xref: /freebsd/sys/amd64/vmm/vmm.c (revision f18d3c411697ff46d85e579a72be54ca0cc67dd0)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/sysctl.h>
37 #include <sys/malloc.h>
38 #include <sys/pcpu.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/rwlock.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/systm.h>
46 
47 #include <vm/vm.h>
48 #include <vm/vm_object.h>
49 #include <vm/vm_page.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_map.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_param.h>
54 
55 #include <machine/vm.h>
56 #include <machine/pcb.h>
57 #include <machine/smp.h>
58 #include <x86/apicreg.h>
59 #include <machine/vmparam.h>
60 
61 #include <machine/vmm.h>
62 #include <machine/vmm_dev.h>
63 
64 #include "vmm_ktr.h"
65 #include "vmm_host.h"
66 #include "vmm_mem.h"
67 #include "vmm_util.h"
68 #include "vhpet.h"
69 #include "vioapic.h"
70 #include "vlapic.h"
71 #include "vmm_msr.h"
72 #include "vmm_ipi.h"
73 #include "vmm_stat.h"
74 #include "vmm_lapic.h"
75 
76 #include "io/ppt.h"
77 #include "io/iommu.h"
78 
79 struct vlapic;
80 
81 struct vcpu {
82 	int		flags;
83 	enum vcpu_state	state;
84 	struct mtx	mtx;
85 	int		hostcpu;	/* host cpuid this vcpu last ran on */
86 	uint64_t	guest_msrs[VMM_MSR_NUM];
87 	struct vlapic	*vlapic;
88 	int		 vcpuid;
89 	struct savefpu	*guestfpu;	/* guest fpu state */
90 	void		*stats;
91 	struct vm_exit	exitinfo;
92 	enum x2apic_state x2apic_state;
93 	int		nmi_pending;
94 };
95 
96 #define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
97 #define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
98 #define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
99 #define	vcpu_assert_locked(v)	mtx_assert(&((v)->mtx), MA_OWNED)
100 
101 struct mem_seg {
102 	vm_paddr_t	gpa;
103 	size_t		len;
104 	boolean_t	wired;
105 	vm_object_t	object;
106 };
107 #define	VM_MAX_MEMORY_SEGMENTS	2
108 
109 struct vm {
110 	void		*cookie;	/* processor-specific data */
111 	void		*iommu;		/* iommu-specific data */
112 	struct vhpet	*vhpet;		/* virtual HPET */
113 	struct vioapic	*vioapic;	/* virtual ioapic */
114 	struct vmspace	*vmspace;	/* guest's address space */
115 	struct vcpu	vcpu[VM_MAXCPU];
116 	int		num_mem_segs;
117 	struct mem_seg	mem_segs[VM_MAX_MEMORY_SEGMENTS];
118 	char		name[VM_MAX_NAMELEN];
119 
120 	/*
121 	 * Set of active vcpus.
122 	 * An active vcpu is one that has been started implicitly (BSP) or
123 	 * explicitly (AP) by sending it a startup ipi.
124 	 */
125 	cpuset_t	active_cpus;
126 };
127 
128 static int vmm_initialized;
129 
130 static struct vmm_ops *ops;
131 #define	VMM_INIT()	(ops != NULL ? (*ops->init)() : 0)
132 #define	VMM_CLEANUP()	(ops != NULL ? (*ops->cleanup)() : 0)
133 
134 #define	VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
135 #define	VMRUN(vmi, vcpu, rip, pmap) \
136 	(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap) : ENXIO)
137 #define	VMCLEANUP(vmi)	(ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
138 #define	VMSPACE_ALLOC(min, max) \
139 	(ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
140 #define	VMSPACE_FREE(vmspace) \
141 	(ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
142 #define	VMGETREG(vmi, vcpu, num, retval)		\
143 	(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
144 #define	VMSETREG(vmi, vcpu, num, val)		\
145 	(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
146 #define	VMGETDESC(vmi, vcpu, num, desc)		\
147 	(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
148 #define	VMSETDESC(vmi, vcpu, num, desc)		\
149 	(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
