xref: /freebsd/sys/amd64/vmm/vmm.c (revision f5147e312f43a9050468de539aeafa072caa1a60)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/module.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/pcpu.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/rwlock.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/systm.h>
48 
49 #include <vm/vm.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_page.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_param.h>
56 
57 #include <machine/cpu.h>
58 #include <machine/pcb.h>
59 #include <machine/smp.h>
60 #include <machine/md_var.h>
61 #include <x86/psl.h>
62 #include <x86/apicreg.h>
63 
64 #include <machine/vmm.h>
65 #include <machine/vmm_dev.h>
66 #include <machine/vmm_instruction_emul.h>
67 
68 #include "vmm_ioport.h"
69 #include "vmm_ktr.h"
70 #include "vmm_host.h"
71 #include "vmm_mem.h"
72 #include "vmm_util.h"
73 #include "vatpic.h"
74 #include "vatpit.h"
75 #include "vhpet.h"
76 #include "vioapic.h"
77 #include "vlapic.h"
78 #include "vpmtmr.h"
79 #include "vrtc.h"
80 #include "vmm_stat.h"
81 #include "vmm_lapic.h"
82 
83 #include "io/ppt.h"
84 #include "io/iommu.h"
85 
86 struct vlapic;
87 
88 /*
89  * Initialization:
90  * (a) allocated when vcpu is created
91  * (i) initialized when vcpu is created and when it is reinitialized
92  * (o) initialized the first time the vcpu is created
93  * (x) initialized before use
94  */
95 struct vcpu {
96 	struct mtx 	mtx;		/* (o) protects 'state' and 'hostcpu' */
97 	enum vcpu_state	state;		/* (o) vcpu state */
98 	int		hostcpu;	/* (o) vcpu's host cpu */
99 	int		reqidle;	/* (i) request vcpu to idle */
100 	struct vlapic	*vlapic;	/* (i) APIC device model */
101 	enum x2apic_state x2apic_state;	/* (i) APIC mode */
102 	uint64_t	exitintinfo;	/* (i) events pending at VM exit */
103 	int		nmi_pending;	/* (i) NMI pending */
104 	int		extint_pending;	/* (i) INTR pending */
105 	int	exception_pending;	/* (i) exception pending */
106 	int	exc_vector;		/* (x) exception collateral */
107 	int	exc_errcode_valid;
108 	uint32_t exc_errcode;
109 	struct savefpu	*guestfpu;	/* (a,i) guest fpu state */
110 	uint64_t	guest_xcr0;	/* (i) guest %xcr0 register */
111 	void		*stats;		/* (a,i) statistics */
112 	struct vm_exit	exitinfo;	/* (x) exit reason and collateral */
113 	uint64_t	nextrip;	/* (x) next instruction to execute */
114 };
115 
116 #define	vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
117 #define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
118 #define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
119 #define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
120 #define	vcpu_assert_locked(v)	mtx_assert(&((v)->mtx), MA_OWNED)
121 
122 struct mem_seg {
123 	size_t	len;
124 	bool	sysmem;
125 	struct vm_object *object;
126 };
127 #define	VM_MAX_MEMSEGS	3
128 
129 struct mem_map {
130 	vm_paddr_t	gpa;
131 	size_t		len;
132 	vm_ooffset_t	segoff;
133 	int		segid;
134 	int		prot;
135 	int		flags;
136 };
137 #define	VM_MAX_MEMMAPS	4
138 
139 /*
140  * Initialization:
141  * (o) initialized the first time the VM is created
142  * (i) initialized when VM is created and when it is reinitialized
143  * (x) initialized before use
144  */
145 struct vm {
146 	void		*cookie;		/* (i) cpu-specific data */
147 	void		*iommu;			/* (x) iommu-specific data */
148 	struct vhpet	*vhpet;			/* (i) virtual HPET */
149 	struct vioapic	*vioapic;		/* (i) virtual ioapic */
150 	struct vatpic	*vatpic;		/* (i) virtual atpic */
151 	struct vatpit	*vatpit;		/* (i) virtual atpit */
152 	struct vpmtmr	*vpmtmr;		/* (i) virtual ACPI PM timer */
153 	struct vrtc	*vrtc;			/* (o) virtual RTC */
154 	volatile cpuset_t active_cpus;		/* (i) active vcpus */
155 	int		suspend;		/* (i) stop VM execution */
156 	volatile cpuset_t suspended_cpus; 	/* (i) suspended vcpus */
157 	volatile cpuset_t halted_cpus;		/* (x) cpus in a hard halt */
158 	cpuset_t	rendezvous_req_cpus;	/* (x) rendezvous requested */
159 	cpuset_t	rendezvous_done_cpus;	/* (x) rendezvous finished */
160 	void		*rendezvous_arg;	/* (x) rendezvous func/arg */
161 	vm_rendezvous_func_t rendezvous_func;
162 	struct mtx	rendezvous_mtx;		/* (o) rendezvous lock */
163 	struct mem_map	mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
164 	struct mem_seg	mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
165 	struct vmspace	*vmspace;		/* (o) guest's address space */
166 	char		name[VM_MAX_NAMELEN];	/* (o) virtual machine name */
167 	struct vcpu	vcpu[VM_MAXCPU];	/* (i) guest vcpus */
168 };
169 
170 static int vmm_initialized;
171 
172 static struct vmm_ops *ops;
173 #define	VMM_INIT(num)	(ops != NULL ? (*ops->init)(num) : 0)
174 #define	VMM_CLEANUP()	(ops != NULL ? (*ops->cleanup)() : 0)
175 #define	VMM_RESUME()	(ops != NULL ? (*ops->resume)() : 0)
176 
177 #define	VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
178 #define	VMRUN(vmi, vcpu, rip, pmap, evinfo) \
179 	(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
180 #define	VMCLEANUP(vmi)	(ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
181 #define	VMSPACE_ALLOC(min, max) \
182 	(ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
183 #define	VMSPACE_FREE(vmspace) \
184 	(ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
185 #define	VMGETREG(vmi, vcpu, num, retval)		\
186 	(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
187 #define	VMSETREG(vmi, vcpu, num, val)		\
188 	(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
189 #define	VMGETDESC(vmi, vcpu, num, desc)		\
190 	(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
191 #define	VMSETDESC(vmi, vcpu, num, desc)		\
192 	(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
193 #define	VMGETCAP(vmi, vcpu, num, retval)	\
194 	(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
195 #define	VMSETCAP(vmi, vcpu, num, val)		\
196 	(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
197 #define	VLAPIC_INIT(vmi, vcpu)			\
198 	(ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
199 #define	VLAPIC_CLEANUP(vmi, vlapic)		\
200 	(ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
201 
202 #define	fpu_start_emulating()	load_cr0(rcr0() | CR0_TS)
203 #define	fpu_stop_emulating()	clts()
204 
205 static MALLOC_DEFINE(M_VM, "vm", "vm");
206 
207 /* statistics */
208 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
209 
210 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
211 
212 /*
213  * Halt the guest if all vcpus are executing a HLT instruction with
214  * interrupts disabled.
