122 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ 123 uint64_t nextrip; /* (x) next instruction to execute */ 124 uint64_t tsc_offset; /* (o) TSC offsetting */ 125 }; 126 127 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 128 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 129 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 130 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 131 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 132 133 struct mem_seg { 134 size_t len; 135 bool sysmem; 136 struct vm_object *object; 137 }; 138 #define VM_MAX_MEMSEGS 4 139 140 struct mem_map { 141 vm_paddr_t gpa; 142 size_t len; 143 vm_ooffset_t segoff; 144 int segid; 145 int prot; 146 int flags; 147 }; 148 #define VM_MAX_MEMMAPS 8 149 150 /* 151 * Initialization: 152 * (o) initialized the first time the VM is created 153 * (i) initialized when VM is created and when it is reinitialized 154 * (x) initialized before use 155 * 156 * Locking: 157 * [m] mem_segs_lock 158 * [r] rendezvous_mtx 159 * [v] reads require one frozen vcpu, writes require freezing all vcpus 160 */ 161 struct vm { 162 void *cookie; /* (i) cpu-specific data */ 163 void *iommu; /* (x) iommu-specific data */ 164 struct vhpet *vhpet; /* (i) virtual HPET */ 165 struct vioapic *vioapic; /* (i) virtual ioapic */ 166 struct vatpic *vatpic; /* (i) virtual atpic */ 167 struct vatpit *vatpit; /* (i) virtual atpit */ 168 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 169 struct vrtc *vrtc; /* (o) virtual RTC */ 170 volatile cpuset_t active_cpus; /* (i) active vcpus */ 171 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 172 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 173 int suspend; /* (i) stop VM execution */ 174 bool dying; /* (o) is dying */ 175 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 176 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 177 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 178 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 179 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 180 vm_rendezvous_func_t rendezvous_func; 181 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 182 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 183 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 184 struct vmspace *vmspace; /* (o) guest's address space */ 185 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 186 struct vcpu **vcpu; /* (o) guest vcpus */ 187 /* The following describe the vm cpu topology */ 188 uint16_t sockets; /* (o) num of sockets */ 189 uint16_t cores; /* (o) num of cores/socket */ 190 uint16_t threads; /* (o) num of threads/core */ 191 uint16_t maxcpus; /* (o) max pluggable cpus */ 192 struct sx mem_segs_lock; /* (o) */ 193 struct sx vcpus_init_lock; /* (o) */ 194 }; 195 196 #define VMM_CTR0(vcpu, format) \ 197 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 198 199 #define VMM_CTR1(vcpu, format, p1) \ 200 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 201 202 #define VMM_CTR2(vcpu, format, p1, p2) \ 203 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 204 205 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 206 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 207 208 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 209 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 210 211 static int vmm_initialized; 212 213 static void vmmops_panic(void); 214 215 static void 216 vmmops_panic(void) 217 { 218 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 219 } 220 221 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 222 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 223 { \ 224 if (vmm_is_intel()) \ 225 return (vmm_ops_intel.opname); \ 226 else if (vmm_is_svm()) \ 227 return (vmm_ops_amd.opname); \ 228 else \ 229 return ((ret_type (*)args)vmmops_panic); \ 230 } 231 232 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 233 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 234 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 235 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 236 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 237 struct vm_eventinfo *info)) 238 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 239 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 240 int vcpu_id)) 241 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 242 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 243 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 244 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 245 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 246 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 247 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 248 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 249 vm_offset_t max)) 250 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 251 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 252 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 253 #ifdef BHYVE_SNAPSHOT 254 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 255 struct vm_snapshot_meta *meta)) 256 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 257 #endif 258 259 SDT_PROVIDER_DEFINE(vmm); 260 261 static MALLOC_DEFINE(M_VM, "vm", "vm"); 262 263 /* statistics */ 264 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 265 266 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 267 NULL); 268 269 /* 270 * Halt the guest if all vcpus are executing a HLT instruction with 271 * interrupts disabled. 272 */ 273 static int halt_detection_enabled = 1; 274 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 275 &halt_detection_enabled, 0, 276 "Halt VM if all vcpus execute HLT with interrupts disabled"); 277 278 static int vmm_ipinum; 279 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 280 "IPI vector used for vcpu notifications"); 281 282 static int trace_guest_exceptions; 283 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 284 &trace_guest_exceptions, 0, 285 "Trap into hypervisor on all guest exceptions and reflect them back"); 286 287 static int trap_wbinvd; 288 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 289 "WBINVD triggers a VM-exit"); 290 291 u_int vm_maxcpu; 292 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 293 &vm_maxcpu, 0, "Maximum number of vCPUs"); 294 295 static void vm_free_memmap(struct vm *vm, int ident); 296 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 297 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 298 299 /* 300 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 301 * counts as well as range of vpid values for VT-x and by the capacity 302 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 303 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 304 */ 305 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 306 307 #ifdef KTR 308 static const char * 309 vcpu_state2str(enum vcpu_state state) 310 { 311 312 switch (state) { 313 case VCPU_IDLE: 314 return ("idle"); 315 case VCPU_FROZEN: 316 return ("frozen"); 317 case VCPU_RUNNING: 318 return ("running"); 319 case VCPU_SLEEPING: 320 return ("sleeping"); 321 default: 322 return ("unknown"); 323 } 324 } 325 #endif 326 327 static void 328 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 329 { 330 vmmops_vlapic_cleanup(vcpu->vlapic); 331 vmmops_vcpu_cleanup(vcpu->cookie); 332 vcpu->cookie = NULL; 333 if (destroy) { 334 vmm_stat_free(vcpu->stats); 335 fpu_save_area_free(vcpu->guestfpu); 336 vcpu_lock_destroy(vcpu); 337 free(vcpu, M_VM); 338 } 339 } 340 341 static struct vcpu * 342 vcpu_alloc(struct vm *vm, int vcpu_id) 343 { 344 struct vcpu *vcpu; 345 346 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 347 ("vcpu_init: invalid vcpu %d", vcpu_id)); 348 349 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 350 vcpu_lock_init(vcpu); 351 vcpu->state = VCPU_IDLE; 352 vcpu->hostcpu = NOCPU; 353 vcpu->vcpuid = vcpu_id; 354 vcpu->vm = vm; 355 vcpu->guestfpu = fpu_save_area_alloc(); 356 vcpu->stats = vmm_stat_alloc(); 357 vcpu->tsc_offset = 0; 358 return (vcpu); 359 } 360 361 static void 362 vcpu_init(struct vcpu *vcpu) 363 { 364 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 365 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 366 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 367 vcpu->reqidle = 0; 368 vcpu->exitintinfo = 0; 369 vcpu->nmi_pending = 0; 370 vcpu->extint_pending = 0; 371 vcpu->exception_pending = 0; 372 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 373 fpu_save_area_reset(vcpu->guestfpu); 374 vmm_stat_init(vcpu->stats); 375 } 376 377 int 378 vcpu_trace_exceptions(struct vcpu *vcpu) 379 { 380 381 return (trace_guest_exceptions); 382 } 383 384 int 385 vcpu_trap_wbinvd(struct vcpu *vcpu) 386 { 387 return (trap_wbinvd); 388 } 389 390 struct vm_exit * 391 vm_exitinfo(struct vcpu *vcpu) 392 { 393 return (&vcpu->exitinfo); 394 } 395 396 cpuset_t * 397 vm_exitinfo_cpuset(struct vcpu *vcpu) 398 { 399 return (&vcpu->exitinfo_cpuset); 400 } 401 402 static int 403 vmm_init(void) 404 { 405 int error; 406 407 if (!vmm_is_hw_supported()) 408 return (ENXIO); 409 410 vm_maxcpu = mp_ncpus; 411 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 412 413 if (vm_maxcpu > VM_MAXCPU) { 414 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 415 vm_maxcpu = VM_MAXCPU; 416 } 417 if (vm_maxcpu == 0) 418 vm_maxcpu = 