150 #define	VMINJECT(vmi, vcpu, type, vec, ec, ecv)	\
151 	(ops != NULL ? (*ops->vminject)(vmi, vcpu, type, vec, ec, ecv) : ENXIO)
152 #define	VMGETCAP(vmi, vcpu, num, retval)	\
153 	(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
154 #define	VMSETCAP(vmi, vcpu, num, val)		\
155 	(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
156 
157 #define	fpu_start_emulating()	load_cr0(rcr0() | CR0_TS)
158 #define	fpu_stop_emulating()	clts()
159 
160 static MALLOC_DEFINE(M_VM, "vm", "vm");
161 CTASSERT(VMM_MSR_NUM <= 64);	/* msr_mask can keep track of up to 64 msrs */
162 
163 /* statistics */
164 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
165 
166 static void
167 vcpu_cleanup(struct vcpu *vcpu)
168 {
169 	vlapic_cleanup(vcpu->vlapic);
170 	vmm_stat_free(vcpu->stats);
171 	fpu_save_area_free(vcpu->guestfpu);
172 }
173 
174 static void
175 vcpu_init(struct vm *vm, uint32_t vcpu_id)
176 {
177 	struct vcpu *vcpu;
178 
179 	vcpu = &vm->vcpu[vcpu_id];
180 
181 	vcpu_lock_init(vcpu);
182 	vcpu->hostcpu = NOCPU;
183 	vcpu->vcpuid = vcpu_id;
184 	vcpu->vlapic = vlapic_init(vm, vcpu_id);
185 	vm_set_x2apic_state(vm, vcpu_id, X2APIC_ENABLED);
186 	vcpu->guestfpu = fpu_save_area_alloc();
187 	fpu_save_area_reset(vcpu->guestfpu);
188 	vcpu->stats = vmm_stat_alloc();
189 }
190 
191 struct vm_exit *
192 vm_exitinfo(struct vm *vm, int cpuid)
193 {
194 	struct vcpu *vcpu;
195 
196 	if (cpuid < 0 || cpuid >= VM_MAXCPU)
197 		panic("vm_exitinfo: invalid cpuid %d", cpuid);
198 
199 	vcpu = &vm->vcpu[cpuid];
200 
201 	return (&vcpu->exitinfo);
202 }
203 
204 static int
205 vmm_init(void)
206 {
207 	int error;
208 
209 	vmm_host_state_init();
210 	vmm_ipi_init();
211 
212 	error = vmm_mem_init();
213 	if (error)
214 		return (error);
215 
216 	if (vmm_is_intel())
217 		ops = &vmm_ops_intel;
218 	else if (vmm_is_amd())
219 		ops = &vmm_ops_amd;
220 	else
221 		return (ENXIO);
222 
223 	vmm_msr_init();
224 
225 	return (VMM_INIT());
226 }
227 
228 static int
229 vmm_handler(module_t mod, int what, void *arg)
230 {
231 	int error;
232 
233 	switch (what) {
234 	case MOD_LOAD:
235 		vmmdev_init();
236 		iommu_init();
237 		error = vmm_init();
238 		if (error == 0)
239 			vmm_initialized = 1;
240 		break;
241 	case MOD_UNLOAD:
242 		error = vmmdev_cleanup();
243 		if (error == 0) {
244 			iommu_cleanup();
245 			vmm_ipi_cleanup();
246 			error = VMM_CLEANUP();
247 			/*
248 			 * Something bad happened - prevent new
249 			 * VMs from being created
250 			 */
251 			if (error)
252 				vmm_initialized = 0;
253 		}
254 		break;
255 	default:
256 		error = 0;
257 		break;
258 	}
259 	return (error);
260 }
261 
262 static moduledata_t vmm_kmod = {
263 	"vmm",
264 	vmm_handler,
265 	NULL
266 };
267 
268 /*
269  * vmm initialization has the following dependencies:
270  *
271  * - iommu initialization must happen after the pci passthru driver has had
272  *   a chance to attach to any passthru devices (after SI_SUB_CONFIGURE).
273  *
274  * - VT-x initialization requires smp_rendezvous() and therefore must happen
275  *   after SMP is fully functional (after SI_SUB_SMP).
276  */
277 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
278 MODULE_VERSION(vmm, 1);
279 
280 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
281 
282 int
283 vm_create(const char *name, struct vm **retvm)
284 {
285 	int i;
286 	struct vm *vm;
287 	struct vmspace *vmspace;
288 
289 	const int BSP = 0;
290 
291 	/*
292 	 * If vmm.ko could not be successfully initialized then don't attempt
293 	 * to create the virtual machine.