215  */
216 static int halt_detection_enabled = 1;
217 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
218     &halt_detection_enabled, 0,
219     "Halt VM if all vcpus execute HLT with interrupts disabled");
220 
221 static int vmm_ipinum;
222 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
223     "IPI vector used for vcpu notifications");
224 
225 static int trace_guest_exceptions;
226 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
227     &trace_guest_exceptions, 0,
228     "Trap into hypervisor on all guest exceptions and reflect them back");
229 
230 static void vm_free_memmap(struct vm *vm, int ident);
231 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
232 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
233 
234 #ifdef KTR
235 static const char *
236 vcpu_state2str(enum vcpu_state state)
237 {
238 
239 	switch (state) {
240 	case VCPU_IDLE:
241 		return ("idle");
242 	case VCPU_FROZEN:
243 		return ("frozen");
244 	case VCPU_RUNNING:
245 		return ("running");
246 	case VCPU_SLEEPING:
247 		return ("sleeping");
248 	default:
249 		return ("unknown");
250 	}
251 }
252 #endif
253 
254 static void
255 vcpu_cleanup(struct vm *vm, int i, bool destroy)
256 {
257 	struct vcpu *vcpu = &vm->vcpu[i];
258 
259 	VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
260 	if (destroy) {
261 		vmm_stat_free(vcpu->stats);
262 		fpu_save_area_free(vcpu->guestfpu);
263 	}
264 }
265 
266 static void
267 vcpu_init(struct vm *vm, int vcpu_id, bool create)
268 {
269 	struct vcpu *vcpu;
270 
271 	KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU,
272 	    ("vcpu_init: invalid vcpu %d", vcpu_id));
273 
274 	vcpu = &vm->vcpu[vcpu_id];
275 
276 	if (create) {
277 		KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
278 		    "initialized", vcpu_id));
279 		vcpu_lock_init(vcpu);
280 		vcpu->state = VCPU_IDLE;
281 		vcpu->hostcpu = NOCPU;
282 		vcpu->guestfpu = fpu_save_area_alloc();
283 		vcpu->stats = vmm_stat_alloc();
284 	}
285 
286 	vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
287 	vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
288 	vcpu->reqidle = 0;
289 	vcpu->exitintinfo = 0;
290 	vcpu->nmi_pending = 0;
291 	vcpu->extint_pending = 0;
292 	vcpu->exception_pending = 0;
293 	vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
294 	fpu_save_area_reset(vcpu->guestfpu);
295 	vmm_stat_init(vcpu->stats);
296 }
297 
298 int
299 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
300 {
301 
302 	return (trace_guest_exceptions);
303 }
304 
305 struct vm_exit *
306 vm_exitinfo(struct vm *vm, int cpuid)
307 {
308 	struct vcpu *vcpu;
309 
310 	if (cpuid < 0 || cpuid >= VM_MAXCPU)
311 		panic("vm_exitinfo: invalid cpuid %d", cpuid);
312 
313 	vcpu = &vm->vcpu[cpuid];
314 
315 	return (&vcpu->exitinfo);
316 }
317 
318 static void
319 vmm_resume(void)
320 {
321 	VMM_RESUME();
322 }
323 
324 static int
325 vmm_init(void)
326 {
327 	int error;
328 
329 	vmm_host_state_init();
330 
331 	vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
332 	    &IDTVEC(justreturn));
333 	if (vmm_ipinum < 0)
334 		vmm_ipinum = IPI_AST;
335 
336 	error = vmm_mem_init();
337 	if (error)
338 		return (error);
339 
340 	if (vmm_is_intel())
341 		ops = &vmm_ops_intel;
342 	else if (vmm_is_amd())
343 		ops = &vmm_ops_amd;
344 	else
345 		return (ENXIO);
346 
347 	vmm_resume_p = vmm_resume;
348 
349 	return (VMM_INIT(vmm_ipinum));
350 }
351 
352 static int
353 vmm_handler(module_t mod, int what, void *arg)
354 {
355 	int error;
356 
357 	switch (what) {
358 	case MOD_LOAD:
359 		vmmdev_init();
360 		error = vmm_init();
361 		if (error == 0)
362 			vmm_initialized = 1;
363 		break;
364 	case MOD_UNLOAD:
365 		error = vmmdev_cleanup();
366 		if (error == 0) {
367 			vmm_resume_p = NULL;
368 			iommu_cleanup();
369 			if (vmm_ipinum != IPI_AST)
370 				lapic_ipi_free(vmm_ipinum);
371 			error = VMM_CLEANUP();
372 			/*
373 			 * Something bad happened - prevent new
374 			 * VMs from being created
375 			 */
376 			if (error)
377 				vmm_initialized = 0;
378 		}
379 		break;
380 	default:
381 		error = 0;
382 		break;
383 	}
384 	return (error);
385 }
386 
387 static moduledata_t vmm_kmod = {
388 	"vmm",
389 	vmm_handler,
390 	NULL
391 };
392 
393 /*
394  * vmm initialization has the following dependencies:
395  *
396  * - VT-x initialization requires smp_rendezvous() and therefore must happen
397  *   after SMP is fully functional (after SI_SUB_SMP).
398  */
399 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
400 MODULE_VERSION(vmm, 1);
401 
402 static void
403 vm_init(struct vm *vm, bool create)
404 {
405 	int i;
406 
407 	vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
408 	vm->iommu = NULL;
409 	vm->vioapic = vioapic_init(vm);
410 	vm->vhpet = vhpet_init(vm);
411 	vm->vatpic = vatpic_init(vm);
412 	vm->vatpit = vatpit_init(vm);
413 	vm->vpmtmr = vpmtmr_init(vm);
414 	if (create)
415 		vm->vrtc = vrtc_init(vm);
416 
417 	CPU_ZERO(&vm->active_cpus);
418 
419 	vm->suspend = 0;
420 	CPU_ZERO(&vm->suspended_cpus);
421 
422 	for (i = 0; i < VM_MAXCPU; i++)
423 		vcpu_init(vm, i, create);
424 }
425 
426 int
427 vm_create(const char *name, struct vm **retvm)
428 {
429 	struct vm *vm;
430 	struct vmspace *vmspace;
431 
432 	/*
433 	 * If vmm.ko could not be successfully initialized then don't attempt
434 	 * to create the virtual machine.
435 	 */
436 	if (!vmm_initialized)
437 		return (ENXIO);
438 
439 	if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
440 		return (EINVAL);
441 
442 	vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
443 	if (vmspace == NULL)
444 		return (ENOMEM);
445 
446 	vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
447 	strcpy(vm->name, name);
448 	vm->vmspace = vmspace;
449 	mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
450 
451 	vm_init(vm, true);
452 
453 	*retvm = vm;
454 	return (0);
455 }
456 
457 static void
458 vm_cleanup(struct vm *vm, bool destroy)
459 {
460 	struct mem_map *mm;
461 	int i;
462 
463 	ppt_unassign_all(vm);
464 
465 	if (vm->iommu != NULL)
466 		iommu_destroy_domain(vm->iommu);
467 
468 	if (destroy)
469 		vrtc_cleanup(vm->vrtc);
470 	else
471 		vrtc_reset(vm->vrtc);
472 	vpmtmr_cleanup(vm->vpmtmr);
473 	vatpit_cleanup(vm->vatpit);
474 	vhpet_cleanup(vm->vhpet);
475 	vatpic_cleanup(vm->vatpic);
476 	vioapic_cleanup(vm->vioapic);
477 
478 	for (i = 0; i < VM_MAXCPU; i++)
479 		vcpu_cleanup(vm, i, destroy);
480 
481 	VMCLEANUP(vm->cookie);
482 
483 	/*
484 	 * System memory is removed from the guest address space only when
485 	 * the VM is destroyed. This is because the mapping remains the same
486 	 * across VM reset.
487 	 *
488 	 * Device memory can be relocated by the guest (e.g. using PCI BARs)
489 	 * so those mappings are removed on a VM reset.
490 	 */
491 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
492 		mm = &vm->mem_maps[i];
493 		if (destroy || !sysmem_mapping(vm, mm))
494 			vm_free_memmap(vm, i);
495 	}
496 
497 	if (destroy) {
498 		for (i = 0; i < VM_MAX_MEMSEGS; i++)
499 			vm_free_memseg(vm, i);
500 
501 		VMSPACE_FREE(vm->vmspace);
502 		vm->vmspace = NULL;
503 	}
504 }
505 
506 void
507 vm_destroy(struct vm *vm)
508 {
509 	vm_cleanup(vm, true);
510 	free(vm, M_VM);
511 }
512 
513 int
514 vm_reinit(struct vm *vm)
515 {
516 	int error;
517 
518 	/*
519 	 * A virtual machine can be reset only if all vcpus are suspended.
520 	 */
521 	if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
522 		vm_cleanup(vm, false);
523 		vm_init(vm, false);
524 		error = 0;
525 	} else {
526 		error = EBUSY;
527 	}
528 
529 	return (error);
530 }
531 
532 const char *
533 vm_name(struct vm *vm)
534 {
535 	return (vm->name);
536 }
537 
538 int
539 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
540 {
541 	vm_object_t obj;
542 
543 	if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
544 		return (ENOMEM);
545 	else
546 		return (0);
547 }
548 
549 int
550 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
551 {
552 
553 	vmm_mmio_free(vm->vmspace, gpa, len);
554 	return (0);
555 }
556 
557 /*
558  * Return 'true' if 'gpa' is allocated in the guest address space.
559  *
560  * This function is called in the context of a running vcpu which acts as
561  * an implicit lock on 'vm->mem_maps[]'.