1; 419 420 vmm_host_state_init(); 421 422 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 423 &IDTVEC(justreturn)); 424 if (vmm_ipinum < 0) 425 vmm_ipinum = IPI_AST; 426 427 error = vmm_mem_init(); 428 if (error) 429 return (error); 430 431 vmm_resume_p = vmmops_modresume; 432 433 return (vmmops_modinit(vmm_ipinum)); 434 } 435 436 static int 437 vmm_handler(module_t mod, int what, void *arg) 438 { 439 int error; 440 441 switch (what) { 442 case MOD_LOAD: 443 if (vmm_is_hw_supported()) { 444 vmmdev_init(); 445 error = vmm_init(); 446 if (error == 0) 447 vmm_initialized = 1; 448 } else { 449 error = ENXIO; 450 } 451 break; 452 case MOD_UNLOAD: 453 if (vmm_is_hw_supported()) { 454 error = vmmdev_cleanup(); 455 if (error == 0) { 456 vmm_resume_p = NULL; 457 iommu_cleanup(); 458 if (vmm_ipinum != IPI_AST) 459 lapic_ipi_free(vmm_ipinum); 460 error = vmmops_modcleanup(); 461 /* 462 * Something bad happened - prevent new 463 * VMs from being created 464 */ 465 if (error) 466 vmm_initialized = 0; 467 } 468 } else { 469 error = 0; 470 } 471 break; 472 default: 473 error = 0; 474 break; 475 } 476 return (error); 477 } 478 479 static moduledata_t vmm_kmod = { 480 "vmm", 481 vmm_handler, 482 NULL 483 }; 484 485 /* 486 * vmm initialization has the following dependencies: 487 * 488 * - VT-x initialization requires smp_rendezvous() and therefore must happen 489 * after SMP is fully functional (after SI_SUB_SMP). 490 */ 491 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 492 MODULE_VERSION(vmm, 1); 493 494 static void 495 vm_init(struct vm *vm, bool create) 496 { 497 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 498 vm->iommu = NULL; 499 vm->vioapic = vioapic_init(vm); 500 vm->vhpet = vhpet_init(vm); 501 vm->vatpic = vatpic_init(vm); 502 vm->vatpit = vatpit_init(vm); 503 vm->vpmtmr = vpmtmr_init(vm); 504 if (create) 505 vm->vrtc = vrtc_init(vm); 506 507 CPU_ZERO(&vm->active_cpus); 508 CPU_ZERO(&vm->debug_cpus); 509 CPU_ZERO(&vm->startup_cpus); 510 511 vm->suspend = 0; 512 CPU_ZERO(&vm->suspended_cpus); 513 514 if (!create) { 515 for (int i = 0; i < vm->maxcpus; i++) { 516 if (vm->vcpu[i] != NULL) 517 vcpu_init(vm->vcpu[i]); 518 } 519 } 520 } 521 522 void 523 vm_disable_vcpu_creation(struct vm *vm) 524 { 525 sx_xlock(&vm->vcpus_init_lock); 526 vm->dying = true; 527 sx_xunlock(&vm->vcpus_init_lock); 528 } 529 530 struct vcpu * 531 vm_alloc_vcpu(struct vm *vm, int vcpuid) 532 { 533 struct vcpu *vcpu; 534 535 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 536 return (NULL); 537 538 vcpu = atomic_load_ptr(&vm->vcpu[vcpuid]); 539 if (__predict_true(vcpu != NULL)) 540 return (vcpu); 541 542 sx_xlock(&vm->vcpus_init_lock); 543 vcpu = vm->vcpu[vcpuid]; 544 if (vcpu == NULL && !vm->dying) { 545 vcpu = vcpu_alloc(vm, vcpuid); 546 vcpu_init(vcpu); 547 548 /* 549 * Ensure vCPU is fully created before updating pointer 550 * to permit unlocked reads above. 551 */ 552 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 553 (uintptr_t)vcpu); 554 } 555 sx_xunlock(&vm->vcpus_init_lock); 556 return (vcpu); 557 } 558 559 void 560 vm_slock_vcpus(struct vm *vm) 561 { 562 sx_slock(&vm->vcpus_init_lock); 563 } 564 565 void 566 vm_unlock_vcpus(struct vm *vm) 567 { 568 sx_unlock(&vm->vcpus_init_lock); 569 } 570 571 /* 572 * The default CPU topology is a single thread per package. 573 */ 574 u_int cores_per_package = 1; 575 u_int threads_per_core = 1; 576 577 int 578 vm_create(const char *name, struct vm **retvm) 579 { 580 struct vm *vm; 581 struct vmspace *vmspace; 582 583 /* 584 * If vmm.ko could not be successfully initialized then don't attempt 585 * to create the virtual machine. 586 */ 587 if (!vmm_initialized) 588 return (ENXIO); 589 590 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 591 VM_MAX_NAMELEN + 1) 592 return (EINVAL); 593 594 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 595 if (vmspace == NULL) 596 return (ENOMEM); 597 598 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 599 strcpy(vm->name, name); 600 vm->vmspace = vmspace; 601 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 602 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 603 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 604 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 605 M_ZERO); 606 607 vm->sockets = 1; 608 vm->cores = cores_per_package; /* XXX backwards compatibility */ 609 vm->threads = threads_per_core; /* XXX backwards compatibility */ 610 vm->maxcpus = vm_maxcpu; 611 612 vm_init(vm, true); 613 614 *retvm = vm; 615 return (0); 616 } 617 618 void 619 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 620 uint16_t *threads, uint16_t *maxcpus) 621 { 622 *sockets = vm->sockets; 623 *cores = vm->cores; 624 *threads = vm->threads; 625 *maxcpus = vm->maxcpus; 626 } 627 628 uint16_t 629 vm_get_maxcpus(struct vm *vm) 630 { 631 return (vm->maxcpus); 632 } 633 634 int 635 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 636 uint16_t threads, uint16_t maxcpus __unused) 637 { 638 /* Ignore maxcpus. */ 639 if ((sockets * cores * threads) > vm->maxcpus) 640 return (EINVAL); 641 vm->sockets = sockets; 642 vm->cores = cores; 643 vm->threads = threads; 644 return(0); 645 } 646 647 static void 648 vm_cleanup(struct vm *vm, bool destroy) 649 { 650 struct mem_map *mm; 651 int i; 652 653 if (destroy) 654 vm_xlock_memsegs(vm); 655 656 ppt_unassign_all(vm); 657 658 if (vm->iommu != NULL) 659 iommu_destroy_domain(vm->iommu); 660 661 if (destroy) 662 vrtc_cleanup(vm->vrtc); 663 else 664 vrtc_reset(vm->vrtc); 665 vpmtmr_cleanup(vm->vpmtmr); 666 vatpit_cleanup(vm->vatpit); 667 vhpet_cleanup(vm->vhpet); 668 vatpic_cleanup(vm->vatpic); 669 vioapic_cleanup(vm->vioapic); 670 671 for (i = 0; i < vm->maxcpus; i++) { 672 if (vm->vcpu[i] != NULL) 673 vcpu_cleanup(vm->vcpu[i], destroy); 674 } 675 676 vmmops_cleanup(vm->cookie); 677 678 /* 679 * System memory is removed from the guest address space only when 680 * the VM is destroyed. This is because the mapping remains the same 681 * across VM reset. 682 * 683 * Device memory can be relocated by the guest (e.g. using PCI BARs) 684 * so those mappings are removed on a VM reset. 685 */ 686 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 687 mm = &vm->mem_maps[i]; 688 if (destroy || !sysmem_mapping(vm, mm)) 689 vm_free_memmap(vm, i); 690 } 691 692 if (destroy) { 693 for (i = 0; i < VM_MAX_MEMSEGS; i++) 694 vm_free_memseg(vm, i); 695 vm_unlock_memsegs(vm); 696 697 vmmops_vmspace_free(vm->vmspace); 698 vm->vmspace = NULL; 699 700 free(vm->vcpu, M_VM); 701 sx_destroy(&vm->vcpus_init_lock); 702 sx_destroy(&vm->mem_segs_lock); 703 mtx_destroy(&vm->rendezvous_mtx); 704 } 705 } 706 707 void 708 vm_destroy(struct vm *vm) 709 { 710 vm_cleanup(vm, true); 711 free(vm, M_VM); 712 } 713 714 int 715 vm_reinit(struct vm *vm) 716 { 717 int error; 718 719 /* 720 * A virtual machine can be reset only if all vcpus are suspended. 721 */ 722 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 723 vm_cleanup(vm, false); 724 vm_init(vm, false); 725 error = 0; 726 } else { 727 error = EBUSY; 728 } 729 730 return (error); 731 } 732 733 const char * 734 vm_name(struct vm *vm) 735 { 736 return (vm->name); 737 } 738 739 void 740 vm_slock_memsegs(struct vm *vm) 741 { 742 sx_slock(&vm->mem_segs_lock); 743 } 744 745 void 746 vm_xlock_memsegs(struct vm *vm) 747 { 748 sx_xlock(&vm->mem_segs_lock); 749 } 750 751 void 752 vm_unlock_memsegs(struct vm *vm) 753 { 754 sx_unlock(&vm->mem_segs_lock); 755 } 756 757 int 758 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 759 { 760 vm_object_t obj; 761 762 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 763 return (ENOMEM); 764 else 765 return (0); 766 } 767 768 int 769 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 770 { 771 772 vmm_mmio_free(vm->vmspace, gpa, len); 773 return (0); 774 } 775 776 /* 777 * Return 'true' if 'gpa' is allocated in the guest address space. 778 * 779 * This function is called in the context of a running vcpu which acts as 780 * an implicit lock on 'vm->mem_maps[]'. 