294 	 */
295 	if (!vmm_initialized)
296 		return (ENXIO);
297 
298 	if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
299 		return (EINVAL);
300 
301 	vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
302 	if (vmspace == NULL)
303 		return (ENOMEM);
304 
305 	vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
306 	strcpy(vm->name, name);
307 	vm->cookie = VMINIT(vm, vmspace_pmap(vmspace));
308 	vm->vioapic = vioapic_init(vm);
309 	vm->vhpet = vhpet_init(vm);
310 
311 	for (i = 0; i < VM_MAXCPU; i++) {
312 		vcpu_init(vm, i);
313 		guest_msrs_init(vm, i);
314 	}
315 
316 	vm_activate_cpu(vm, BSP);
317 	vm->vmspace = vmspace;
318 
319 	*retvm = vm;
320 	return (0);
321 }
322 
323 static void
324 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg)
325 {
326 
327 	if (seg->object != NULL)
328 		vmm_mem_free(vm->vmspace, seg->gpa, seg->len);
329 
330 	bzero(seg, sizeof(*seg));
331 }
332 
333 void
334 vm_destroy(struct vm *vm)
335 {
336 	int i;
337 
338 	ppt_unassign_all(vm);
339 
340 	if (vm->iommu != NULL)
341 		iommu_destroy_domain(vm->iommu);
342 
343 	vhpet_cleanup(vm->vhpet);
344 	vioapic_cleanup(vm->vioapic);
345 
346 	for (i = 0; i < vm->num_mem_segs; i++)
347 		vm_free_mem_seg(vm, &vm->mem_segs[i]);
348 
349 	vm->num_mem_segs = 0;
350 
351 	for (i = 0; i < VM_MAXCPU; i++)
352 		vcpu_cleanup(&vm->vcpu[i]);
353 
354 	VMSPACE_FREE(vm->vmspace);
355 
356 	VMCLEANUP(vm->cookie);
357 
358 	free(vm, M_VM);
359 }
360 
361 const char *
362 vm_name(struct vm *vm)
363 {
364 	return (vm->name);
365 }
366 
367 int
368 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
369 {
370 	vm_object_t obj;
371 
372 	if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
373 		return (ENOMEM);
374 	else
375 		return (0);
376 }
377 
378 int
379 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
380 {
381 
382 	vmm_mmio_free(vm->vmspace, gpa, len);
383 	return (0);
384 }
385 
386 boolean_t
387 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa)
388 {
389 	int i;
390 	vm_paddr_t gpabase, gpalimit;
391 
392 	for (i = 0; i < vm->num_mem_segs; i++) {
393 		gpabase = vm->mem_segs[i].gpa;
394 		gpalimit = gpabase + vm->mem_segs[i].len;
395 		if (gpa >= gpabase && gpa < gpalimit)
396 			return (TRUE);		/* 'gpa' is regular memory */
397 	}
398 
399 	if (ppt_is_mmio(vm, gpa))
400 		return (TRUE);			/* 'gpa' is pci passthru mmio */
401 
402 	return (FALSE);
403 }
404 
405 int
406 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len)
407 {
408 	int available, allocated;
409 	struct mem_seg *seg;
410 	vm_object_t object;
411 	vm_paddr_t g;
412 
413 	if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0)
414 		return (EINVAL);
415 
416 	available = allocated = 0;
417 	g = gpa;
418 	while (g < gpa + len) {
419 		if (vm_mem_allocated(vm, g))
420 			allocated++;
421 		else
422 			available++;
423 
424 		g += PAGE_SIZE;
425 	}
426 
427 	/*
428 	 * If there are some allocated and some available pages in the address
429 	 * range then it is an error.
430 	 */
431 	if (allocated && available)
432 		return (EINVAL);
433 
434 	/*
435 	 * If the entire address range being requested has already been
436 	 * allocated then there isn't anything more to do.
437 	 */
438 	if (allocated && available == 0)
439 		return (0);
440 
441 	if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS)
442 		return (E2BIG);
443 
444 	seg = &vm->mem_segs[vm->num_mem_segs];
445 
446 	if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL)
447 		return (ENOMEM);
448 
449 	seg->gpa = gpa;
450 	seg->len = len;
451 	seg->object = object;
452 	seg->wired = FALSE;
453 
454 	vm->num_mem_segs++;
455 
456 	return (0);
457 }
458 
459 static void
460 vm_gpa_unwire(struct vm *vm)
461 {
462 	int i, rv;
463 	struct mem_seg *seg;
464 
465 	for (i = 0; i < vm->num_mem_segs; i++) {
466 		seg = &vm->mem_segs[i];
467 		if (!seg->wired)
468 			continue;
469 
470 		rv = vm_map_unwire(&vm->vmspace->vm_map,
471 				   seg->gpa, seg->gpa + seg->len,
472 				   VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
473 		KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment "
474 		    "%#lx/%ld could not be unwired: %d",
475 		    vm_name(vm), seg->gpa, seg->len, rv));
476 
477 		seg->wired = FALSE;
478 	}
479 }
480 
481 static int
482 vm_gpa_wire(struct vm *vm)
483 {
484 	int i, rv;
485 	struct mem_seg *seg;
486 
487 	for (i = 0; i < vm->num_mem_segs; i++) {
488 		seg = &vm->mem_segs[i];
489 		if (seg->wired)
490 			continue;
491 
492 		/* XXX rlimits? */
493 		rv = vm_map_wire(&vm->vmspace->vm_map,
494 				 seg->gpa, seg->gpa + seg->len,
495 				 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
496 		if (rv != KERN_SUCCESS)
497 			break;
498 
499 		seg->wired = TRUE;
500 	}
501 
502 	if (i < vm->num_mem_segs) {
503 		/*
504 		 * Undo the wiring before returning an error.