562  */
563 bool
564 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
565 {
566 	struct mem_map *mm;
567 	int i;
568 
569 #ifdef INVARIANTS
570 	int hostcpu, state;
571 	state = vcpu_get_state(vm, vcpuid, &hostcpu);
572 	KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
573 	    ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
574 #endif
575 
576 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
577 		mm = &vm->mem_maps[i];
578 		if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
579 			return (true);		/* 'gpa' is sysmem or devmem */
580 	}
581 
582 	if (ppt_is_mmio(vm, gpa))
583 		return (true);			/* 'gpa' is pci passthru mmio */
584 
585 	return (false);
586 }
587 
588 int
589 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
590 {
591 	struct mem_seg *seg;
592 	vm_object_t obj;
593 
594 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
595 		return (EINVAL);
596 
597 	if (len == 0 || (len & PAGE_MASK))
598 		return (EINVAL);
599 
600 	seg = &vm->mem_segs[ident];
601 	if (seg->object != NULL) {
602 		if (seg->len == len && seg->sysmem == sysmem)
603 			return (EEXIST);
604 		else
605 			return (EINVAL);
606 	}
607 
608 	obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
609 	if (obj == NULL)
610 		return (ENOMEM);
611 
612 	seg->len = len;
613 	seg->object = obj;
614 	seg->sysmem = sysmem;
615 	return (0);
616 }
617 
618 int
619 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
620     vm_object_t *objptr)
621 {
622 	struct mem_seg *seg;
623 
624 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
625 		return (EINVAL);
626 
627 	seg = &vm->mem_segs[ident];
628 	if (len)
629 		*len = seg->len;
630 	if (sysmem)
631 		*sysmem = seg->sysmem;
632 	if (objptr)
633 		*objptr = seg->object;
634 	return (0);
635 }
636 
637 void
638 vm_free_memseg(struct vm *vm, int ident)
639 {
640 	struct mem_seg *seg;
641 
642 	KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
643 	    ("%s: invalid memseg ident %d", __func__, ident));
644 
645 	seg = &vm->mem_segs[ident];
646 	if (seg->object != NULL) {
647 		vm_object_deallocate(seg->object);
648 		bzero(seg, sizeof(struct mem_seg));
649 	}
650 }
651 
652 int
653 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
654     size_t len, int prot, int flags)
655 {
656 	struct mem_seg *seg;
657 	struct mem_map *m, *map;
658 	vm_ooffset_t last;
659 	int i, error;
660 
661 	if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
662 		return (EINVAL);
663 
664 	if (flags & ~VM_MEMMAP_F_WIRED)
665 		return (EINVAL);
666 
667 	if (segid < 0 || segid >= VM_MAX_MEMSEGS)
668 		return (EINVAL);
669 
670 	seg = &vm->mem_segs[segid];
671 	if (seg->object == NULL)
672 		return (EINVAL);
673 
674 	last = first + len;
675 	if (first < 0 || first >= last || last > seg->len)
676 		return (EINVAL);
677 
678 	if ((gpa | first | last) & PAGE_MASK)
679 		return (EINVAL);
680 
681 	map = NULL;
682 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
683 		m = &vm->mem_maps[i];
684 		if (m->len == 0) {
685 			map = m;
686 			break;
687 		}
688 	}
689 
690 	if (map == NULL)
691 		return (ENOSPC);
692 
693 	error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
694 	    len, 0, VMFS_NO_SPACE, prot, prot, 0);
695 	if (error != KERN_SUCCESS)
696 		return (EFAULT);
697 
698 	vm_object_reference(seg->object);
699 
700 	if (flags & VM_MEMMAP_F_WIRED) {
701 		error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
702 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
703 		if (error != KERN_SUCCESS) {
704 			vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
705 			return (EFAULT);
706 		}
707 	}
708 
709 	map->gpa = gpa;
710 	map->len = len;
711 	map->segoff = first;
712 	map->segid = segid;
713 	map->prot = prot;
714 	map->flags = flags;
715 	return (0);
716 }
717 
718 int
719 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
720     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
721 {
722 	struct mem_map *mm, *mmnext;
723 	int i;
724 
725 	mmnext = NULL;
726 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
727 		mm = &vm->mem_maps[i];
728 		if (mm->len == 0 || mm->gpa < *gpa)
729 			continue;
730 		if (mmnext == NULL || mm->gpa < mmnext->gpa)
731 			mmnext = mm;
732 	}
733 
734 	if (mmnext != NULL) {
735 		*gpa = mmnext->gpa;
736 		if (segid)
737 			*segid = mmnext->segid;
738 		if (segoff)
739 			*segoff = mmnext->segoff;
740 		if (len)
741 			*len = mmnext->len;
742 		if (prot)
743 			*prot = mmnext->prot;
744 		if (flags)
745 			*flags = mmnext->flags;
746 		return (0);
747 	} else {
748 		return (ENOENT);
749 	}
750 }
751 
752 static void
753 vm_free_memmap(struct vm *vm, int ident)
754 {
755 	struct mem_map *mm;
756 	int error;
757 
758 	mm = &vm->mem_maps[ident];
759 	if (mm->len) {
760 		error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
761 		    mm->gpa + mm->len);
762 		KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
763 		    __func__, error));
764 		bzero(mm, sizeof(struct mem_map));
765 	}
766 }
767 
768 static __inline bool
769 sysmem_mapping(struct vm *vm, struct mem_map *mm)
770 {
771 
772 	if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
773 		return (true);
774 	else
775 		return (false);
776 }
777 
778 static vm_paddr_t
779 sysmem_maxaddr(struct vm *vm)
780 {
781 	struct mem_map *mm;
782 	vm_paddr_t maxaddr;
783 	int i;
784 
785 	maxaddr = 0;
786 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
787 		mm = &vm->mem_maps[i];
788 		if (sysmem_mapping(vm, mm)) {
789 			if (maxaddr < mm->gpa + mm->len)
790 				maxaddr = mm->gpa + mm->len;
791 		}
792 	}
793 	return (maxaddr);
794 }
795 
796 static void
797 vm_iommu_modify(struct vm *vm, boolean_t map)
798 {
799 	int i, sz;
800 	vm_paddr_t gpa, hpa;
801 	struct mem_map *mm;
802 	void *vp, *cookie, *host_domain;
803 
804 	sz = PAGE_SIZE;
805 	host_domain = iommu_host_domain();
806 
807 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
808 		mm = &vm->mem_maps[i];
809 		if (!sysmem_mapping(vm, mm))
810 			continue;
811 
812 		if (map) {
813 			KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
814 			    ("iommu map found invalid memmap %#lx/%#lx/%#x",
815 			    mm->gpa, mm->len, mm->flags));
816 			if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
817 				continue;
818 			mm->flags |= VM_MEMMAP_F_IOMMU;
819 		} else {
820 			if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
821 				continue;
822 			mm->flags &= ~VM_MEMMAP_F_IOMMU;
823 			KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
824 			    ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
825 			    mm->gpa, mm->len, mm->flags));
826 		}
827 
828 		gpa = mm->gpa;
829 		while (gpa < mm->gpa + mm->len) {
830 			vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
831 					 &cookie);
832 			KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
833 			    vm_name(vm), gpa));
834 
835 			vm_gpa_release(cookie);
836 
837 			hpa = DMAP_TO_PHYS((uintptr_t)vp);
838 			if (map) {
839 				iommu_create_mapping(vm->iommu, gpa, hpa, sz);
840 				iommu_remove_mapping(host_domain, hpa, sz);
841 			} else {
842 				iommu_remove_mapping(vm->iommu, gpa, sz);
843 				iommu_create_mapping(host_domain, hpa, hpa, sz);
844 			}
845 
846 			gpa += PAGE_SIZE;
847 		}
848 	}
849 
850 	/*
851 	 * Invalidate the cached translations associated with the domain
852 	 * from which pages were removed.
853 	 */
854 	if (map)
855 		iommu_invalidate_tlb(host_domain);
856 	else
857 		iommu_invalidate_tlb(vm->iommu);
858 }
859 
860 #define	vm_iommu_unmap(vm)	vm_iommu_modify((vm), FALSE)
861 #define	vm_iommu_map(vm)	vm_iommu_modify((vm), TRUE)
862 
863 int
864 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
865 {
866 	int error;
867 
868 	error = ppt_unassign_device(vm, bus, slot, func);
869 	if (error)
870 		return (error);
871 
872 	if (ppt_assigned_devices(vm) == 0)
873 		vm_iommu_unmap(vm);
874 
875 	return (0);
876 }
877 
878 int
879 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
880 {
881 	int error;
882 	vm_paddr_t maxaddr;
883 
884 	/* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
885 	if (ppt_assigned_devices(vm) == 0) {
886 		KASSERT(vm->iommu == NULL,
887 		    ("vm_assign_pptdev: iommu must be NULL"));
888 		maxaddr = sysmem_maxaddr(vm);
889 		vm->iommu = iommu_create_domain(maxaddr);
890 		if (vm->iommu == NULL)
891 			return (ENXIO);
892 		vm_iommu_map(vm);
893 	}
894 
895 	error = ppt_assign_device(vm, bus, slot, func);
896 	return (error);
897 }
898 
899 void *
900 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
901 	    void **cookie)
902 {
903 	int i, count, pageoff;
904 	struct mem_map *mm;
905 	vm_page_t m;
906 #ifdef INVARIANTS
907 	/*
908 	 * All vcpus are frozen by ioctls that modify the memory map
909 	 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
910 	 * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
911 	 */
912 	int state;
913 	KASSERT(vcpuid >= -1 && vcpuid < VM_MAXCPU, ("%s: invalid vcpuid %d",
914 	    __func__, vcpuid));
915 	for (i = 0; i < VM_MAXCPU; i++) {
916 		if (vcpuid != -1 && vcpuid != i)
917 			continue;
918 		state = vcpu_get_state(vm, i, NULL);
919 		KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
920 		    __func__, state));
921 	}
922 #endif
923 	pageoff = gpa & PAGE_MASK;
924 	if (len > PAGE_SIZE - pageoff)
925 		panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
926 
927 	count = 0;
928 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
929 		mm = &vm->mem_maps[i];
930 		if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
931 		    gpa < mm->gpa + mm->len) {
932 			count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
933 			    trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
934 			break;
935 		}
936 	}
937 
938 	if (count == 1) {
939 		*cookie = m;
940 		return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
941 	} else {
942 		*cookie = NULL;
943 		return (NULL);
944 	}
945 }
946 
947 void
948 vm_gpa_release(void *cookie)
949 {
950 	vm_page_t m = cookie;
951 
952 	vm_page_lock(m);
953 	vm_page_unhold(m);
954 	vm_page_unlock(m);
955 }
956 
957 int
958 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
959 {
960 
961 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
962 		return (EINVAL);
963 
964 	if (reg >= VM_REG_LAST)
965 		return (EINVAL);
966 
967 	return (VMGETREG(vm->cookie, vcpu, reg, retval));
968 }
969 
970 int
971 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
972 {
973 	struct vcpu *vcpu;
974 	int error;
975 
976 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
977 		return (EINVAL);
978 
979 	if (reg >= VM_REG_LAST)
980 		return (EINVAL);
981 
982 	error = VMSETREG(vm->cookie, vcpuid, reg, val);
983 	if (error || reg != VM_REG_GUEST_RIP)
984 		return (error);
985 
986 	/* Set 'nextrip' to match the value of %rip */
987 	VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
988 	vcpu = &vm->vcpu[vcpuid];
989 	vcpu->nextrip = val;
990 	return (0);
991 }
992 
993 static boolean_t
994 is_descriptor_table(int reg)
995 {
996 
997 	switch (reg) {
998 	case VM_REG_GUEST_IDTR:
999 	case VM_REG_GUEST_GDTR:
1000 		return (TRUE);
1001 	default:
1002 		return (FALSE);
1003 	}
1004 }
1005 
1006 static boolean_t
1007 is_segment_register(int reg)
1008 {
1009 
1010 	switch (reg) {
1011 	case VM_REG_GUEST_ES:
1012 	case VM_REG_GUEST_CS:
1013 	case VM_REG_GUEST_SS:
1014 	case VM_REG_GUEST_DS:
1015 	case VM_REG_GUEST_FS:
1016 	case VM_REG_GUEST_GS:
1017 	case VM_REG_GUEST_TR:
1018 	case VM_REG_GUEST_LDTR:
1019 		return (TRUE);
1020 	default:
1021 		return (FALSE);
1022 	}
1023 }
1024 
1025 int
1026 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
1027 		struct seg_desc *desc)
1028 {
1029 
1030 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1031 		return (EINVAL);
1032 
1033 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1034 		return (EINVAL);
1035 
1036 	return (VMGETDESC(vm->cookie, vcpu, reg, desc));
1037 }
1038 
1039 int
1040 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
1041 		struct seg_desc *desc)
1042 {
1043 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1044 		return (EINVAL);
1045 
1046 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1047 		return (EINVAL);
1048 
1049 	return (VMSETDESC(vm->cookie, vcpu, reg, desc));
1050 }
1051 
1052 static void
1053 restore_guest_fpustate(struct vcpu *vcpu)
1054 {
1055 
1056 	/* flush host state to the pcb */
1057 	fpuexit(curthread);
1058 
1059 	/* restore guest FPU state */
1060 	fpu_stop_emulating();
1061 	fpurestore(vcpu->guestfpu);
1062 
1063 	/* restore guest XCR0 if XSAVE is enabled in the host */
1064 	if (rcr4() & CR4_XSAVE)
1065 		load_xcr(0, vcpu->guest_xcr0);
1066 
1067 	/*
1068 	 * The FPU is now "dirty" with the guest's state so turn on emulation
1069 	 * to trap any access to the FPU by the host.