781 */ 782 bool 783 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 784 { 785 struct vm *vm = vcpu->vm; 786 struct mem_map *mm; 787 int i; 788 789 #ifdef INVARIANTS 790 int hostcpu, state; 791 state = vcpu_get_state(vcpu, &hostcpu); 792 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 793 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 794 #endif 795 796 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 797 mm = &vm->mem_maps[i]; 798 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 799 return (true); /* 'gpa' is sysmem or devmem */ 800 } 801 802 if (ppt_is_mmio(vm, gpa)) 803 return (true); /* 'gpa' is pci passthru mmio */ 804 805 return (false); 806 } 807 808 int 809 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 810 { 811 struct mem_seg *seg; 812 vm_object_t obj; 813 814 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 815 816 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 817 return (EINVAL); 818 819 if (len == 0 || (len & PAGE_MASK)) 820 return (EINVAL); 821 822 seg = &vm->mem_segs[ident]; 823 if (seg->object != NULL) { 824 if (seg->len == len && seg->sysmem == sysmem) 825 return (EEXIST); 826 else 827 return (EINVAL); 828 } 829 830 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 831 if (obj == NULL) 832 return (ENOMEM); 833 834 seg->len = len; 835 seg->object = obj; 836 seg->sysmem = sysmem; 837 return (0); 838 } 839 840 int 841 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 842 vm_object_t *objptr) 843 { 844 struct mem_seg *seg; 845 846 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 847 848 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 849 return (EINVAL); 850 851 seg = &vm->mem_segs[ident]; 852 if (len) 853 *len = seg->len; 854 if (sysmem) 855 *sysmem = seg->sysmem; 856 if (objptr) 857 *objptr = seg->object; 858 return (0); 859 } 860 861 void 862 vm_free_memseg(struct vm *vm, int ident) 863 { 864 struct mem_seg *seg; 865 866 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 867 ("%s: invalid memseg ident %d", __func__, ident)); 868 869 seg = &vm->mem_segs[ident]; 870 if (seg->object != NULL) { 871 vm_object_deallocate(seg->object); 872 bzero(seg, sizeof(struct mem_seg)); 873 } 874 } 875 876 int 877 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 878 size_t len, int prot, int flags) 879 { 880 struct mem_seg *seg; 881 struct mem_map *m, *map; 882 vm_ooffset_t last; 883 int i, error; 884 885 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 886 return (EINVAL); 887 888 if (flags & ~VM_MEMMAP_F_WIRED) 889 return (EINVAL); 890 891 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 892 return (EINVAL); 893 894 seg = &vm->mem_segs[segid]; 895 if (seg->object == NULL) 896 return (EINVAL); 897 898 last = first + len; 899 if (first < 0 || first >= last || last > seg->len) 900 return (EINVAL); 901 902 if ((gpa | first | last) & PAGE_MASK) 903 return (EINVAL); 904 905 map = NULL; 906 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 907 m = &vm->mem_maps[i]; 908 if (m->len == 0) { 909 map = m; 910 break; 911 } 912 } 913 914 if (map == NULL) 915 return (ENOSPC); 916 917 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 918 len, 0, VMFS_NO_SPACE, prot, prot, 0); 919 if (error != KERN_SUCCESS) 920 return (EFAULT); 921 922 vm_object_reference(seg->object); 923 924 if (flags & VM_MEMMAP_F_WIRED) { 925 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 926 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 927 if (error != KERN_SUCCESS) { 928 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 929 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 930 EFAULT); 931 } 932 } 933 934 map->gpa = gpa; 935 map->len = len; 936 map->segoff = first; 937 map->segid = segid; 938 map->prot = prot; 939 map->flags = flags; 940 return (0); 941 } 942 943 int 944 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 945 { 946 struct mem_map *m; 947 int i; 948 949 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 950 m = &vm->mem_maps[i]; 951 if (m->gpa == gpa && m->len == len && 952 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 953 vm_free_memmap(vm, i); 954 return (0); 955 } 956 } 957 958 return (EINVAL); 959 } 960 961 int 962 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 963 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 964 { 965 struct mem_map *mm, *mmnext; 966 int i; 967 968 mmnext = NULL; 969 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 970 mm = &vm->mem_maps[i]; 971 if (mm->len == 0 || mm->gpa < *gpa) 972 continue; 973 if (mmnext == NULL || mm->gpa < mmnext->gpa) 974 mmnext = mm; 975 } 976 977 if (mmnext != NULL) { 978 *gpa = mmnext->gpa; 979 if (segid) 980 *segid = mmnext->segid; 981 if (segoff) 982 *segoff = mmnext->segoff; 983 if (len) 984 *len = mmnext->len; 985 if (prot) 986 *prot = mmnext->prot; 987 if (flags) 988 *flags = mmnext->flags; 989 return (0); 990 } else { 991 return (ENOENT); 992 } 993 } 994 995 static void 996 vm_free_memmap(struct vm *vm, int ident) 997 { 998 struct mem_map *mm; 999 int error __diagused; 1000 1001 mm = &vm->mem_maps[ident]; 1002 if (mm->len) { 1003 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1004 mm->gpa + mm->len); 1005 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1006 __func__, error)); 1007 bzero(mm, sizeof(struct mem_map)); 1008 } 1009 } 1010 1011 static __inline bool 1012 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1013 { 1014 1015 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1016 return (true); 1017 else 1018 return (false); 1019 } 1020 1021 vm_paddr_t 1022 vmm_sysmem_maxaddr(struct vm *vm) 1023 { 1024 struct mem_map *mm; 1025 vm_paddr_t maxaddr; 1026 int i; 1027 1028 maxaddr = 0; 1029 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1030 mm = &vm->mem_maps[i]; 1031 if (sysmem_mapping(vm, mm)) { 1032 if (maxaddr < mm->gpa + mm->len) 1033 maxaddr = mm->gpa + mm->len; 1034 } 1035 } 1036 return (maxaddr); 1037 } 1038 1039 static void 1040 vm_iommu_map(struct vm *vm) 1041 { 1042 vm_paddr_t gpa, hpa; 1043 struct mem_map *mm; 1044 int i; 1045 1046 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1047 1048 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1049 mm = &vm->mem_maps[i]; 1050 if (!sysmem_mapping(vm, mm)) 1051 continue; 1052 1053 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1054 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1055 mm->gpa, mm->len, mm->flags)); 1056 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1057 continue; 1058 mm->flags |= VM_MEMMAP_F_IOMMU; 1059 1060 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1061 hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa); 1062 1063 /* 1064 * All mappings in the vmm vmspace must be 1065 * present since they are managed by vmm in this way. 1066 * Because we are in pass-through mode, the 1067 * mappings must also be wired. This implies 1068 * that all pages must be mapped and wired, 1069 * allowing to use pmap_extract() and avoiding the 1070 * need to use vm_gpa_hold_global(). 1071 * 1072 * This could change if/when we start 1073 * supporting page faults on IOMMU maps. 1074 */ 1075 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)), 1076 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired", 1077 vm, (uintmax_t)gpa, (uintmax_t)hpa)); 1078 1079 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE); 1080 } 1081 } 1082 1083 iommu_invalidate_tlb(iommu_host_domain()); 1084 } 1085 1086 static void 1087 vm_iommu_unmap(struct vm *vm) 1088 { 1089 vm_paddr_t gpa; 1090 struct mem_map *mm; 1091 int i; 1092 1093 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1094 1095 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1096 mm = &vm->mem_maps[i]; 1097 if (!sysmem_mapping(vm, mm)) 1098 continue; 1099 1100 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1101 continue; 1102 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1103 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1104 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1105 mm->gpa, mm->len, mm->flags)); 1106 1107 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1108 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract( 1109 vmspace_pmap(vm->vmspace), gpa))), 1110 ("vm_iommu_unmap: vm %p gpa %jx not wired", 1111 vm, (uintmax_t)gpa)); 1112 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE); 1113 } 1114 } 1115 1116 /* 1117 * Invalidate the cached translations associated with the domain 1118 * from which pages were removed. 1119 */ 1120 iommu_invalidate_tlb(vm->iommu); 1121 } 1122 1123 int 1124 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1125 { 1126 int error; 1127 1128 error = ppt_unassign_device(vm, bus, slot, func); 1129 if (error) 1130 return (error); 1131 1132 if (ppt_assigned_devices(vm) == 0) 1133 vm_iommu_unmap(vm); 1134 1135 return (0); 1136 } 1137 1138 int 1139 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1140 { 1141 int error; 1142 vm_paddr_t maxaddr; 1143 1144 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1145 if (ppt_assigned_devices(vm) == 0) { 1146 KASSERT(vm->iommu == NULL, 1147 ("vm_assign_pptdev: iommu must be NULL")); 1148 maxaddr = vmm_sysmem_maxaddr(vm); 1149 vm->iommu = iommu_create_domain(maxaddr); 1150 if (vm->iommu == NULL) 1151 return (ENXIO); 1152 vm_iommu_map(vm); 1153 } 1154 1155 error = ppt_assign_device(vm, bus, slot, func); 1156 return (error); 1157 } 1158 1159 static void * 1160 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1161 void **cookie) 1162 { 1163 int i, count, pageoff; 1164 struct mem_map *mm; 1165 vm_page_t m; 1166 1167 pageoff = gpa & PAGE_MASK; 1168 if (len > PAGE_SIZE - pageoff) 1169 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1170 1171 count = 0; 1172 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1173 mm = &vm->mem_maps[i]; 1174 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1175 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1176 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1177 break; 1178 } 1179 } 1180 1181 if (count == 1) { 1182 *cookie = m; 1183 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1184 } else { 1185 *cookie = NULL; 1186 return (NULL); 1187 } 1188 } 1189 1190 void * 1191 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1192 void **cookie) 1193 { 1194 #ifdef INVARIANTS 1195 /* 1196 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1197 * stability. 