505 		 */
506 		vm_gpa_unwire(vm);
507 		return (EAGAIN);
508 	}
509 
510 	return (0);
511 }
512 
513 static void
514 vm_iommu_modify(struct vm *vm, boolean_t map)
515 {
516 	int i, sz;
517 	vm_paddr_t gpa, hpa;
518 	struct mem_seg *seg;
519 	void *vp, *cookie, *host_domain;
520 
521 	sz = PAGE_SIZE;
522 	host_domain = iommu_host_domain();
523 
524 	for (i = 0; i < vm->num_mem_segs; i++) {
525 		seg = &vm->mem_segs[i];
526 		KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired",
527 		    vm_name(vm), seg->gpa, seg->len));
528 
529 		gpa = seg->gpa;
530 		while (gpa < seg->gpa + seg->len) {
531 			vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE,
532 					 &cookie);
533 			KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
534 			    vm_name(vm), gpa));
535 
536 			vm_gpa_release(cookie);
537 
538 			hpa = DMAP_TO_PHYS((uintptr_t)vp);
539 			if (map) {
540 				iommu_create_mapping(vm->iommu, gpa, hpa, sz);
541 				iommu_remove_mapping(host_domain, hpa, sz);
542 			} else {
543 				iommu_remove_mapping(vm->iommu, gpa, sz);
544 				iommu_create_mapping(host_domain, hpa, hpa, sz);
545 			}
546 
547 			gpa += PAGE_SIZE;
548 		}
549 	}
550 
551 	/*
552 	 * Invalidate the cached translations associated with the domain
553 	 * from which pages were removed.
554 	 */
555 	if (map)
556 		iommu_invalidate_tlb(host_domain);
557 	else
558 		iommu_invalidate_tlb(vm->iommu);
559 }
560 
561 #define	vm_iommu_unmap(vm)	vm_iommu_modify((vm), FALSE)
562 #define	vm_iommu_map(vm)	vm_iommu_modify((vm), TRUE)
563 
564 int
565 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
566 {
567 	int error;
568 
569 	error = ppt_unassign_device(vm, bus, slot, func);
570 	if (error)
571 		return (error);
572 
573 	if (ppt_num_devices(vm) == 0) {
574 		vm_iommu_unmap(vm);
575 		vm_gpa_unwire(vm);
576 	}
577 	return (0);
578 }
579 
580 int
581 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
582 {
583 	int error;
584 	vm_paddr_t maxaddr;
585 
586 	/*
587 	 * Virtual machines with pci passthru devices get special treatment:
588 	 * - the guest physical memory is wired
589 	 * - the iommu is programmed to do the 'gpa' to 'hpa' translation
590 	 *
591 	 * We need to do this before the first pci passthru device is attached.
592 	 */
593 	if (ppt_num_devices(vm) == 0) {
594 		KASSERT(vm->iommu == NULL,
595 		    ("vm_assign_pptdev: iommu must be NULL"));
596 		maxaddr = vmm_mem_maxaddr();
597 		vm->iommu = iommu_create_domain(maxaddr);
598 
599 		error = vm_gpa_wire(vm);
600 		if (error)
601 			return (error);
602 
603 		vm_iommu_map(vm);
604 	}
605 
606 	error = ppt_assign_device(vm, bus, slot, func);
607 	return (error);
608 }
609 
610 void *
611 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
612 	    void **cookie)
613 {
614 	int count, pageoff;
615 	vm_page_t m;
616 
617 	pageoff = gpa & PAGE_MASK;
618 	if (len > PAGE_SIZE - pageoff)
619 		panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
620 
621 	count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
622 	    trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
623 
624 	if (count == 1) {
625 		*cookie = m;
626 		return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
627 	} else {
628 		*cookie = NULL;
629 		return (NULL);
630 	}
631 }
632 
633 void
634 vm_gpa_release(void *cookie)
635 {
636 	vm_page_t m = cookie;
637 
638 	vm_page_lock(m);
639 	vm_page_unhold(m);
640 	vm_page_unlock(m);
641 }
642 
643 int
644 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase,
645 		  struct vm_memory_segment *seg)
646 {
647 	int i;
648 
649 	for (i = 0; i < vm->num_mem_segs; i++) {
650 		if (gpabase == vm->mem_segs[i].gpa) {
651 			seg->gpa = vm->mem_segs[i].gpa;
652 			seg->len = vm->mem_segs[i].len;
653 			seg->wired = vm->mem_segs[i].wired;
654 			return (0);
655 		}
656 	}
657 	return (-1);
658 }
659 
660 int
661 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len,
662 	      vm_offset_t *offset, struct vm_object **object)
663 {
664 	int i;
665 	size_t seg_len;
666 	vm_paddr_t seg_gpa;
667 	vm_object_t seg_obj;
668 
669 	for (i = 0; i < vm->num_mem_segs; i++) {
670 		if ((seg_obj = vm->mem_segs[i].object) == NULL)
671 			continue;
672 
673 		seg_gpa = vm->mem_segs[i].gpa;
674 		seg_len = vm->mem_segs[i].len;
675 
676 		if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) {
677 			*offset = gpa - seg_gpa;