1070 	 */
1071 	fpu_start_emulating();
1072 }
1073 
1074 static void
1075 save_guest_fpustate(struct vcpu *vcpu)
1076 {
1077 
1078 	if ((rcr0() & CR0_TS) == 0)
1079 		panic("fpu emulation not enabled in host!");
1080 
1081 	/* save guest XCR0 and restore host XCR0 */
1082 	if (rcr4() & CR4_XSAVE) {
1083 		vcpu->guest_xcr0 = rxcr(0);
1084 		load_xcr(0, vmm_get_host_xcr0());
1085 	}
1086 
1087 	/* save guest FPU state */
1088 	fpu_stop_emulating();
1089 	fpusave(vcpu->guestfpu);
1090 	fpu_start_emulating();
1091 }
1092 
1093 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
1094 
1095 static int
1096 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
1097     bool from_idle)
1098 {
1099 	struct vcpu *vcpu;
1100 	int error;
1101 
1102 	vcpu = &vm->vcpu[vcpuid];
1103 	vcpu_assert_locked(vcpu);
1104 
1105 	/*
1106 	 * State transitions from the vmmdev_ioctl() must always begin from
1107 	 * the VCPU_IDLE state. This guarantees that there is only a single
1108 	 * ioctl() operating on a vcpu at any point.
1109 	 */
1110 	if (from_idle) {
1111 		while (vcpu->state != VCPU_IDLE) {
1112 			vcpu->reqidle = 1;
1113 			vcpu_notify_event_locked(vcpu, false);
1114 			VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
1115 			    "idle requested", vcpu_state2str(vcpu->state));
1116 			msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1117 		}
1118 	} else {
1119 		KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1120 		    "vcpu idle state"));
1121 	}
1122 
1123 	if (vcpu->state == VCPU_RUNNING) {
1124 		KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1125 		    "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1126 	} else {
1127 		KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1128 		    "vcpu that is not running", vcpu->hostcpu));
1129 	}
1130 
1131 	/*
1132 	 * The following state transitions are allowed:
1133 	 * IDLE -> FROZEN -> IDLE
1134 	 * FROZEN -> RUNNING -> FROZEN
1135 	 * FROZEN -> SLEEPING -> FROZEN
1136 	 */
1137 	switch (vcpu->state) {
1138 	case VCPU_IDLE:
1139 	case VCPU_RUNNING:
1140 	case VCPU_SLEEPING:
1141 		error = (newstate != VCPU_FROZEN);
1142 		break;
1143 	case VCPU_FROZEN:
1144 		error = (newstate == VCPU_FROZEN);
1145 		break;
1146 	default:
1147 		error = 1;
1148 		break;
1149 	}
1150 
1151 	if (error)
1152 		return (EBUSY);
1153 
1154 	VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
1155 	    vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1156 
1157 	vcpu->state = newstate;
1158 	if (newstate == VCPU_RUNNING)
1159 		vcpu->hostcpu = curcpu;
1160 	else
1161 		vcpu->hostcpu = NOCPU;
1162 
1163 	if (newstate == VCPU_IDLE)
1164 		wakeup(&vcpu->state);
1165 
1166 	return (0);
1167 }
1168 
1169 static void
1170 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1171 {
1172 	int error;
1173 
1174 	if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
1175 		panic("Error %d setting state to %d\n", error, newstate);
1176 }
1177 
1178 static void
1179 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1180 {
1181 	int error;
1182 
1183 	if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
1184 		panic("Error %d setting state to %d", error, newstate);
1185 }
1186 
1187 static void
1188 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
1189 {
1190 
1191 	KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
1192 
1193 	/*
1194 	 * Update 'rendezvous_func' and execute a write memory barrier to
1195 	 * ensure that it is visible across all host cpus. This is not needed
1196 	 * for correctness but it does ensure that all the vcpus will notice
1197 	 * that the rendezvous is requested immediately.
1198 	 */
1199 	vm->rendezvous_func = func;
1200 	wmb();
1201 }
1202 
1203 #define	RENDEZVOUS_CTR0(vm, vcpuid, fmt)				\
1204 	do {								\
1205 		if (vcpuid >= 0)					\
1206 			VCPU_CTR0(vm, vcpuid, fmt);			\
1207 		else							\
1208 			VM_CTR0(vm, fmt);				\
1209 	} while (0)
1210 
1211 static void
1212 vm_handle_rendezvous(struct vm *vm, int vcpuid)
1213 {
1214 
1215 	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
1216 	    ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
1217 
1218 	mtx_lock(&vm->rendezvous_mtx);
1219 	while (vm->rendezvous_func != NULL) {
1220 		/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1221 		CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
1222 
1223 		if (vcpuid != -1 &&
1224 		    CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1225 		    !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1226 			VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
1227 			(*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
1228 			CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1229 		}
1230 		if (CPU_CMP(&vm->rendezvous_req_cpus,
1231 		    &vm->rendezvous_done_cpus) == 0) {
1232 			VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
1233 			vm_set_rendezvous_func(vm, NULL);
1234 			wakeup(&vm->rendezvous_func);
1235 			break;
1236 		}
1237 		RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
1238 		mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1239 		    "vmrndv", 0);
1240 	}
1241 	mtx_unlock(&vm->rendezvous_mtx);
1242 }
1243 
1244 /*
1245  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1246  */
1247 static int
1248 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
1249 {
1250 	struct vcpu *vcpu;
1251 	const char *wmesg;
1252 	int t, vcpu_halted, vm_halted;
1253 
1254 	KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1255 
1256 	vcpu = &vm->vcpu[vcpuid];
1257 	vcpu_halted = 0;
1258 	vm_halted = 0;
1259 
1260 	vcpu_lock(vcpu);
1261 	while (1) {
1262 		/*
1263 		 * Do a final check for pending NMI or interrupts before
1264 		 * really putting this thread to sleep. Also check for
1265 		 * software events that would cause this vcpu to wakeup.
1266 		 *
1267 		 * These interrupts/events could have happened after the
1268 		 * vcpu returned from VMRUN() and before it acquired the
1269 		 * vcpu lock above.
1270 		 */
1271 		if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1272 			break;
1273 		if (vm_nmi_pending(vm, vcpuid))
1274 			break;
1275 		if (!intr_disabled) {
1276 			if (vm_extint_pending(vm, vcpuid) ||
1277 			    vlapic_pending_intr(vcpu->vlapic, NULL)) {
1278 				break;
1279 			}
1280 		}
1281 
1282 		/* Don't go to sleep if the vcpu thread needs to yield */
1283 		if (vcpu_should_yield(vm, vcpuid))
1284 			break;
1285 
1286 		/*
1287 		 * Some Linux guests implement "halt" by having all vcpus
1288 		 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1289 		 * track of the vcpus that have entered this state. When all
1290 		 * vcpus enter the halted state the virtual machine is halted.