1198 */ 1199 int state = vcpu_get_state(vcpu, NULL); 1200 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1201 __func__, state)); 1202 #endif 1203 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1204 } 1205 1206 void * 1207 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1208 void **cookie) 1209 { 1210 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1211 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1212 } 1213 1214 void 1215 vm_gpa_release(void *cookie) 1216 { 1217 vm_page_t m = cookie; 1218 1219 vm_page_unwire(m, PQ_ACTIVE); 1220 } 1221 1222 int 1223 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1224 { 1225 1226 if (reg >= VM_REG_LAST) 1227 return (EINVAL); 1228 1229 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1230 } 1231 1232 int 1233 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1234 { 1235 int error; 1236 1237 if (reg >= VM_REG_LAST) 1238 return (EINVAL); 1239 1240 error = vmmops_setreg(vcpu->cookie, reg, val); 1241 if (error || reg != VM_REG_GUEST_RIP) 1242 return (error); 1243 1244 /* Set 'nextrip' to match the value of %rip */ 1245 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1246 vcpu->nextrip = val; 1247 return (0); 1248 } 1249 1250 static bool 1251 is_descriptor_table(int reg) 1252 { 1253 1254 switch (reg) { 1255 case VM_REG_GUEST_IDTR: 1256 case VM_REG_GUEST_GDTR: 1257 return (true); 1258 default: 1259 return (false); 1260 } 1261 } 1262 1263 static bool 1264 is_segment_register(int reg) 1265 { 1266 1267 switch (reg) { 1268 case VM_REG_GUEST_ES: 1269 case VM_REG_GUEST_CS: 1270 case VM_REG_GUEST_SS: 1271 case VM_REG_GUEST_DS: 1272 case VM_REG_GUEST_FS: 1273 case VM_REG_GUEST_GS: 1274 case VM_REG_GUEST_TR: 1275 case VM_REG_GUEST_LDTR: 1276 return (true); 1277 default: 1278 return (false); 1279 } 1280 } 1281 1282 int 1283 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1284 { 1285 1286 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1287 return (EINVAL); 1288 1289 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1290 } 1291 1292 int 1293 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1294 { 1295 1296 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1297 return (EINVAL); 1298 1299 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1300 } 1301 1302 static void 1303 restore_guest_fpustate(struct vcpu *vcpu) 1304 { 1305 1306 /* flush host state to the pcb */ 1307 fpuexit(curthread); 1308 1309 /* restore guest FPU state */ 1310 fpu_enable(); 1311 fpurestore(vcpu->guestfpu); 1312 1313 /* restore guest XCR0 if XSAVE is enabled in the host */ 1314 if (rcr4() & CR4_XSAVE) 1315 load_xcr(0, vcpu->guest_xcr0); 1316 1317 /* 1318 * The FPU is now "dirty" with the guest's state so disable 1319 * the FPU to trap any access by the host. 1320 */ 1321 fpu_disable(); 1322 } 1323 1324 static void 1325 save_guest_fpustate(struct vcpu *vcpu) 1326 { 1327 1328 if ((rcr0() & CR0_TS) == 0) 1329 panic("fpu emulation not enabled in host!"); 1330 1331 /* save guest XCR0 and restore host XCR0 */ 1332 if (rcr4() & CR4_XSAVE) { 1333 vcpu->guest_xcr0 = rxcr(0); 1334 load_xcr(0, vmm_get_host_xcr0()); 1335 } 1336 1337 /* save guest FPU state */ 1338 fpu_enable(); 1339 fpusave(vcpu->guestfpu); 1340 fpu_disable(); 1341 } 1342 1343 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1344 1345 static int 1346 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1347 bool from_idle) 1348 { 1349 int error; 1350 1351 vcpu_assert_locked(vcpu); 1352 1353 /* 1354 * State transitions from the vmmdev_ioctl() must always begin from 1355 * the VCPU_IDLE state. This guarantees that there is only a single 1356 * ioctl() operating on a vcpu at any point. 1357 */ 1358 if (from_idle) { 1359 while (vcpu->state != VCPU_IDLE) { 1360 vcpu->reqidle = 1; 1361 vcpu_notify_event_locked(vcpu, false); 1362 VMM_CTR1(vcpu, "vcpu state change from %s to " 1363 "idle requested", vcpu_state2str(vcpu->state)); 1364 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1365 } 1366 } else { 1367 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1368 "vcpu idle state")); 1369 } 1370 1371 if (vcpu->state == VCPU_RUNNING) { 1372 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1373 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1374 } else { 1375 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1376 "vcpu that is not running", vcpu->hostcpu)); 1377 } 1378 1379 /* 1380 * The following state transitions are allowed: 1381 * IDLE -> FROZEN -> IDLE 1382 * FROZEN -> RUNNING -> FROZEN 1383 * FROZEN -> SLEEPING -> FROZEN 1384 */ 1385 switch (vcpu->state) { 1386 case VCPU_IDLE: 1387 case VCPU_RUNNING: 1388 case VCPU_SLEEPING: 1389 error = (newstate != VCPU_FROZEN); 1390 break; 1391 case VCPU_FROZEN: 1392 error = (newstate == VCPU_FROZEN); 1393 break; 1394 default: 1395 error = 1; 1396 break; 1397 } 1398 1399 if (error) 1400 return (EBUSY); 1401 1402 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1403 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1404 1405 vcpu->state = newstate; 1406 if (newstate == VCPU_RUNNING) 1407 vcpu->hostcpu = curcpu; 1408 else 1409 vcpu->hostcpu = NOCPU; 1410 1411 if (newstate == VCPU_IDLE) 1412 wakeup(&vcpu->state); 1413 1414 return (0); 1415 } 1416 1417 static void 1418 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1419 { 1420 int error; 1421 1422 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1423 panic("Error %d setting state to %d\n", error, newstate); 1424 } 1425 1426 static void 1427 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1428 { 1429 int error; 1430 1431 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1432 panic("Error %d setting state to %d", error, newstate); 1433 } 1434 1435 static int 1436 vm_handle_rendezvous(struct vcpu *vcpu) 1437 { 1438 struct vm *vm = vcpu->vm; 1439 struct thread *td; 1440 int error, vcpuid; 1441 1442 error = 0; 1443 vcpuid = vcpu->vcpuid; 1444 td = curthread; 1445 mtx_lock(&vm->rendezvous_mtx); 1446 while (vm->rendezvous_func != NULL) { 1447 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1448 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1449 1450 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1451 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1452 VMM_CTR0(vcpu, "Calling rendezvous func"); 1453 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1454 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1455 } 1456 if (CPU_CMP(&vm->rendezvous_req_cpus, 1457 &vm->rendezvous_done_cpus) == 0) { 1458 VMM_CTR0(vcpu, "Rendezvous completed"); 1459 CPU_ZERO(&vm->rendezvous_req_cpus); 1460 vm->rendezvous_func = NULL; 1461 wakeup(&vm->rendezvous_func); 1462 break; 1463 } 1464 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1465 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1466 "vmrndv", hz); 1467 if (td_ast_pending(td, TDA_SUSPEND)) { 1468 mtx_unlock(&vm->rendezvous_mtx); 1469 error = thread_check_susp(td, true); 1470 if (error != 0) 1471 return (error); 1472 mtx_lock(&vm->rendezvous_mtx); 1473 } 1474 } 1475 mtx_unlock(&vm->rendezvous_mtx); 1476 return (0); 1477 } 1478 1479 /* 1480 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1481 */ 1482 static int 1483 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1484 { 1485 struct vm *vm = vcpu->vm; 1486 const char *wmesg; 1487 struct thread *td; 1488 int error, t, vcpuid, vcpu_halted, vm_halted; 1489 1490 vcpuid = vcpu->vcpuid; 1491 vcpu_halted = 0; 1492 vm_halted = 0; 1493 error = 0; 1494 td = curthread; 1495 1496 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1497 1498 vcpu_lock(vcpu); 1499 while (1) { 1500 /* 1501 * Do a final check for pending NMI or interrupts before 1502 * really putting this thread to sleep. Also check for 1503 * software events that would cause this vcpu to wakeup. 1504 * 1505 * These interrupts/events could have happened after the 1506 * vcpu returned from vmmops_run() and before it acquired the 1507 * vcpu lock above. 1508 */ 1509 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1510 break; 1511 if (vm_nmi_pending(vcpu)) 1512 break; 1513 if (!intr_disabled) { 1514 if (vm_extint_pending(vcpu) || 1515 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1516 break; 1517 } 1518 } 1519 1520 /* Don't go to sleep if the vcpu thread needs to yield */ 1521 if (vcpu_should_yield(vcpu)) 1522 break; 1523 1524 if (vcpu_debugged(vcpu)) 1525 break; 1526 1527 /* 1528 * Some Linux guests implement "halt" by having all vcpus 1529 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1530 * track of the vcpus that have entered this state. When all 1531 * vcpus enter the halted state the virtual machine is halted. 1532 */ 1533 if (intr_disabled) { 1534 wmesg = "vmhalt"; 1535 VMM_CTR0(vcpu, "Halted"); 1536 if (!vcpu_halted && halt_detection_enabled) { 1537 vcpu_halted = 1; 1538 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1539 } 1540 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1541 vm_halted = 1; 1542 break; 1543 } 1544 } else { 1545 wmesg = "vmidle"; 1546 } 1547 1548 t = ticks; 1549 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1550 /* 1551 * XXX msleep_spin() cannot be interrupted by signals so 1552 * wake up periodically to check pending signals. 