678 			*object = seg_obj;
679 			vm_object_reference(seg_obj);
680 			return (0);
681 		}
682 	}
683 
684 	return (EINVAL);
685 }
686 
687 int
688 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
689 {
690 
691 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
692 		return (EINVAL);
693 
694 	if (reg >= VM_REG_LAST)
695 		return (EINVAL);
696 
697 	return (VMGETREG(vm->cookie, vcpu, reg, retval));
698 }
699 
700 int
701 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val)
702 {
703 
704 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
705 		return (EINVAL);
706 
707 	if (reg >= VM_REG_LAST)
708 		return (EINVAL);
709 
710 	return (VMSETREG(vm->cookie, vcpu, reg, val));
711 }
712 
713 static boolean_t
714 is_descriptor_table(int reg)
715 {
716 
717 	switch (reg) {
718 	case VM_REG_GUEST_IDTR:
719 	case VM_REG_GUEST_GDTR:
720 		return (TRUE);
721 	default:
722 		return (FALSE);
723 	}
724 }
725 
726 static boolean_t
727 is_segment_register(int reg)
728 {
729 
730 	switch (reg) {
731 	case VM_REG_GUEST_ES:
732 	case VM_REG_GUEST_CS:
733 	case VM_REG_GUEST_SS:
734 	case VM_REG_GUEST_DS:
735 	case VM_REG_GUEST_FS:
736 	case VM_REG_GUEST_GS:
737 	case VM_REG_GUEST_TR:
738 	case VM_REG_GUEST_LDTR:
739 		return (TRUE);
740 	default:
741 		return (FALSE);
742 	}
743 }
744 
745 int
746 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
747 		struct seg_desc *desc)
748 {
749 
750 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
751 		return (EINVAL);
752 
753 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
754 		return (EINVAL);
755 
756 	return (VMGETDESC(vm->cookie, vcpu, reg, desc));
757 }
758 
759 int
760 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
761 		struct seg_desc *desc)
762 {
763 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
764 		return (EINVAL);
765 
766 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
767 		return (EINVAL);
768 
769 	return (VMSETDESC(vm->cookie, vcpu, reg, desc));
770 }
771 
772 static void
773 restore_guest_fpustate(struct vcpu *vcpu)
774 {
775 
776 	/* flush host state to the pcb */
777 	fpuexit(curthread);
778 
779 	/* restore guest FPU state */
780 	fpu_stop_emulating();
781 	fpurestore(vcpu->guestfpu);
782 
783 	/*
784 	 * The FPU is now "dirty" with the guest's state so turn on emulation
785 	 * to trap any access to the FPU by the host.
786 	 */
787 	fpu_start_emulating();
788 }
789 
790 static void
791 save_guest_fpustate(struct vcpu *vcpu)
792 {
793 
794 	if ((rcr0() & CR0_TS) == 0)
795 		panic("fpu emulation not enabled in host!");
796 
797 	/* save guest FPU state */
798 	fpu_stop_emulating();
799 	fpusave(vcpu->guestfpu);
800 	fpu_start_emulating();
801 }
802 
803 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
804 
805 static int
806 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
807 {
808 	int error;
809 
810 	vcpu_assert_locked(vcpu);
811 
812 	/*
813 	 * The following state transitions are allowed:
814 	 * IDLE -> FROZEN -> IDLE
815 	 * FROZEN -> RUNNING -> FROZEN
816 	 * FROZEN -> SLEEPING -> FROZEN
817 	 */
818 	switch (vcpu->state) {
819 	case VCPU_IDLE:
820 	case VCPU_RUNNING:
821 	case VCPU_SLEEPING:
822 		error = (newstate != VCPU_FROZEN);
823 		break;
824 	case VCPU_FROZEN:
825 		error = (newstate == VCPU_FROZEN);
826 		break;
827 	default:
828 		error = 1;
829 		break;
830 	}
831 
832 	if (error == 0)
833 		vcpu->state = newstate;
834 	else
835 		error = EBUSY;
836 
837 	return (error);
838 }
839 
840 static void
841 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
842 {
843 	int error;
844 
845 	if ((error = vcpu_set_state(vm, vcpuid, newstate)) != 0)
846 		panic("Error %d setting state to %d\n", error, newstate);
847 }
848 
849 static void
850 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
851 {
852 	int error;
853 
854 	if ((error = vcpu_set_state_locked(vcpu, newstate)) != 0)
855 		panic("Error %d setting state to %d", error, newstate);
856 }
857 
858 /*
859  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
860  */
861 static int
862 vm_handle_hlt(struct vm *vm, int vcpuid, boolean_t *retu)
863 {
864 	struct vcpu *vcpu;
865 	int sleepticks, t;
866 
867 	vcpu = &vm->vcpu[vcpuid];
868 
869 	vcpu_lock(vcpu);
870 
871 	/*
872 	 * Figure out the number of host ticks until the next apic
873 	 * timer interrupt in the guest.