1291 		 */
1292 		if (intr_disabled) {
1293 			wmesg = "vmhalt";
1294 			VCPU_CTR0(vm, vcpuid, "Halted");
1295 			if (!vcpu_halted && halt_detection_enabled) {
1296 				vcpu_halted = 1;
1297 				CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1298 			}
1299 			if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1300 				vm_halted = 1;
1301 				break;
1302 			}
1303 		} else {
1304 			wmesg = "vmidle";
1305 		}
1306 
1307 		t = ticks;
1308 		vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1309 		/*
1310 		 * XXX msleep_spin() cannot be interrupted by signals so
1311 		 * wake up periodically to check pending signals.
1312 		 */
1313 		msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1314 		vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1315 		vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
1316 	}
1317 
1318 	if (vcpu_halted)
1319 		CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1320 
1321 	vcpu_unlock(vcpu);
1322 
1323 	if (vm_halted)
1324 		vm_suspend(vm, VM_SUSPEND_HALT);
1325 
1326 	return (0);
1327 }
1328 
1329 static int
1330 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
1331 {
1332 	int rv, ftype;
1333 	struct vm_map *map;
1334 	struct vcpu *vcpu;
1335 	struct vm_exit *vme;
1336 
1337 	vcpu = &vm->vcpu[vcpuid];
1338 	vme = &vcpu->exitinfo;
1339 
1340 	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1341 	    __func__, vme->inst_length));
1342 
1343 	ftype = vme->u.paging.fault_type;
1344 	KASSERT(ftype == VM_PROT_READ ||
1345 	    ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1346 	    ("vm_handle_paging: invalid fault_type %d", ftype));
1347 
1348 	if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1349 		rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1350 		    vme->u.paging.gpa, ftype);
1351 		if (rv == 0) {
1352 			VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
1353 			    ftype == VM_PROT_READ ? "accessed" : "dirty",
1354 			    vme->u.paging.gpa);
1355 			goto done;
1356 		}
1357 	}
1358 
1359 	map = &vm->vmspace->vm_map;
1360 	rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
1361 
1362 	VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
1363 	    "ftype = %d", rv, vme->u.paging.gpa, ftype);
1364 
1365 	if (rv != KERN_SUCCESS)
1366 		return (EFAULT);
1367 done:
1368 	return (0);
1369 }
1370 
1371 static int
1372 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
1373 {
1374 	struct vie *vie;
1375 	struct vcpu *vcpu;
1376 	struct vm_exit *vme;
1377 	uint64_t gla, gpa, cs_base;
1378 	struct vm_guest_paging *paging;
1379 	mem_region_read_t mread;
1380 	mem_region_write_t mwrite;
1381 	enum vm_cpu_mode cpu_mode;
1382 	int cs_d, error, fault;
1383 
1384 	vcpu = &vm->vcpu[vcpuid];
1385 	vme = &vcpu->exitinfo;
1386 
1387 	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1388 	    __func__, vme->inst_length));
1389 
1390 	gla = vme->u.inst_emul.gla;
1391 	gpa = vme->u.inst_emul.gpa;
1392 	cs_base = vme->u.inst_emul.cs_base;
1393 	cs_d = vme->u.inst_emul.cs_d;
1394 	vie = &vme->u.inst_emul.vie;
1395 	paging = &vme->u.inst_emul.paging;
1396 	cpu_mode = paging->cpu_mode;
1397 
1398 	VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
1399 
1400 	/* Fetch, decode and emulate the faulting instruction */
1401 	if (vie->num_valid == 0) {
1402 		error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
1403 		    cs_base, VIE_INST_SIZE, vie, &fault);
1404 	} else {
1405 		/*
1406 		 * The instruction bytes have already been copied into 'vie'
1407 		 */
1408 		error = fault = 0;
1409 	}
1410 	if (error || fault)
1411 		return (error);
1412 
1413 	if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
1414 		VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
1415 		    vme->rip + cs_base);
1416 		*retu = true;	    /* dump instruction bytes in userspace */
1417 		return (0);
1418 	}
1419 
1420 	/*
1421 	 * Update 'nextrip' based on the length of the emulated instruction.
1422 	 */
1423 	vme->inst_length = vie->num_processed;
1424 	vcpu->nextrip += vie->num_processed;
1425 	VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
1426 	    "decoding", vcpu->nextrip);
1427 
1428 	/* return to userland unless this is an in-kernel emulated device */
1429 	if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1430 		mread = lapic_mmio_read;
1431 		mwrite = lapic_mmio_write;
1432 	} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1433 		mread = vioapic_mmio_read;
1434 		mwrite = vioapic_mmio_write;
1435 	} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1436 		mread = vhpet_mmio_read;
1437 		mwrite = vhpet_mmio_write;
1438 	} else {
1439 		*retu = true;
1440 		return (0);
1441 	}
1442 
1443 	error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
1444 	    mread, mwrite, retu);
1445 
1446 	return (error);
1447 }
1448 
1449 static int
1450 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
1451 {
1452 	int i, done;
1453 	struct vcpu *vcpu;
1454 
1455 	done = 0;
1456 	vcpu = &vm->vcpu[vcpuid];
1457 
1458 	CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
1459 
1460 	/*
1461 	 * Wait until all 'active_cpus' have suspended themselves.
1462 	 *
1463 	 * Since a VM may be suspended at any time including when one or
1464 	 * more vcpus are doing a rendezvous we need to call the rendezvous
1465 	 * handler while we are waiting to prevent a deadlock.
1466 	 */
1467 	vcpu_lock(vcpu);
1468 	while (1) {
1469 		if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1470 			VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
1471 			break;
1472 		}
1473 
1474 		if (vm->rendezvous_func == NULL) {
1475 			VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
1476 			vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1477 			msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1478 			vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1479 		} else {
1480 			VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
1481 			vcpu_unlock(vcpu);
1482 			vm_handle_rendezvous(vm, vcpuid);
1483 			vcpu_lock(vcpu);
1484 		}
1485 	}
1486 	vcpu_unlock(vcpu);
1487 
1488 	/*
1489 	 * Wakeup the other sleeping vcpus and return to userspace.
1490 	 */
1491 	for (i = 0; i < VM_MAXCPU; i++) {
1492 		if (CPU_ISSET(i, &vm->suspended_cpus)) {
1493 			vcpu_notify_event(vm, i, false);
1494 		}
1495 	}
1496 
1497 	*retu = true;
1498 	return (0);
1499 }
1500 
1501 static int
1502 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
1503 {
1504 	struct vcpu *vcpu = &vm->vcpu[vcpuid];
1505 
1506 	vcpu_lock(vcpu);
1507 	KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1508 	vcpu->reqidle = 0;
1509 	vcpu_unlock(vcpu);
1510 	*retu = true;
1511 	return (0);
1512 }
1513 
1514 int
1515 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1516 {
1517 	int i;
1518 
1519 	if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1520 		return (EINVAL);
1521 
1522 	if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1523 		VM_CTR2(vm, "virtual machine already suspended %d/%d",
1524 		    vm->suspend, how);
1525 		return (EALREADY);
1526 	}
1527 
1528 	VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1529 
1530 	/*
1531 	 * Notify all active vcpus that they are now suspended.