1553 */ 1554 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1555 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1556 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1557 if (td_ast_pending(td, TDA_SUSPEND)) { 1558 vcpu_unlock(vcpu); 1559 error = thread_check_susp(td, false); 1560 if (error != 0) { 1561 if (vcpu_halted) { 1562 CPU_CLR_ATOMIC(vcpuid, 1563 &vm->halted_cpus); 1564 } 1565 return (error); 1566 } 1567 vcpu_lock(vcpu); 1568 } 1569 } 1570 1571 if (vcpu_halted) 1572 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1573 1574 vcpu_unlock(vcpu); 1575 1576 if (vm_halted) 1577 vm_suspend(vm, VM_SUSPEND_HALT); 1578 1579 return (0); 1580 } 1581 1582 static int 1583 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1584 { 1585 struct vm *vm = vcpu->vm; 1586 int rv, ftype; 1587 struct vm_map *map; 1588 struct vm_exit *vme; 1589 1590 vme = &vcpu->exitinfo; 1591 1592 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1593 __func__, vme->inst_length)); 1594 1595 ftype = vme->u.paging.fault_type; 1596 KASSERT(ftype == VM_PROT_READ || 1597 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1598 ("vm_handle_paging: invalid fault_type %d", ftype)); 1599 1600 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1601 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1602 vme->u.paging.gpa, ftype); 1603 if (rv == 0) { 1604 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1605 ftype == VM_PROT_READ ? "accessed" : "dirty", 1606 vme->u.paging.gpa); 1607 goto done; 1608 } 1609 } 1610 1611 map = &vm->vmspace->vm_map; 1612 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1613 1614 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1615 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1616 1617 if (rv != KERN_SUCCESS) 1618 return (EFAULT); 1619 done: 1620 return (0); 1621 } 1622 1623 static int 1624 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1625 { 1626 struct vie *vie; 1627 struct vm_exit *vme; 1628 uint64_t gla, gpa, cs_base; 1629 struct vm_guest_paging *paging; 1630 mem_region_read_t mread; 1631 mem_region_write_t mwrite; 1632 enum vm_cpu_mode cpu_mode; 1633 int cs_d, error, fault; 1634 1635 vme = &vcpu->exitinfo; 1636 1637 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1638 __func__, vme->inst_length)); 1639 1640 gla = vme->u.inst_emul.gla; 1641 gpa = vme->u.inst_emul.gpa; 1642 cs_base = vme->u.inst_emul.cs_base; 1643 cs_d = vme->u.inst_emul.cs_d; 1644 vie = &vme->u.inst_emul.vie; 1645 paging = &vme->u.inst_emul.paging; 1646 cpu_mode = paging->cpu_mode; 1647 1648 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1649 1650 /* Fetch, decode and emulate the faulting instruction */ 1651 if (vie->num_valid == 0) { 1652 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1653 VIE_INST_SIZE, vie, &fault); 1654 } else { 1655 /* 1656 * The instruction bytes have already been copied into 'vie' 1657 */ 1658 error = fault = 0; 1659 } 1660 if (error || fault) 1661 return (error); 1662 1663 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1664 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1665 vme->rip + cs_base); 1666 *retu = true; /* dump instruction bytes in userspace */ 1667 return (0); 1668 } 1669 1670 /* 1671 * Update 'nextrip' based on the length of the emulated instruction. 1672 */ 1673 vme->inst_length = vie->num_processed; 1674 vcpu->nextrip += vie->num_processed; 1675 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1676 vcpu->nextrip); 1677 1678 /* return to userland unless this is an in-kernel emulated device */ 1679 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1680 mread = lapic_mmio_read; 1681 mwrite = lapic_mmio_write; 1682 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1683 mread = vioapic_mmio_read; 1684 mwrite = vioapic_mmio_write; 1685 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1686 mread = vhpet_mmio_read; 1687 mwrite = vhpet_mmio_write; 1688 } else { 1689 *retu = true; 1690 return (0); 1691 } 1692 1693 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1694 retu); 1695 1696 return (error); 1697 } 1698 1699 static int 1700 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1701 { 1702 struct vm *vm = vcpu->vm; 1703 int error, i; 1704 struct thread *td; 1705 1706 error = 0; 1707 td = curthread; 1708 1709 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1710 1711 /* 1712 * Wait until all 'active_cpus' have suspended themselves. 1713 * 1714 * Since a VM may be suspended at any time including when one or 1715 * more vcpus are doing a rendezvous we need to call the rendezvous 1716 * handler while we are waiting to prevent a deadlock. 1717 */ 1718 vcpu_lock(vcpu); 1719 while (error == 0) { 1720 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1721 VMM_CTR0(vcpu, "All vcpus suspended"); 1722 break; 1723 } 1724 1725 if (vm->rendezvous_func == NULL) { 1726 VMM_CTR0(vcpu, "Sleeping during suspend"); 1727 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1728 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1729 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1730 if (td_ast_pending(td, TDA_SUSPEND)) { 1731 vcpu_unlock(vcpu); 1732 error = thread_check_susp(td, false); 1733 vcpu_lock(vcpu); 1734 } 1735 } else { 1736 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1737 vcpu_unlock(vcpu); 1738 error = vm_handle_rendezvous(vcpu); 1739 vcpu_lock(vcpu); 1740 } 1741 } 1742 vcpu_unlock(vcpu); 1743 1744 /* 1745 * Wakeup the other sleeping vcpus and return to userspace. 1746 */ 1747 for (i = 0; i < vm->maxcpus; i++) { 1748 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1749 vcpu_notify_event(vm_vcpu(vm, i), false); 1750 } 1751 } 1752 1753 *retu = true; 1754 return (error); 1755 } 1756 1757 static int 1758 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1759 { 1760 vcpu_lock(vcpu); 1761 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1762 vcpu->reqidle = 0; 1763 vcpu_unlock(vcpu); 1764 *retu = true; 1765 return (0); 1766 } 1767 1768 static int 1769 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1770 { 1771 int error, fault; 1772 uint64_t rsp; 1773 uint64_t rflags; 1774 struct vm_copyinfo copyinfo; 1775 1776 *retu = true; 1777 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) { 1778 return (0); 1779 } 1780 1781 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp); 1782 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t), 1783 VM_PROT_RW, ©info, 1, &fault); 1784 if (error != 0 || fault != 0) { 1785 *retu = false; 1786 return (EINVAL); 1787 } 1788 1789 /* Read pushed rflags value from top of stack. */ 1790 vm_copyin(©info, &rflags, sizeof(uint64_t)); 1791 1792 /* Clear TF bit. */ 1793 rflags &= ~(PSL_T); 1794 1795 /* Write updated value back to memory. */ 1796 vm_copyout(&rflags, ©info, sizeof(uint64_t)); 1797 vm_copy_teardown(©info, 1); 1798 1799 return (0); 1800 } 1801 1802 int 1803 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1804 { 1805 int i; 1806 1807 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1808 return (EINVAL); 1809 1810 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1811 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1812 vm->suspend, how); 1813 return (EALREADY); 1814 } 1815 1816 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1817 1818 /* 1819 * Notify all active vcpus that they are now suspended. 1820 */ 1821 for (i = 0; i < vm->maxcpus; i++) { 1822 if (CPU_ISSET(i, &vm->active_cpus)) 1823 vcpu_notify_event(vm_vcpu(vm, i), false); 1824 } 1825 1826 return (0); 1827 } 1828 1829 void 1830 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1831 { 1832 struct vm *vm = vcpu->vm; 1833 struct vm_exit *vmexit; 1834 1835 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1836 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1837 1838 vmexit = vm_exitinfo(vcpu); 1839 vmexit->rip = rip; 1840 vmexit->inst_length = 0; 1841 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1842 vmexit->u.suspended.how = vm->suspend; 1843 } 1844 1845 void 1846 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1847 { 1848 struct vm_exit *vmexit; 1849 1850 vmexit = vm_exitinfo(vcpu); 1851 vmexit->rip = rip; 1852 vmexit->inst_length = 0; 1853 vmexit->exitcode = VM_EXITCODE_DEBUG; 1854 } 1855 1856 void 1857 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1858 { 1859 struct vm_exit *vmexit; 1860 1861 vmexit = vm_exitinfo(vcpu); 1862 vmexit->rip = rip; 1863 vmexit->inst_length = 0; 1864 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1865 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1866 } 1867 1868 void 1869 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1870 { 1871 struct vm_exit *vmexit; 1872 1873 vmexit = vm_exitinfo(vcpu); 1874 vmexit->rip = rip; 1875 vmexit->inst_length = 0; 1876 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1877 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1878 } 1879 1880 void 1881 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1882 { 1883 struct vm_exit *vmexit; 1884 1885 vmexit = vm_exitinfo(vcpu); 1886 vmexit->rip = rip; 1887 vmexit->inst_length = 0; 1888 vmexit->exitcode = VM_EXITCODE_BOGUS; 1889 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1890 } 1891 1892 int 1893 vm_run(struct vcpu *vcpu) 1894 { 1895 struct vm *vm = vcpu->vm; 1896 struct vm_eventinfo evinfo; 1897 int error, vcpuid; 1898 struct pcb *pcb; 1899 uint64_t tscval; 1900 struct vm_exit *vme; 1901 bool retu, intr_disabled; 1902 pmap_t pmap; 1903 1904 vcpuid = vcpu->vcpuid; 1905 1906 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1907 return (EINVAL); 1908 1909 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1910 return (EINVAL); 1911 1912 pmap = vmspace_pmap(vm->vmspace); 1913 vme = &vcpu->exitinfo; 1914 evinfo.rptr = &vm->rendezvous_req_cpus; 1915 evinfo.sptr = &vm->suspend; 