874 	 */
875 	sleepticks = lapic_timer_tick(vm, vcpuid);
876 
877 	/*
878 	 * If the guest local apic timer is disabled then sleep for
879 	 * a long time but not forever.
880 	 */
881 	if (sleepticks < 0)
882 		sleepticks = hz;
883 
884 	/*
885 	 * Do a final check for pending NMI or interrupts before
886 	 * really putting this thread to sleep.
887 	 *
888 	 * These interrupts could have happened any time after we
889 	 * returned from VMRUN() and before we grabbed the vcpu lock.
890 	 */
891 	if (!vm_nmi_pending(vm, vcpuid) && lapic_pending_intr(vm, vcpuid) < 0) {
892 		if (sleepticks <= 0)
893 			panic("invalid sleepticks %d", sleepticks);
894 		t = ticks;
895 		vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
896 		msleep_spin(vcpu, &vcpu->mtx, "vmidle", sleepticks);
897 		vcpu_require_state_locked(vcpu, VCPU_FROZEN);
898 		vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
899 	}
900 	vcpu_unlock(vcpu);
901 
902 	return (0);
903 }
904 
905 static int
906 vm_handle_paging(struct vm *vm, int vcpuid, boolean_t *retu)
907 {
908 	int rv, ftype;
909 	struct vm_map *map;
910 	struct vcpu *vcpu;
911 	struct vm_exit *vme;
912 
913 	vcpu = &vm->vcpu[vcpuid];
914 	vme = &vcpu->exitinfo;
915 
916 	ftype = vme->u.paging.fault_type;
917 	KASSERT(ftype == VM_PROT_READ ||
918 	    ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
919 	    ("vm_handle_paging: invalid fault_type %d", ftype));
920 
921 	if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
922 		rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
923 		    vme->u.paging.gpa, ftype);
924 		if (rv == 0)
925 			goto done;
926 	}
927 
928 	map = &vm->vmspace->vm_map;
929 	rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
930 
931 	VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
932 	    "ftype = %d", rv, vme->u.paging.gpa, ftype);
933 
934 	if (rv != KERN_SUCCESS)
935 		return (EFAULT);
936 done:
937 	/* restart execution at the faulting instruction */
938 	vme->inst_length = 0;
939 
940 	return (0);
941 }
942 
943 static int
944 vm_handle_inst_emul(struct vm *vm, int vcpuid, boolean_t *retu)
945 {
946 	struct vie *vie;
947 	struct vcpu *vcpu;
948 	struct vm_exit *vme;
949 	int error, inst_length;
950 	uint64_t rip, gla, gpa, cr3;
951 	mem_region_read_t mread;
952 	mem_region_write_t mwrite;
953 
954 	vcpu = &vm->vcpu[vcpuid];
955 	vme = &vcpu->exitinfo;
956 
957 	rip = vme->rip;
958 	inst_length = vme->inst_length;
959 
960 	gla = vme->u.inst_emul.gla;
961 	gpa = vme->u.inst_emul.gpa;
962 	cr3 = vme->u.inst_emul.cr3;
963 	vie = &vme->u.inst_emul.vie;
964 
965 	vie_init(vie);
966 
967 	/* Fetch, decode and emulate the faulting instruction */
968 	if (vmm_fetch_instruction(vm, vcpuid, rip, inst_length, cr3, vie) != 0)
969 		return (EFAULT);
970 
971 	if (vmm_decode_instruction(vm, vcpuid, gla, vie) != 0)
972 		return (EFAULT);
973 
974 	/* return to userland unless this is an in-kernel emulated device */
975 	if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
976 		mread = lapic_mmio_read;
977 		mwrite = lapic_mmio_write;
978 	} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
979 		mread = vioapic_mmio_read;
980 		mwrite = vioapic_mmio_write;
981 	} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
982 		mread = vhpet_mmio_read;
983 		mwrite = vhpet_mmio_write;
984 	} else {
985 		*retu = TRUE;
986 		return (0);
987 	}
988 
989 	error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, mread, mwrite, 0);
990 
991 	/* return to userland to spin up the AP */
992 	if (error == 0 && vme->exitcode == VM_EXITCODE_SPINUP_AP)
993 		*retu = TRUE;
994 
995 	return (error);
996 }
997 
998 int
999 vm_run(struct vm *vm, struct vm_run *vmrun)
1000 {
1001 	int error, vcpuid;
1002 	struct vcpu *vcpu;
1003 	struct pcb *pcb;
1004 	uint64_t tscval, rip;
1005 	struct vm_exit *vme;
1006 	boolean_t retu;
1007 	pmap_t pmap;
1008 
1009 	vcpuid = vmrun->cpuid;
1010 
1011 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1012 		return (EINVAL);
1013 
1014 	pmap = vmspace_pmap(vm->vmspace);
1015 	vcpu = &vm->vcpu[vcpuid];
1016 	vme = &vcpu->exitinfo;
1017 	rip = vmrun->rip;
1018 restart:
1019 	critical_enter();
1020 
1021 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1022 	    ("vm_run: absurd pm_active"));
1023 
1024 	tscval = rdtsc();
1025 