1532 	 */
1533 	for (i = 0; i < VM_MAXCPU; i++) {
1534 		if (CPU_ISSET(i, &vm->active_cpus))
1535 			vcpu_notify_event(vm, i, false);
1536 	}
1537 
1538 	return (0);
1539 }
1540 
1541 void
1542 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
1543 {
1544 	struct vm_exit *vmexit;
1545 
1546 	KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1547 	    ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1548 
1549 	vmexit = vm_exitinfo(vm, vcpuid);
1550 	vmexit->rip = rip;
1551 	vmexit->inst_length = 0;
1552 	vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1553 	vmexit->u.suspended.how = vm->suspend;
1554 }
1555 
1556 void
1557 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
1558 {
1559 	struct vm_exit *vmexit;
1560 
1561 	KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
1562 
1563 	vmexit = vm_exitinfo(vm, vcpuid);
1564 	vmexit->rip = rip;
1565 	vmexit->inst_length = 0;
1566 	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1567 	vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
1568 }
1569 
1570 void
1571 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
1572 {
1573 	struct vm_exit *vmexit;
1574 
1575 	vmexit = vm_exitinfo(vm, vcpuid);
1576 	vmexit->rip = rip;
1577 	vmexit->inst_length = 0;
1578 	vmexit->exitcode = VM_EXITCODE_REQIDLE;
1579 	vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
1580 }
1581 
1582 void
1583 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
1584 {
1585 	struct vm_exit *vmexit;
1586 
1587 	vmexit = vm_exitinfo(vm, vcpuid);
1588 	vmexit->rip = rip;
1589 	vmexit->inst_length = 0;
1590 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1591 	vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
1592 }
1593 
1594 int
1595 vm_run(struct vm *vm, struct vm_run *vmrun)
1596 {
1597 	struct vm_eventinfo evinfo;
1598 	int error, vcpuid;
1599 	struct vcpu *vcpu;
1600 	struct pcb *pcb;
1601 	uint64_t tscval;
1602 	struct vm_exit *vme;
1603 	bool retu, intr_disabled;
1604 	pmap_t pmap;
1605 
1606 	vcpuid = vmrun->cpuid;
1607 
1608 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1609 		return (EINVAL);
1610 
1611 	if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1612 		return (EINVAL);
1613 
1614 	if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1615 		return (EINVAL);
1616 
1617 	pmap = vmspace_pmap(vm->vmspace);
1618 	vcpu = &vm->vcpu[vcpuid];
1619 	vme = &vcpu->exitinfo;
1620 	evinfo.rptr = &vm->rendezvous_func;
1621 	evinfo.sptr = &vm->suspend;
1622 	evinfo.iptr = &vcpu->reqidle;
1623 restart:
1624 	critical_enter();
1625 
1626 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1627 	    ("vm_run: absurd pm_active"));
1628 
1629 	tscval = rdtsc();
1630 
1631 	pcb = PCPU_GET(curpcb);
1632 	set_pcb_flags(pcb, PCB_FULL_IRET);
1633 
1634 	restore_guest_fpustate(vcpu);
1635 
1636 	vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
1637 	error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
1638 	vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
1639 
1640 	save_guest_fpustate(vcpu);
1641 
1642 	vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1643 
1644 	critical_exit();
1645 
1646 	if (error == 0) {
1647 		retu = false;
1648 		vcpu->nextrip = vme->rip + vme->inst_length;
1649 		switch (vme->exitcode) {
1650 		case VM_EXITCODE_REQIDLE:
1651 			error = vm_handle_reqidle(vm, vcpuid, &retu);
1652 			break;
1653 		case VM_EXITCODE_SUSPENDED:
1654 			error = vm_handle_suspend(vm, vcpuid, &retu);
1655 			break;
1656 		case VM_EXITCODE_IOAPIC_EOI:
1657 			vioapic_process_eoi(vm, vcpuid,
1658 			    vme->u.ioapic_eoi.vector);
1659 			break;
1660 		case VM_EXITCODE_RENDEZVOUS:
1661 			vm_handle_rendezvous(vm, vcpuid);
1662 			error = 0;
1663 			break;
1664 		case VM_EXITCODE_HLT:
1665 			intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1666 			error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
1667 			break;
1668 		case VM_EXITCODE_PAGING:
1669 			error = vm_handle_paging(vm, vcpuid, &retu);
1670 			break;
1671 		case VM_EXITCODE_INST_EMUL:
1672 			error = vm_handle_inst_emul(vm, vcpuid, &retu);
1673 			break;
1674 		case VM_EXITCODE_INOUT:
1675 		case VM_EXITCODE_INOUT_STR:
1676 			error = vm_handle_inout(vm, vcpuid, vme, &retu);
1677 			break;
1678 		case VM_EXITCODE_MONITOR:
1679 		case VM_EXITCODE_MWAIT:
1680 			vm_inject_ud(vm, vcpuid);
1681 			break;
1682 		default:
1683 			retu = true;	/* handled in userland */
1684 			break;
1685 		}
1686 	}
1687 
1688 	if (error == 0 && retu == false)
1689 		goto restart;
1690 
1691 	VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
1692 
1693 	/* copy the exit information */
1694 	bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
1695 	return (error);
1696 }
1697 
1698 int
1699 vm_restart_instruction(void *arg, int vcpuid)
1700 {
1701 	struct vm *vm;
1702 	struct vcpu *vcpu;
1703 	enum vcpu_state state;
1704 	uint64_t rip;
1705 	int error;
1706 
1707 	vm = arg;
1708 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1709 		return (EINVAL);
1710 
1711 	vcpu = &vm->vcpu[vcpuid];
1712 	state = vcpu_get_state(vm, vcpuid, NULL);
1713 	if (state == VCPU_RUNNING) {
1714 		/*
1715 		 * When a vcpu is "running" the next instruction is determined
1716 		 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1717 		 * Thus setting 'inst_length' to zero will cause the current
1718 		 * instruction to be restarted.
1719 		 */
1720 		vcpu->exitinfo.inst_length = 0;
1721 		VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
1722 		    "setting inst_length to zero", vcpu->exitinfo.rip);
1723 	} else if (state == VCPU_FROZEN) {
1724 		/*
1725 		 * When a vcpu is "frozen" it is outside the critical section
1726 		 * around VMRUN() and 'nextrip' points to the next instruction.
1727 		 * Thus instruction restart is achieved by setting 'nextrip'
1728 		 * to the vcpu's %rip.
1729 		 */
1730 		error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
1731 		KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1732 		VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
1733 		    "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1734 		vcpu->nextrip = rip;
1735 	} else {
1736 		panic("%s: invalid state %d", __func__, state);
1737 	}
1738 	return (0);
1739 }
1740 
1741 int
1742 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
1743 {
1744 	struct vcpu *vcpu;
1745 	int type, vector;
1746 
1747 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1748 		return (EINVAL);
1749 
1750 	vcpu = &vm->vcpu[vcpuid];
1751 
1752 	if (info & VM_INTINFO_VALID) {
1753 		type = info & VM_INTINFO_TYPE;
1754 		vector = info & 0xff;
1755 		if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1756 			return (EINVAL);
1757 		if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1758 			return (EINVAL);
1759 		if (info & VM_INTINFO_RSVD)
1760 			return (EINVAL);
1761 	} else {
1762 		info = 0;
1763 	}
1764 	VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
1765 	vcpu->exitintinfo = info;
1766 	return (0);
1767 }
1768 
1769 enum exc_class {
1770 	EXC_BENIGN,
1771 	EXC_CONTRIBUTORY,
1772 	EXC_PAGEFAULT
1773 };
1774 
1775 #define	IDT_VE	20	/* Virtualization Exception (Intel specific) */
1776 
1777 static enum exc_class
1778 exception_class(uint64_t info)
1779 {
1780 	int type, vector;
1781 
1782 	KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1783 	type = info & VM_INTINFO_TYPE;
1784 	vector = info & 0xff;
1785 
1786 	/* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1787 	switch (type) {
1788 	case VM_INTINFO_HWINTR:
1789 	case VM_INTINFO_SWINTR:
1790 	case VM_INTINFO_NMI:
1791 		return (EXC_BENIGN);
1792 	default:
1793 		/*
1794 		 * Hardware exception.
1795 		 *
1796 		 * SVM and VT-x use identical type values to represent NMI,
1797 		 * hardware interrupt and software interrupt.
1798 		 *
1799 		 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1800 		 * for exceptions except #BP and #OF. #BP and #OF use a type
1801 		 * value of '5' or '6'. Therefore we don't check for explicit
1802 		 * values of 'type' to classify 'intinfo' into a hardware
1803 		 * exception.
1804 		 */
1805 		break;
1806 	}
1807 
1808 	switch (vector) {
1809 	case IDT_PF:
1810 	case IDT_VE:
1811 		return (EXC_PAGEFAULT);
1812 	case IDT_DE:
1813 	case IDT_TS:
1814 	case IDT_NP:
1815 	case IDT_SS:
1816 	case IDT_GP:
1817 		return (EXC_CONTRIBUTORY);
1818 	default:
1819 		return (EXC_BENIGN);
1820 	}
1821 }
1822 
1823 static int
1824 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
1825     uint64_t *retinfo)
1826 {
1827 	enum exc_class exc1, exc2;
1828 	int type1, vector1;
1829 
1830 	KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1831 	KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1832 
1833 	/*
1834 	 * If an exception occurs while attempting to call the double-fault
1835 	 * handler the processor enters shutdown mode (aka triple fault).
1836 	 */
1837 	type1 = info1 & VM_INTINFO_TYPE;
1838 	vector1 = info1 & 0xff;
1839 	if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1840 		VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
1841 		    info1, info2);
1842 		vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
1843 		*retinfo = 0;
1844 		return (0);
1845 	}
1846 
1847 	/*
1848 	 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1849 	 */
1850 	exc1 = exception_class(info1);
1851 	exc2 = exception_class(info2);
1852 	if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1853 	    (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1854 		/* Convert nested fault into a double fault. */
1855 		*retinfo = IDT_DF;
1856 		*retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1857 		*retinfo |= VM_INTINFO_DEL_ERRCODE;
1858 	} else {
1859 		/* Handle exceptions serially */
1860 		*retinfo = info2;
1861 	}
1862 	return (1);
1863 }
1864 
1865 static uint64_t
1866 vcpu_exception_intinfo(struct vcpu *vcpu)
1867 {
1868 	uint64_t info = 0;
1869 
1870 	if (vcpu->exception_pending) {
1871 		info = vcpu->exc_vector & 0xff;
1872 		info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1873 		if (vcpu->exc_errcode_valid) {
1874 			info |= VM_INTINFO_DEL_ERRCODE;
1875 			info |= (uint64_t)vcpu->exc_errcode << 32;
1876 		}
1877 	}
1878 	return (info);
1879 }
1880 
1881 int
1882 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
1883 {
1884 	struct vcpu *vcpu;
1885 	uint64_t info1, info2;
1886 	int valid;
1887 
1888 	KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid));
1889 
1890 	vcpu = &vm->vcpu[vcpuid];
1891 
1892 	info1 = vcpu->exitintinfo;
1893 	vcpu->exitintinfo = 0;
1894 
1895 	info2 = 0;
1896 	if (vcpu->exception_pending) {
1897 		info2 = vcpu_exception_intinfo(vcpu);
1898 		vcpu->exception_pending = 0;
1899 		VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
1900 		    vcpu->exc_vector, info2);
1901 	}
1902 
1903 	if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1904 		valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
1905 	} else if (info1 & VM_INTINFO_VALID) {
1906 		*retinfo = info1;
1907 		valid = 1;
1908 	} else if (info2 & VM_INTINFO_VALID) {
1909 		*retinfo = info2;
1910 		valid = 1;
1911 	} else {
1912 		valid = 0;
1913 	}
1914 
1915 	if (valid) {
1916 		VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
1917 		    "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1918 	}
1919 
1920 	return (valid);
1921 }
1922 
1923 int
1924 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
1925 {
1926 	struct vcpu *vcpu;
1927 
1928 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1929 		return (EINVAL);
1930 
1931 	vcpu = &vm->vcpu[vcpuid];
1932 	*info1 = vcpu->exitintinfo;
1933 	*info2 = vcpu_exception_intinfo(vcpu);
1934 	return (0);
1935 }
1936 
1937 int
1938 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
1939     uint32_t errcode, int restart_instruction)
1940 {
1941 	struct vcpu *vcpu;
1942 	uint64_t regval;
1943 	int error;
1944 
1945 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1946 		return (EINVAL);
1947 
1948 	if (vector < 0 || vector >= 32)
1949 		return (EINVAL);
1950 
1951 	/*
1952 	 * A double fault exception should never be injected directly into
1953 	 * the guest. It is a derived exception that results from specific
1954 	 * combinations of nested faults.