1916 evinfo.iptr = &vcpu->reqidle; 1917 restart: 1918 critical_enter(); 1919 1920 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1921 ("vm_run: absurd pm_active")); 1922 1923 tscval = rdtsc(); 1924 1925 pcb = PCPU_GET(curpcb); 1926 set_pcb_flags(pcb, PCB_FULL_IRET); 1927 1928 restore_guest_fpustate(vcpu); 1929 1930 vcpu_require_state(vcpu, VCPU_RUNNING); 1931 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1932 vcpu_require_state(vcpu, VCPU_FROZEN); 1933 1934 save_guest_fpustate(vcpu); 1935 1936 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1937 1938 critical_exit(); 1939 1940 if (error == 0) { 1941 retu = false; 1942 vcpu->nextrip = vme->rip + vme->inst_length; 1943 switch (vme->exitcode) { 1944 case VM_EXITCODE_REQIDLE: 1945 error = vm_handle_reqidle(vcpu, &retu); 1946 break; 1947 case VM_EXITCODE_SUSPENDED: 1948 error = vm_handle_suspend(vcpu, &retu); 1949 break; 1950 case VM_EXITCODE_IOAPIC_EOI: 1951 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1952 break; 1953 case VM_EXITCODE_RENDEZVOUS: 1954 error = vm_handle_rendezvous(vcpu); 1955 break; 1956 case VM_EXITCODE_HLT: 1957 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1958 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1959 break; 1960 case VM_EXITCODE_PAGING: 1961 error = vm_handle_paging(vcpu, &retu); 1962 break; 1963 case VM_EXITCODE_INST_EMUL: 1964 error = vm_handle_inst_emul(vcpu, &retu); 1965 break; 1966 case VM_EXITCODE_INOUT: 1967 case VM_EXITCODE_INOUT_STR: 1968 error = vm_handle_inout(vcpu, vme, &retu); 1969 break; 1970 case VM_EXITCODE_DB: 1971 error = vm_handle_db(vcpu, vme, &retu); 1972 break; 1973 case VM_EXITCODE_MONITOR: 1974 case VM_EXITCODE_MWAIT: 1975 case VM_EXITCODE_VMINSN: 1976 vm_inject_ud(vcpu); 1977 break; 1978 default: 1979 retu = true; /* handled in userland */ 1980 break; 1981 } 1982 } 1983 1984 /* 1985 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 1986 * exit code into VM_EXITCODE_IPI. 1987 */ 1988 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) 1989 error = vm_handle_ipi(vcpu, vme, &retu); 1990 1991 if (error == 0 && retu == false) 1992 goto restart; 1993 1994 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 1995 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 1996 1997 return (error); 1998 } 1999 2000 int 2001 vm_restart_instruction(struct vcpu *vcpu) 2002 { 2003 enum vcpu_state state; 2004 uint64_t rip; 2005 int error __diagused; 2006 2007 state = vcpu_get_state(vcpu, NULL); 2008 if (state == VCPU_RUNNING) { 2009 /* 2010 * When a vcpu is "running" the next instruction is determined 2011 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 2012 * Thus setting 'inst_length' to zero will cause the current 2013 * instruction to be restarted. 2014 */ 2015 vcpu->exitinfo.inst_length = 0; 2016 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 2017 "setting inst_length to zero", vcpu->exitinfo.rip); 2018 } else if (state == VCPU_FROZEN) { 2019 /* 2020 * When a vcpu is "frozen" it is outside the critical section 2021 * around vmmops_run() and 'nextrip' points to the next 2022 * instruction. Thus instruction restart is achieved by setting 2023 * 'nextrip' to the vcpu's %rip. 2024 */ 2025 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 2026 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 2027 VMM_CTR2(vcpu, "restarting instruction by updating " 2028 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 2029 vcpu->nextrip = rip; 2030 } else { 2031 panic("%s: invalid state %d", __func__, state); 2032 } 2033 return (0); 2034 } 2035 2036 int 2037 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 2038 { 2039 int type, vector; 2040 2041 if (info & VM_INTINFO_VALID) { 2042 type = info & VM_INTINFO_TYPE; 2043 vector = info & 0xff; 2044 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 2045 return (EINVAL); 2046 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 2047 return (EINVAL); 2048 if (info & VM_INTINFO_RSVD) 2049 return (EINVAL); 2050 } else { 2051 info = 0; 2052 } 2053 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 2054 vcpu->exitintinfo = info; 2055 return (0); 2056 } 2057 2058 enum exc_class { 2059 EXC_BENIGN, 2060 EXC_CONTRIBUTORY, 2061 EXC_PAGEFAULT 2062 }; 2063 2064 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2065 2066 static enum exc_class 2067 exception_class(uint64_t info) 2068 { 2069 int type, vector; 2070 2071 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2072 type = info & VM_INTINFO_TYPE; 2073 vector = info & 0xff; 2074 2075 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2076 switch (type) { 2077 case VM_INTINFO_HWINTR: 2078 case VM_INTINFO_SWINTR: 2079 case VM_INTINFO_NMI: 2080 return (EXC_BENIGN); 2081 default: 2082 /* 2083 * Hardware exception. 2084 * 2085 * SVM and VT-x use identical type values to represent NMI, 2086 * hardware interrupt and software interrupt. 2087 * 2088 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2089 * for exceptions except #BP and #OF. #BP and #OF use a type 2090 * value of '5' or '6'. Therefore we don't check for explicit 2091 * values of 'type' to classify 'intinfo' into a hardware 2092 * exception. 2093 */ 2094 break; 2095 } 2096 2097 switch (vector) { 2098 case IDT_PF: 2099 case IDT_VE: 2100 return (EXC_PAGEFAULT); 2101 case IDT_DE: 2102 case IDT_TS: 2103 case IDT_NP: 2104 case IDT_SS: 2105 case IDT_GP: 2106 return (EXC_CONTRIBUTORY); 2107 default: 2108 return (EXC_BENIGN); 2109 } 2110 } 2111 2112 static int 2113 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2114 uint64_t *retinfo) 2115 { 2116 enum exc_class exc1, exc2; 2117 int type1, vector1; 2118 2119 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2120 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2121 2122 /* 2123 * If an exception occurs while attempting to call the double-fault 2124 * handler the processor enters shutdown mode (aka triple fault). 2125 */ 2126 type1 = info1 & VM_INTINFO_TYPE; 2127 vector1 = info1 & 0xff; 2128 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2129 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2130 info1, info2); 2131 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2132 *retinfo = 0; 2133 return (0); 2134 } 2135 2136 /* 2137 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2138 */ 2139 exc1 = exception_class(info1); 2140 exc2 = exception_class(info2); 2141 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2142 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2143 /* Convert nested fault into a double fault. */ 2144 *retinfo = IDT_DF; 2145 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2146 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2147 } else { 2148 /* Handle exceptions serially */ 2149 *retinfo = info2; 2150 } 2151 return (1); 2152 } 2153 2154 static uint64_t 2155 vcpu_exception_intinfo(struct vcpu *vcpu) 2156 { 2157 uint64_t info = 0; 2158 2159 if (vcpu->exception_pending) { 2160 info = vcpu->exc_vector & 0xff; 2161 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2162 if (vcpu->exc_errcode_valid) { 2163 info |= VM_INTINFO_DEL_ERRCODE; 2164 info |= (uint64_t)vcpu->exc_errcode << 32; 2165 } 2166 } 2167 return (info); 2168 } 2169 2170 int 2171 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2172 { 2173 uint64_t info1, info2; 2174 int valid; 2175 2176 info1 = vcpu->exitintinfo; 2177 vcpu->exitintinfo = 0; 2178 2179 info2 = 0; 2180 if (vcpu->exception_pending) { 2181 info2 = vcpu_exception_intinfo(vcpu); 2182 vcpu->exception_pending = 0; 2183 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2184 vcpu->exc_vector, info2); 2185 } 2186 2187 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2188 valid = nested_fault(vcpu, info1, info2, retinfo); 2189 } else if (info1 & VM_INTINFO_VALID) { 2190 *retinfo = info1; 2191 valid = 1; 2192 } else if (info2 & VM_INTINFO_VALID) { 2193 *retinfo = info2; 2194 valid = 1; 2195 } else { 2196 valid = 0; 2197 } 2198 2199 if (valid) { 2200 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2201 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2202 } 2203 2204 return (valid); 2205 } 2206 2207 int 2208 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2209 { 2210 *info1 = vcpu->exitintinfo; 2211 *info2 = vcpu_exception_intinfo(vcpu); 2212 return (0); 2213 } 2214 2215 int 2216 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2217 uint32_t errcode, int restart_instruction) 2218 { 2219 uint64_t regval; 2220 int error __diagused; 2221 2222 if (vector < 0 || vector >= 32) 2223 return (EINVAL); 2224 2225 /* 2226 * A double fault exception should never be injected directly into 2227 * the guest. It is a derived exception that results from specific 2228 * combinations of nested faults. 2229 */ 2230 if (vector == IDT_DF) 2231 return (EINVAL); 2232 2233 if (vcpu->exception_pending) { 2234 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2235 "pending exception %d", vector, vcpu->exc_vector); 2236 return (EBUSY); 2237 } 2238 2239 if (errcode_valid) { 2240 /* 2241 * Exceptions don't deliver an error code in real mode. 2242 */ 2243 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2244 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2245 if (!(regval & CR0_PE)) 2246 errcode_valid = 0; 2247 } 2248 2249 /* 2250 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2251 * 2252 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2253 * one instruction or incurs an exception. 