1026 	pcb = PCPU_GET(curpcb);
1027 	set_pcb_flags(pcb, PCB_FULL_IRET);
1028 
1029 	restore_guest_msrs(vm, vcpuid);
1030 	restore_guest_fpustate(vcpu);
1031 
1032 	vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
1033 	vcpu->hostcpu = curcpu;
1034 	error = VMRUN(vm->cookie, vcpuid, rip, pmap);
1035 	vcpu->hostcpu = NOCPU;
1036 	vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
1037 
1038 	save_guest_fpustate(vcpu);
1039 	restore_host_msrs(vm, vcpuid);
1040 
1041 	vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1042 
1043 	critical_exit();
1044 
1045 	if (error == 0) {
1046 		retu = FALSE;
1047 		switch (vme->exitcode) {
1048 		case VM_EXITCODE_HLT:
1049 			error = vm_handle_hlt(vm, vcpuid, &retu);
1050 			break;
1051 		case VM_EXITCODE_PAGING:
1052 			error = vm_handle_paging(vm, vcpuid, &retu);
1053 			break;
1054 		case VM_EXITCODE_INST_EMUL:
1055 			error = vm_handle_inst_emul(vm, vcpuid, &retu);
1056 			break;
1057 		default:
1058 			retu = TRUE;	/* handled in userland */
1059 			break;
1060 		}
1061 	}
1062 
1063 	if (error == 0 && retu == FALSE) {
1064 		rip = vme->rip + vme->inst_length;
1065 		goto restart;
1066 	}
1067 
1068 	/* copy the exit information */
1069 	bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
1070 	return (error);
1071 }
1072 
1073 int
1074 vm_inject_event(struct vm *vm, int vcpuid, int type,
1075 		int vector, uint32_t code, int code_valid)
1076 {
1077 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1078 		return (EINVAL);
1079 
1080 	if ((type > VM_EVENT_NONE && type < VM_EVENT_MAX) == 0)
1081 		return (EINVAL);
1082 
1083 	if (vector < 0 || vector > 255)
1084 		return (EINVAL);
1085 
1086 	return (VMINJECT(vm->cookie, vcpuid, type, vector, code, code_valid));
1087 }
1088 
1089 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
1090 
1091 int
1092 vm_inject_nmi(struct vm *vm, int vcpuid)
1093 {
1094 	struct vcpu *vcpu;
1095 
1096 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1097 		return (EINVAL);
1098 
1099 	vcpu = &vm->vcpu[vcpuid];
1100 
1101 	vcpu->nmi_pending = 1;
1102 	vm_interrupt_hostcpu(vm, vcpuid);
1103 	return (0);
1104 }
1105 
1106 int
1107 vm_nmi_pending(struct vm *vm, int vcpuid)
1108 {
1109 	struct vcpu *vcpu;
1110 
1111 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1112 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
1113 
1114 	vcpu = &vm->vcpu[vcpuid];
1115 
1116 	return (vcpu->nmi_pending);
1117 }
1118 
1119 void
1120 vm_nmi_clear(struct vm *vm, int vcpuid)
1121 {
1122 	struct vcpu *vcpu;
1123 
1124 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1125 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
1126 
1127 	vcpu = &vm->vcpu[vcpuid];
1128 
1129 	if (vcpu->nmi_pending == 0)
1130 		panic("vm_nmi_clear: inconsistent nmi_pending state");
1131 
1132 	vcpu->nmi_pending = 0;
1133 	vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
1134 }
1135 
1136 int
1137 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
1138 {
1139 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1140 		return (EINVAL);
1141 
1142 	if (type < 0 || type >= VM_CAP_MAX)
1143 		return (EINVAL);
1144 
1145 	return (VMGETCAP(vm->cookie, vcpu, type, retval));
1146 }
1147 
1148 int
1149 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
1150 {
1151 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1152 		return (EINVAL);
1153 
1154 	if (type < 0 || type >= VM_CAP_MAX)
1155 		return (EINVAL);
1156 
1157 	return (VMSETCAP(vm->cookie, vcpu, type, val));
1158 }
1159 
1160 uint64_t *
1161 vm_guest_msrs(struct vm *vm, int cpu)
1162 {
1163 	return (vm->vcpu[cpu].guest_msrs);
1164 }
1165 
1166 struct vlapic *
1167 vm_lapic(struct vm *vm, int cpu)
1168 {
1169 	return (vm->vcpu[cpu].vlapic);
1170 }
1171 
1172 struct vioapic *
1173 vm_ioapic(struct vm *vm)
1174 {
1175 
1176 	return (vm->vioapic);
1177 }
1178 
1179 struct vhpet *
1180 vm_hpet(struct vm *vm)
1181 {
1182 
1183 	return (vm->vhpet);
1184 }
1185 
1186 boolean_t
1187 vmm_is_pptdev(int bus, int slot, int func)
1188 {
1189 	int found, i, n;
1190 	int b, s, f;
1191 	char *val, *cp, *cp2;
1192 
1193 	/*
1194 	 * XXX
1195 	 * The length of an environment variable is limited to 128 bytes which
1196 	 * puts an upper limit on the number of passthru devices that may be
1197 	 * specified using a single environment variable.