1955 	 */
1956 	if (vector == IDT_DF)
1957 		return (EINVAL);
1958 
1959 	vcpu = &vm->vcpu[vcpuid];
1960 
1961 	if (vcpu->exception_pending) {
1962 		VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
1963 		    "pending exception %d", vector, vcpu->exc_vector);
1964 		return (EBUSY);
1965 	}
1966 
1967 	if (errcode_valid) {
1968 		/*
1969 		 * Exceptions don't deliver an error code in real mode.
1970 		 */
1971 		error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, &regval);
1972 		KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
1973 		if (!(regval & CR0_PE))
1974 			errcode_valid = 0;
1975 	}
1976 
1977 	/*
1978 	 * From section 26.6.1 "Interruptibility State" in Intel SDM:
1979 	 *
1980 	 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
1981 	 * one instruction or incurs an exception.
1982 	 */
1983 	error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
1984 	KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
1985 	    __func__, error));
1986 
1987 	if (restart_instruction)
1988 		vm_restart_instruction(vm, vcpuid);
1989 
1990 	vcpu->exception_pending = 1;
1991 	vcpu->exc_vector = vector;
1992 	vcpu->exc_errcode = errcode;
1993 	vcpu->exc_errcode_valid = errcode_valid;
1994 	VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
1995 	return (0);
1996 }
1997 
1998 void
1999 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
2000     int errcode)
2001 {
2002 	struct vm *vm;
2003 	int error, restart_instruction;
2004 
2005 	vm = vmarg;
2006 	restart_instruction = 1;
2007 
2008 	error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
2009 	    errcode, restart_instruction);
2010 	KASSERT(error == 0, ("vm_inject_exception error %d", error));
2011 }
2012 
2013 void
2014 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
2015 {
2016 	struct vm *vm;
2017 	int error;
2018 
2019 	vm = vmarg;
2020 	VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
2021 	    error_code, cr2);
2022 
2023 	error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
2024 	KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
2025 
2026 	vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
2027 }
2028 
2029 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2030 
2031 int
2032 vm_inject_nmi(struct vm *vm, int vcpuid)
2033 {
2034 	struct vcpu *vcpu;
2035 
2036 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2037 		return (EINVAL);
2038 
2039 	vcpu = &vm->vcpu[vcpuid];
2040 
2041 	vcpu->nmi_pending = 1;
2042 	vcpu_notify_event(vm, vcpuid, false);
2043 	return (0);
2044 }
2045 
2046 int
2047 vm_nmi_pending(struct vm *vm, int vcpuid)
2048 {
2049 	struct vcpu *vcpu;
2050 
2051 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2052 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2053 
2054 	vcpu = &vm->vcpu[vcpuid];
2055 
2056 	return (vcpu->nmi_pending);
2057 }
2058 
2059 void
2060 vm_nmi_clear(struct vm *vm, int vcpuid)
2061 {
2062 	struct vcpu *vcpu;
2063 
2064 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2065 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2066 
2067 	vcpu = &vm->vcpu[vcpuid];
2068 
2069 	if (vcpu->nmi_pending == 0)
2070 		panic("vm_nmi_clear: inconsistent nmi_pending state");
2071 
2072 	vcpu->nmi_pending = 0;
2073 	vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
2074 }
2075 
2076 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2077 
2078 int
2079 vm_inject_extint(struct vm *vm, int vcpuid)
2080 {
2081 	struct vcpu *vcpu;
2082 
2083 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2084 		return (EINVAL);
2085 
2086 	vcpu = &vm->vcpu[vcpuid];
2087 
2088 	vcpu->extint_pending = 1;
2089 	vcpu_notify_event(vm, vcpuid, false);
2090 	return (0);
2091 }
2092 
2093 int
2094 vm_extint_pending(struct vm *vm, int vcpuid)
2095 {
2096 	struct vcpu *vcpu;
2097 
2098 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2099 		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2100 
2101 	vcpu = &vm->vcpu[vcpuid];
2102 
2103 	return (vcpu->extint_pending);
2104 }
2105 
2106 void
2107 vm_extint_clear(struct vm *vm, int vcpuid)
2108 {
2109 	struct vcpu *vcpu;
2110 
2111 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2112 		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2113 
2114 	vcpu = &vm->vcpu[vcpuid];
2115 
2116 	if (vcpu->extint_pending == 0)
2117 		panic("vm_extint_clear: inconsistent extint_pending state");
2118 
2119 	vcpu->extint_pending = 0;
2120 	vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
2121 }
2122 
2123 int
2124 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
2125 {
2126 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
2127 		return (EINVAL);
2128 
2129 	if (type < 0 || type >= VM_CAP_MAX)
2130 		return (EINVAL);
2131 
2132 	return (VMGETCAP(vm->cookie, vcpu, type, retval));
2133 }
2134 
2135 int
2136 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
2137 {
2138 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
2139 		return (EINVAL);
2140 
2141 	if (type < 0 || type >= VM_CAP_MAX)
2142 		return (EINVAL);
2143 
2144 	return (VMSETCAP(vm->cookie, vcpu, type, val));
2145 }
2146 
2147 struct vlapic *
2148 vm_lapic(struct vm *vm, int cpu)
2149 {
2150 	return (vm->vcpu[cpu].vlapic);
2151 }
2152 
2153 struct vioapic *
2154 vm_ioapic(struct vm *vm)
2155 {
2156 
2157 	return (vm->vioapic);
2158 }
2159 
2160 struct vhpet *
2161 vm_hpet(struct vm *vm)
2162 {
2163 
2164 	return (vm->vhpet);
2165 }
2166 
2167 boolean_t
2168 vmm_is_pptdev(int bus, int slot, int func)
2169 {
2170 	int found, i, n;
2171 	int b, s, f;
2172 	char *val, *cp, *cp2;
2173 
2174 	/*
2175 	 * XXX
2176 	 * The length of an environment variable is limited to 128 bytes which
2177 	 * puts an upper limit on the number of passthru devices that may be
2178 	 * specified using a single environment variable.
2179 	 *
2180 	 * Work around this by scanning multiple environment variable
2181 	 * names instead of a single one - yuck!
2182 	 */
2183 	const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2184 
2185 	/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2186 	found = 0;
2187 	for (i = 0; names[i] != NULL && !found; i++) {
2188 		cp = val = kern_getenv(names[i]);
2189 		while (cp != NULL && *cp != '\0') {
2190 			if ((cp2 = strchr(cp, ' ')) != NULL)
2191 				*cp2 = '\0';
2192 
2193 			n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2194 			if (n == 3 && bus == b && slot == s && func == f) {
2195 				found = 1;
2196 				break;
2197 			}
2198 
2199 			if (cp2 != NULL)
2200 				*cp2++ = ' ';
2201 
2202 			cp = cp2;
2203 		}
2204 		freeenv(val);
2205 	}
2206 	return (found);
2207 }
2208 
2209 void *
2210 vm_iommu_domain(struct vm *vm)
2211 {
2212 
2213 	return (vm->iommu);
2214 }
2215 
2216 int
2217 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
2218     bool from_idle)
2219 {
2220 	int error;
2221 	struct vcpu *vcpu;
2222 
2223 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2224 		panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
2225 
2226 	vcpu = &vm->vcpu[vcpuid];
2227 
2228 	vcpu_lock(vcpu);
2229 	error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
2230 	vcpu_unlock(vcpu);
2231 
2232 	return (error);
2233 }
2234 
2235 enum vcpu_state
2236 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
2237 {
2238 	struct vcpu *vcpu;
2239 	enum vcpu_state state;
2240 
2241 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2242 		panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
2243 
2244 	vcpu = &vm->vcpu[vcpuid];
2245 
2246 	vcpu_lock(vcpu);
2247 	state = vcpu->state;
2248 	if (hostcpu != NULL)
2249 		*hostcpu = vcpu->hostcpu;
2250 	vcpu_unlock(vcpu);
2251 
2252 	return (state);
2253 }
2254 
2255 int
2256 vm_activate_cpu(struct vm *vm, int vcpuid)
2257 {
2258 
2259 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2260 		return (EINVAL);
2261 
2262 	if (CPU_ISSET(vcpuid, &vm->active_cpus))
2263 		return (EBUSY);
2264 
2265 	VCPU_CTR0(vm, vcpuid, "activated");
2266 	CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
2267 	return (0);
2268 }
2269 
2270 cpuset_t
2271 vm_active_cpus(struct vm *vm)
2272 {
2273 
2274 	return (vm->active_cpus);
2275 }
2276 
2277 cpuset_t
2278 vm_suspended_cpus(struct vm *vm)
2279 {
2280 
2281 	return (vm->suspended_cpus);
2282 }
2283 
2284 void *
2285 vcpu_stats(struct vm *vm, int vcpuid)
2286 {
2287 
2288 	return (vm->vcpu[vcpuid].stats);
2289 }
2290 
2291 int
2292 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
2293 {
2294 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2295 		return (EINVAL);
2296 
2297 	*state = vm->vcpu[vcpuid].x2apic_state;
2298 
2299 	return (0);
2300 }
2301 
2302 int
2303 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
2304 {
2305 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2306 		return (EINVAL);
2307 
2308 	if (state >= X2APIC_STATE_LAST)
2309 		return (EINVAL);
2310 
2311 	vm->vcpu[vcpuid].x2apic_state = state;
2312 
2313 	vlapic_set_x2apic_state(vm, vcpuid, state);
2314 
2315 	return (0);
2316 }
2317 
2318 /*
2319  * This function is called to ensure that a vcpu "sees" a pending event
2320  * as soon as possible:
2321  * - If the vcpu thread is sleeping then it is woken up.