2254 */ 2255 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2256 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2257 __func__, error)); 2258 2259 if (restart_instruction) 2260 vm_restart_instruction(vcpu); 2261 2262 vcpu->exception_pending = 1; 2263 vcpu->exc_vector = vector; 2264 vcpu->exc_errcode = errcode; 2265 vcpu->exc_errcode_valid = errcode_valid; 2266 VMM_CTR1(vcpu, "Exception %d pending", vector); 2267 return (0); 2268 } 2269 2270 void 2271 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2272 { 2273 int error __diagused, restart_instruction; 2274 2275 restart_instruction = 1; 2276 2277 error = vm_inject_exception(vcpu, vector, errcode_valid, 2278 errcode, restart_instruction); 2279 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2280 } 2281 2282 void 2283 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2284 { 2285 int error __diagused; 2286 2287 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2288 error_code, cr2); 2289 2290 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2291 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2292 2293 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2294 } 2295 2296 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2297 2298 int 2299 vm_inject_nmi(struct vcpu *vcpu) 2300 { 2301 2302 vcpu->nmi_pending = 1; 2303 vcpu_notify_event(vcpu, false); 2304 return (0); 2305 } 2306 2307 int 2308 vm_nmi_pending(struct vcpu *vcpu) 2309 { 2310 return (vcpu->nmi_pending); 2311 } 2312 2313 void 2314 vm_nmi_clear(struct vcpu *vcpu) 2315 { 2316 if (vcpu->nmi_pending == 0) 2317 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2318 2319 vcpu->nmi_pending = 0; 2320 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2321 } 2322 2323 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2324 2325 int 2326 vm_inject_extint(struct vcpu *vcpu) 2327 { 2328 2329 vcpu->extint_pending = 1; 2330 vcpu_notify_event(vcpu, false); 2331 return (0); 2332 } 2333 2334 int 2335 vm_extint_pending(struct vcpu *vcpu) 2336 { 2337 return (vcpu->extint_pending); 2338 } 2339 2340 void 2341 vm_extint_clear(struct vcpu *vcpu) 2342 { 2343 if (vcpu->extint_pending == 0) 2344 panic("vm_extint_clear: inconsistent extint_pending state"); 2345 2346 vcpu->extint_pending = 0; 2347 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2348 } 2349 2350 int 2351 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2352 { 2353 if (type < 0 || type >= VM_CAP_MAX) 2354 return (EINVAL); 2355 2356 return (vmmops_getcap(vcpu->cookie, type, retval)); 2357 } 2358 2359 int 2360 vm_set_capability(struct vcpu *vcpu, int type, int val) 2361 { 2362 if (type < 0 || type >= VM_CAP_MAX) 2363 return (EINVAL); 2364 2365 return (vmmops_setcap(vcpu->cookie, type, val)); 2366 } 2367 2368 struct vm * 2369 vcpu_vm(struct vcpu *vcpu) 2370 { 2371 return (vcpu->vm); 2372 } 2373 2374 int 2375 vcpu_vcpuid(struct vcpu *vcpu) 2376 { 2377 return (vcpu->vcpuid); 2378 } 2379 2380 struct vcpu * 2381 vm_vcpu(struct vm *vm, int vcpuid) 2382 { 2383 return (vm->vcpu[vcpuid]); 2384 } 2385 2386 struct vlapic * 2387 vm_lapic(struct vcpu *vcpu) 2388 { 2389 return (vcpu->vlapic); 2390 } 2391 2392 struct vioapic * 2393 vm_ioapic(struct vm *vm) 2394 { 2395 2396 return (vm->vioapic); 2397 } 2398 2399 struct vhpet * 2400 vm_hpet(struct vm *vm) 2401 { 2402 2403 return (vm->vhpet); 2404 } 2405 2406 bool 2407 vmm_is_pptdev(int bus, int slot, int func) 2408 { 2409 int b, f, i, n, s; 2410 char *val, *cp, *cp2; 2411 bool found; 2412 2413 /* 2414 * XXX 2415 * The length of an environment variable is limited to 128 bytes which 2416 * puts an upper limit on the number of passthru devices that may be 2417 * specified using a single environment variable. 2418 * 2419 * Work around this by scanning multiple environment variable 2420 * names instead of a single one - yuck! 2421 */ 2422 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2423 2424 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2425 found = false; 2426 for (i = 0; names[i] != NULL && !found; i++) { 2427 cp = val = kern_getenv(names[i]); 2428 while (cp != NULL && *cp != '\0') { 2429 if ((cp2 = strchr(cp, ' ')) != NULL) 2430 *cp2 = '\0'; 2431 2432 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2433 if (n == 3 && bus == b && slot == s && func == f) { 2434 found = true; 2435 break; 2436 } 2437 2438 if (cp2 != NULL) 2439 *cp2++ = ' '; 2440 2441 cp = cp2; 2442 } 2443 freeenv(val); 2444 } 2445 return (found); 2446 } 2447 2448 void * 2449 vm_iommu_domain(struct vm *vm) 2450 { 2451 2452 return (vm->iommu); 2453 } 2454 2455 int 2456 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2457 { 2458 int error; 2459 2460 vcpu_lock(vcpu); 2461 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2462 vcpu_unlock(vcpu); 2463 2464 return (error); 2465 } 2466 2467 enum vcpu_state 2468 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2469 { 2470 enum vcpu_state state; 2471 2472 vcpu_lock(vcpu); 2473 state = vcpu->state; 2474 if (hostcpu != NULL) 2475 *hostcpu = vcpu->hostcpu; 2476 vcpu_unlock(vcpu); 2477 2478 return (state); 2479 } 2480 2481 int 2482 vm_activate_cpu(struct vcpu *vcpu) 2483 { 2484 struct vm *vm = vcpu->vm; 2485 2486 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2487 return (EBUSY); 2488 2489 VMM_CTR0(vcpu, "activated"); 2490 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2491 return (0); 2492 } 2493 2494 int 2495 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2496 { 2497 if (vcpu == NULL) { 2498 vm->debug_cpus = vm->active_cpus; 2499 for (int i = 0; i < vm->maxcpus; i++) { 2500 if (CPU_ISSET(i, &vm->active_cpus)) 2501 vcpu_notify_event(vm_vcpu(vm, i), false); 2502 } 2503 } else { 2504 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2505 return (EINVAL); 2506 2507 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2508 vcpu_notify_event(vcpu, false); 2509 } 2510 return (0); 2511 } 2512 2513 int 2514 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2515 { 2516 2517 if (vcpu == NULL) { 2518 CPU_ZERO(&vm->debug_cpus); 2519 } else { 2520 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2521 return (EINVAL); 2522 2523 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2524 } 2525 return (0); 2526 } 2527 2528 int 2529 vcpu_debugged(struct vcpu *vcpu) 2530 { 2531 2532 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2533 } 2534 2535 cpuset_t 2536 vm_active_cpus(struct vm *vm) 2537 { 2538 2539 return (vm->active_cpus); 2540 } 2541 2542 cpuset_t 2543 vm_debug_cpus(struct vm *vm) 2544 { 2545 2546 return (vm->debug_cpus); 2547 } 2548 2549 cpuset_t 2550 vm_suspended_cpus(struct vm *vm) 2551 { 2552 2553 return (vm->suspended_cpus); 2554 } 2555 2556 /* 2557 * Returns the subset of vCPUs in tostart that are awaiting startup. 2558 * These vCPUs are also marked as no longer awaiting startup. 2559 */ 2560 cpuset_t 2561 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2562 { 2563 cpuset_t set; 2564 2565 mtx_lock(&vm->rendezvous_mtx); 2566 CPU_AND(&set, &vm->startup_cpus, tostart); 2567 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2568 mtx_unlock(&vm->rendezvous_mtx); 2569 return (set); 2570 } 2571 2572 void 2573 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2574 { 2575 mtx_lock(&vm->rendezvous_mtx); 2576 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2577 mtx_unlock(&vm->rendezvous_mtx); 2578 } 2579 2580 void * 2581 vcpu_stats(struct vcpu *vcpu) 2582 { 2583 2584 return (vcpu->stats); 2585 } 2586 2587 int 2588 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2589 { 2590 *state = vcpu->x2apic_state; 2591 2592 return (0); 2593 } 2594 2595 int 2596 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2597 { 2598 if (state >= X2APIC_STATE_LAST) 2599 return (EINVAL); 2600 2601 vcpu->x2apic_state = state; 2602 2603 vlapic_set_x2apic_state(vcpu, state); 2604 2605 return (0); 2606 } 2607 2608 /* 2609 * This function is called to ensure that a vcpu "sees" a pending event 2610 * as soon as possible: 2611 * - If the vcpu thread is sleeping then it is woken up. 2612 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2613 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2614 */ 2615 static void 2616 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2617 { 2618 int hostcpu; 2619 2620 hostcpu = vcpu->hostcpu; 2621 if (vcpu->state == VCPU_RUNNING) { 2622 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2623 if (hostcpu != curcpu) { 2624 if (lapic_intr) { 2625 vlapic_post_intr(vcpu->vlapic, hostcpu, 2626 vmm_ipinum); 2627 } else { 2628 ipi_cpu(hostcpu, vmm_ipinum); 2629 } 2630 } else { 2631 /* 2632 * If the 'vcpu' is running on 'curcpu' then it must 2633 * be sending a notification to itself (e.g. SELF_IPI). 2634 * The pending event will be picked up when the vcpu 2635 * transitions back to guest context. 