1198 	 *
1199 	 * Work around this by scanning multiple environment variable
1200 	 * names instead of a single one - yuck!
1201 	 */
1202 	const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
1203 
1204 	/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
1205 	found = 0;
1206 	for (i = 0; names[i] != NULL && !found; i++) {
1207 		cp = val = getenv(names[i]);
1208 		while (cp != NULL && *cp != '\0') {
1209 			if ((cp2 = strchr(cp, ' ')) != NULL)
1210 				*cp2 = '\0';
1211 
1212 			n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
1213 			if (n == 3 && bus == b && slot == s && func == f) {
1214 				found = 1;
1215 				break;
1216 			}
1217 
1218 			if (cp2 != NULL)
1219 				*cp2++ = ' ';
1220 
1221 			cp = cp2;
1222 		}
1223 		freeenv(val);
1224 	}
1225 	return (found);
1226 }
1227 
1228 void *
1229 vm_iommu_domain(struct vm *vm)
1230 {
1231 
1232 	return (vm->iommu);
1233 }
1234 
1235 int
1236 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1237 {
1238 	int error;
1239 	struct vcpu *vcpu;
1240 
1241 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1242 		panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
1243 
1244 	vcpu = &vm->vcpu[vcpuid];
1245 
1246 	vcpu_lock(vcpu);
1247 	error = vcpu_set_state_locked(vcpu, newstate);
1248 	vcpu_unlock(vcpu);
1249 
1250 	return (error);
1251 }
1252 
1253 enum vcpu_state
1254 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
1255 {
1256 	struct vcpu *vcpu;
1257 	enum vcpu_state state;
1258 
1259 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1260 		panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
1261 
1262 	vcpu = &vm->vcpu[vcpuid];
1263 
1264 	vcpu_lock(vcpu);
1265 	state = vcpu->state;
1266 	if (hostcpu != NULL)
1267 		*hostcpu = vcpu->hostcpu;
1268 	vcpu_unlock(vcpu);
1269 
1270 	return (state);
1271 }
1272 
1273 void
1274 vm_activate_cpu(struct vm *vm, int vcpuid)
1275 {
1276 
1277 	if (vcpuid >= 0 && vcpuid < VM_MAXCPU)
1278 		CPU_SET(vcpuid, &vm->active_cpus);
1279 }
1280 
1281 cpuset_t
1282 vm_active_cpus(struct vm *vm)
1283 {
1284 
1285 	return (vm->active_cpus);
1286 }
1287 
1288 void *
1289 vcpu_stats(struct vm *vm, int vcpuid)
1290 {
1291 
1292 	return (vm->vcpu[vcpuid].stats);
1293 }
1294 
1295 int
1296 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
1297 {
1298 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1299 		return (EINVAL);
1300 
1301 	*state = vm->vcpu[vcpuid].x2apic_state;
1302 
1303 	return (0);
1304 }
1305 
1306 int
1307 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
1308 {
1309 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1310 		return (EINVAL);
1311 
1312 	if (state >= X2APIC_STATE_LAST)
1313 		return (EINVAL);
1314 
1315 	vm->vcpu[vcpuid].x2apic_state = state;
1316 
1317 	vlapic_set_x2apic_state(vm, vcpuid, state);
1318 
1319 	return (0);
1320 }
1321 
1322 void
1323 vm_interrupt_hostcpu(struct vm *vm, int vcpuid)
1324 {
1325 	int hostcpu;
1326 	struct vcpu *vcpu;
1327 
1328 	vcpu = &vm->vcpu[vcpuid];
1329 
1330 	vcpu_lock(vcpu);
1331 	hostcpu = vcpu->hostcpu;
1332 	if (hostcpu == NOCPU) {
1333 		if (vcpu->state == VCPU_SLEEPING)
1334 			wakeup_one(vcpu);
1335 	} else {
1336 		if (vcpu->state != VCPU_RUNNING)
1337 			panic("invalid vcpu state %d", vcpu->state);
1338 		if (hostcpu != curcpu)
1339 			ipi_cpu(hostcpu, vmm_ipinum);
1340 	}
1341 	vcpu_unlock(vcpu);
1342 }
1343 
1344 struct vmspace *
1345 vm_get_vmspace(struct vm *vm)
1346 {
1347 
1348 	return (vm->vmspace);
1349 }
1350 
1351 int
1352 vm_apicid2vcpuid(struct vm *vm, int apicid)
1353 {
1354 	/*
1355 	 * XXX apic id is assumed to be numerically identical to vcpu id
1356 	 */
1357 	return (apicid);
1358 }
1359