2322  * - If the vcpu is running on a different host_cpu then an IPI will be directed
2323  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
2324  */
2325 static void
2326 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2327 {
2328 	int hostcpu;
2329 
2330 	hostcpu = vcpu->hostcpu;
2331 	if (vcpu->state == VCPU_RUNNING) {
2332 		KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2333 		if (hostcpu != curcpu) {
2334 			if (lapic_intr) {
2335 				vlapic_post_intr(vcpu->vlapic, hostcpu,
2336 				    vmm_ipinum);
2337 			} else {
2338 				ipi_cpu(hostcpu, vmm_ipinum);
2339 			}
2340 		} else {
2341 			/*
2342 			 * If the 'vcpu' is running on 'curcpu' then it must
2343 			 * be sending a notification to itself (e.g. SELF_IPI).
2344 			 * The pending event will be picked up when the vcpu
2345 			 * transitions back to guest context.
2346 			 */
2347 		}
2348 	} else {
2349 		KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2350 		    "with hostcpu %d", vcpu->state, hostcpu));
2351 		if (vcpu->state == VCPU_SLEEPING)
2352 			wakeup_one(vcpu);
2353 	}
2354 }
2355 
2356 void
2357 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
2358 {
2359 	struct vcpu *vcpu = &vm->vcpu[vcpuid];
2360 
2361 	vcpu_lock(vcpu);
2362 	vcpu_notify_event_locked(vcpu, lapic_intr);
2363 	vcpu_unlock(vcpu);
2364 }
2365 
2366 struct vmspace *
2367 vm_get_vmspace(struct vm *vm)
2368 {
2369 
2370 	return (vm->vmspace);
2371 }
2372 
2373 int
2374 vm_apicid2vcpuid(struct vm *vm, int apicid)
2375 {
2376 	/*
2377 	 * XXX apic id is assumed to be numerically identical to vcpu id
2378 	 */
2379 	return (apicid);
2380 }
2381 
2382 void
2383 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
2384     vm_rendezvous_func_t func, void *arg)
2385 {
2386 	int i;
2387 
2388 	/*
2389 	 * Enforce that this function is called without any locks
2390 	 */
2391 	WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2392 	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
2393 	    ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
2394 
2395 restart:
2396 	mtx_lock(&vm->rendezvous_mtx);
2397 	if (vm->rendezvous_func != NULL) {
2398 		/*
2399 		 * If a rendezvous is already in progress then we need to
2400 		 * call the rendezvous handler in case this 'vcpuid' is one
2401 		 * of the targets of the rendezvous.
2402 		 */
2403 		RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
2404 		mtx_unlock(&vm->rendezvous_mtx);
2405 		vm_handle_rendezvous(vm, vcpuid);
2406 		goto restart;
2407 	}
2408 	KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2409 	    "rendezvous is still in progress"));
2410 
2411 	RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
2412 	vm->rendezvous_req_cpus = dest;
2413 	CPU_ZERO(&vm->rendezvous_done_cpus);
2414 	vm->rendezvous_arg = arg;
2415 	vm_set_rendezvous_func(vm, func);
2416 	mtx_unlock(&vm->rendezvous_mtx);
2417 
2418 	/*
2419 	 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2420 	 * vcpus so they handle the rendezvous as soon as possible.
2421 	 */
2422 	for (i = 0; i < VM_MAXCPU; i++) {
2423 		if (CPU_ISSET(i, &dest))
2424 			vcpu_notify_event(vm, i, false);
2425 	}
2426 
2427 	vm_handle_rendezvous(vm, vcpuid);
2428 }
2429 
2430 struct vatpic *
2431 vm_atpic(struct vm *vm)
2432 {
2433 	return (vm->vatpic);
2434 }
2435 
2436 struct vatpit *
2437 vm_atpit(struct vm *vm)
2438 {
2439 	return (vm->vatpit);
2440 }
2441 
2442 struct vpmtmr *
2443 vm_pmtmr(struct vm *vm)
2444 {
2445 
2446 	return (vm->vpmtmr);
2447 }
2448 
2449 struct vrtc *
2450 vm_rtc(struct vm *vm)
2451 {
2452 
2453 	return (vm->vrtc);
2454 }
2455 
2456 enum vm_reg_name
2457 vm_segment_name(int seg)
2458 {
2459 	static enum vm_reg_name seg_names[] = {
2460 		VM_REG_GUEST_ES,
2461 		VM_REG_GUEST_CS,
2462 		VM_REG_GUEST_SS,
2463 		VM_REG_GUEST_DS,
2464 		VM_REG_GUEST_FS,
2465 		VM_REG_GUEST_GS
2466 	};
2467 
2468 	KASSERT(seg >= 0 && seg < nitems(seg_names),
2469 	    ("%s: invalid segment encoding %d", __func__, seg));
2470 	return (seg_names[seg]);
2471 }
2472 
2473 void
2474 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
2475     int num_copyinfo)
2476 {
2477 	int idx;
2478 
2479 	for (idx = 0; idx < num_copyinfo; idx++) {
2480 		if (copyinfo[idx].cookie != NULL)
2481 			vm_gpa_release(copyinfo[idx].cookie);
2482 	}
2483 	bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2484 }
2485 
2486 int
2487 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
2488     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2489     int num_copyinfo, int *fault)
2490 {
2491 	int error, idx, nused;
2492 	size_t n, off, remaining;
2493 	void *hva, *cookie;
2494 	uint64_t gpa;
2495 
2496 	bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2497 
2498 	nused = 0;
2499 	remaining = len;
2500 	while (remaining > 0) {
2501 		KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
2502 		error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
2503 		if (error || *fault)
2504 			return (error);
2505 		off = gpa & PAGE_MASK;
2506 		n = min(remaining, PAGE_SIZE - off);
2507 		copyinfo[nused].gpa = gpa;
2508 		copyinfo[nused].len = n;
2509 		remaining -= n;
2510 		gla += n;
2511 		nused++;
2512 	}
2513 
2514 	for (idx = 0; idx < nused; idx++) {
2515 		hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
2516 		    copyinfo[idx].len, prot, &cookie);
2517 		if (hva == NULL)
2518 			break;
2519 		copyinfo[idx].hva = hva;
2520 		copyinfo[idx].cookie = cookie;
2521 	}
2522 
2523 	if (idx != nused) {
2524 		vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
2525 		return (EFAULT);
2526 	} else {
2527 		*fault = 0;
2528 		return (0);
2529 	}
2530 }
2531 
2532 void
2533 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
2534     size_t len)
2535 {
2536 	char *dst;
2537 	int idx;
2538 
2539 	dst = kaddr;
2540 	idx = 0;
2541 	while (len > 0) {
2542 		bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2543 		len -= copyinfo[idx].len;
2544 		dst += copyinfo[idx].len;
2545 		idx++;
2546 	}
2547 }
2548 
2549 void
2550 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
2551     struct vm_copyinfo *copyinfo, size_t len)
2552 {
2553 	const char *src;
2554 	int idx;
2555 
2556 	src = kaddr;
2557 	idx = 0;
2558 	while (len > 0) {
2559 		bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2560 		len -= copyinfo[idx].len;
2561 		src += copyinfo[idx].len;
2562 		idx++;
2563 	}
2564 }
2565 
2566 /*
2567  * Return the amount of in-use and wired memory for the VM. Since
2568  * these are global stats, only return the values with for vCPU 0
2569  */
2570 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2571 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2572 
2573 static void
2574 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2575 {
2576 
2577 	if (vcpu == 0) {
2578 		vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
2579 	       	    PAGE_SIZE * vmspace_resident_count(vm->vmspace));
2580 	}
2581 }
2582 
2583 static void
2584 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2585 {
2586 
2587 	if (vcpu == 0) {
2588 		vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
2589 	      	    PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
2590 	}
2591 }
2592 
2593 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2594 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2595