2636 */ 2637 } 2638 } else { 2639 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2640 "with hostcpu %d", vcpu->state, hostcpu)); 2641 if (vcpu->state == VCPU_SLEEPING) 2642 wakeup_one(vcpu); 2643 } 2644 } 2645 2646 void 2647 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2648 { 2649 vcpu_lock(vcpu); 2650 vcpu_notify_event_locked(vcpu, lapic_intr); 2651 vcpu_unlock(vcpu); 2652 } 2653 2654 struct vmspace * 2655 vm_get_vmspace(struct vm *vm) 2656 { 2657 2658 return (vm->vmspace); 2659 } 2660 2661 int 2662 vm_apicid2vcpuid(struct vm *vm, int apicid) 2663 { 2664 /* 2665 * XXX apic id is assumed to be numerically identical to vcpu id 2666 */ 2667 return (apicid); 2668 } 2669 2670 int 2671 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2672 vm_rendezvous_func_t func, void *arg) 2673 { 2674 struct vm *vm = vcpu->vm; 2675 int error, i; 2676 2677 /* 2678 * Enforce that this function is called without any locks 2679 */ 2680 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2681 2682 restart: 2683 mtx_lock(&vm->rendezvous_mtx); 2684 if (vm->rendezvous_func != NULL) { 2685 /* 2686 * If a rendezvous is already in progress then we need to 2687 * call the rendezvous handler in case this 'vcpu' is one 2688 * of the targets of the rendezvous. 2689 */ 2690 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2691 mtx_unlock(&vm->rendezvous_mtx); 2692 error = vm_handle_rendezvous(vcpu); 2693 if (error != 0) 2694 return (error); 2695 goto restart; 2696 } 2697 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2698 "rendezvous is still in progress")); 2699 2700 VMM_CTR0(vcpu, "Initiating rendezvous"); 2701 vm->rendezvous_req_cpus = dest; 2702 CPU_ZERO(&vm->rendezvous_done_cpus); 2703 vm->rendezvous_arg = arg; 2704 vm->rendezvous_func = func; 2705 mtx_unlock(&vm->rendezvous_mtx); 2706 2707 /* 2708 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2709 * vcpus so they handle the rendezvous as soon as possible. 2710 */ 2711 for (i = 0; i < vm->maxcpus; i++) { 2712 if (CPU_ISSET(i, &dest)) 2713 vcpu_notify_event(vm_vcpu(vm, i), false); 2714 } 2715 2716 return (vm_handle_rendezvous(vcpu)); 2717 } 2718 2719 struct vatpic * 2720 vm_atpic(struct vm *vm) 2721 { 2722 return (vm->vatpic); 2723 } 2724 2725 struct vatpit * 2726 vm_atpit(struct vm *vm) 2727 { 2728 return (vm->vatpit); 2729 } 2730 2731 struct vpmtmr * 2732 vm_pmtmr(struct vm *vm) 2733 { 2734 2735 return (vm->vpmtmr); 2736 } 2737 2738 struct vrtc * 2739 vm_rtc(struct vm *vm) 2740 { 2741 2742 return (vm->vrtc); 2743 } 2744 2745 enum vm_reg_name 2746 vm_segment_name(int seg) 2747 { 2748 static enum vm_reg_name seg_names[] = { 2749 VM_REG_GUEST_ES, 2750 VM_REG_GUEST_CS, 2751 VM_REG_GUEST_SS, 2752 VM_REG_GUEST_DS, 2753 VM_REG_GUEST_FS, 2754 VM_REG_GUEST_GS 2755 }; 2756 2757 KASSERT(seg >= 0 && seg < nitems(seg_names), 2758 ("%s: invalid segment encoding %d", __func__, seg)); 2759 return (seg_names[seg]); 2760 } 2761 2762 void 2763 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2764 { 2765 int idx; 2766 2767 for (idx = 0; idx < num_copyinfo; idx++) { 2768 if (copyinfo[idx].cookie != NULL) 2769 vm_gpa_release(copyinfo[idx].cookie); 2770 } 2771 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2772 } 2773 2774 int 2775 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2776 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2777 int num_copyinfo, int *fault) 2778 { 2779 int error, idx, nused; 2780 size_t n, off, remaining; 2781 void *hva, *cookie; 2782 uint64_t gpa; 2783 2784 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2785 2786 nused = 0; 2787 remaining = len; 2788 while (remaining > 0) { 2789 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2790 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2791 if (error || *fault) 2792 return (error); 2793 off = gpa & PAGE_MASK; 2794 n = min(remaining, PAGE_SIZE - off); 2795 copyinfo[nused].gpa = gpa; 2796 copyinfo[nused].len = n; 2797 remaining -= n; 2798 gla += n; 2799 nused++; 2800 } 2801 2802 for (idx = 0; idx < nused; idx++) { 2803 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2804 copyinfo[idx].len, prot, &cookie); 2805 if (hva == NULL) 2806 break; 2807 copyinfo[idx].hva = hva; 2808 copyinfo[idx].cookie = cookie; 2809 } 2810 2811 if (idx != nused) { 2812 vm_copy_teardown(copyinfo, num_copyinfo); 2813 return (EFAULT); 2814 } else { 2815 *fault = 0; 2816 return (0); 2817 } 2818 } 2819 2820 void 2821 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2822 { 2823 char *dst; 2824 int idx; 2825 2826 dst = kaddr; 2827 idx = 0; 2828 while (len > 0) { 2829 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2830 len -= copyinfo[idx].len; 2831 dst += copyinfo[idx].len; 2832 idx++; 2833 } 2834 } 2835 2836 void 2837 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2838 { 2839 const char *src; 2840 int idx; 2841 2842 src = kaddr; 2843 idx = 0; 2844 while (len > 0) { 2845 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2846 len -= copyinfo[idx].len; 2847 src += copyinfo[idx].len; 2848 idx++; 2849 } 2850 } 2851 2852 /* 2853 * Return the amount of in-use and wired memory for the VM. Since 2854 * these are global stats, only return the values with for vCPU 0 2855 */ 2856 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2857 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2858 2859 static void 2860 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2861 { 2862 2863 if (vcpu->vcpuid == 0) { 2864 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2865 vmspace_resident_count(vcpu->vm->vmspace)); 2866 } 2867 } 2868 2869 static void 2870 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2871 { 2872 2873 if (vcpu->vcpuid == 0) { 2874 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2875 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2876 } 2877 } 2878 2879 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2880 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2881 2882 #ifdef BHYVE_SNAPSHOT 2883 static int 2884 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2885 { 2886 uint64_t tsc, now; 2887 int ret; 2888 struct vcpu *vcpu; 2889 uint16_t i, maxcpus; 2890 2891 now = rdtsc(); 2892 maxcpus = vm_get_maxcpus(vm); 2893 for (i = 0; i < maxcpus; i++) { 2894 vcpu = vm->vcpu[i]; 2895 if (vcpu == NULL) 2896 continue; 2897 2898 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2899 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2900 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2901 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2902 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2903 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2904 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2905 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2906 2907 /* 2908 * Save the absolute TSC value by adding now to tsc_offset. 2909 * 2910 * It will be turned turned back into an actual offset when the 2911 * TSC restore function is called 2912 */ 2913 tsc = now + vcpu->tsc_offset; 2914 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2915 if (meta->op == VM_SNAPSHOT_RESTORE) 2916 vcpu->tsc_offset = tsc; 2917 } 2918 2919 done: 2920 return (ret); 2921 } 2922 2923 static int 2924 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2925 { 2926 int ret; 2927 2928 ret = vm_snapshot_vcpus(vm, meta); 2929 if (ret != 0) 2930 goto done; 2931 2932 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2933 done: 2934 return (ret); 2935 } 2936 2937 static int 2938 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2939 { 2940 int error; 2941 struct vcpu *vcpu; 2942 uint16_t i, maxcpus; 2943 2944 error = 0; 2945 2946 maxcpus = vm_get_maxcpus(vm); 2947 for (i = 0; i < maxcpus; i++) { 2948 vcpu = vm->vcpu[i]; 2949 if (vcpu == NULL) 2950 continue; 2951 2952 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2953 if (error != 0) { 2954 printf("%s: failed to snapshot vmcs/vmcb data for " 2955 "vCPU: %d; error: %d\n", __func__, i, error); 2956 goto done; 2957 } 2958 } 2959 2960 done: 2961 return (error); 2962 } 2963 2964 /* 2965 * Save kernel-side structures to user-space for snapshotting. 2966 */ 2967 int 2968 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2969 { 2970 int ret = 0; 2971 2972 switch (meta->dev_req) { 2973 case STRUCT_VMCX: 2974 ret = vm_snapshot_vcpu(vm, meta); 2975 break; 2976 case STRUCT_VM: 2977 ret = vm_snapshot_vm(vm, meta); 2978 break; 2979 case STRUCT_VIOAPIC: 2980 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2981 break; 2982 case STRUCT_VLAPIC: 2983 ret = vlapic_snapshot(vm, meta); 2984 break; 2985 case STRUCT_VHPET: 2986 ret = vhpet_snapshot(vm_hpet(vm), meta); 2987 break; 2988 case STRUCT_VATPIC: 2989 ret = vatpic_snapshot(vm_atpic(vm), meta); 2990 break; 2991 case STRUCT_VATPIT: 2992 ret = vatpit_snapshot(vm_atpit(vm), meta); 2993 break; 2994 case STRUCT_VPMTMR: 2995 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2996 break; 2997 case STRUCT_VRTC: 2998 ret = vrtc_snapshot(vm_rtc(vm), meta); 2999 break; 3000 default: 3001 printf("%s: failed to find the requested type %#x\n", 3002 __func__, meta->dev_req); 3003 ret = (EINVAL); 3004 } 3005 return (ret); 3006 } 3007 3008 void 3009 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 3010 { 3011 vcpu->tsc_offset = offset; 3012 } 3013 3014 int 3015 vm_restore_time(struct vm *vm) 3016 { 3017 int error; 3018 uint64_t now; 3019 struct vcpu *vcpu; 3020 uint16_t i, maxcpus; 3021 3022 now = rdtsc(); 3023 3024 error = vhpet_restore_time(vm_hpet(vm)); 3025 if (error) 3026 return (error); 3027 3028 maxcpus = vm_get_maxcpus(vm); 3029 for (i = 0; i < maxcpus; i++) { 3030 vcpu = vm->vcpu[i]; 3031 if (vcpu == NULL) 3032 continue; 3033 3034 error = vmmops_restore_tsc(vcpu->cookie, 3035 vcpu->tsc_offset - now); 3036 if (error) 3037 return (error); 3038 } 3039 3040 return (0); 3041 } 3042 #endif 3043