1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/module.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/pcpu.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/systm.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_page.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_map.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_param.h> 56 57 #include <machine/cpu.h> 58 #include <machine/pcb.h> 59 #include <machine/smp.h> 60 #include <x86/psl.h> 61 #include <x86/apicreg.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vpmtmr.h" 78 #include "vrtc.h" 79 #include "vmm_stat.h" 80 #include "vmm_lapic.h" 81 82 #include "io/ppt.h" 83 #include "io/iommu.h" 84 85 struct vlapic; 86 87 /* 88 * Initialization: 89 * (a) allocated when vcpu is created 90 * (i) initialized when vcpu is created and when it is reinitialized 91 * (o) initialized the first time the vcpu is created 92 * (x) initialized before use 93 */ 94 struct vcpu { 95 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 96 enum vcpu_state state; /* (o) vcpu state */ 97 int hostcpu; /* (o) vcpu's host cpu */ 98 int reqidle; /* (i) request vcpu to idle */ 99 struct vlapic *vlapic; /* (i) APIC device model */ 100 enum x2apic_state x2apic_state; /* (i) APIC mode */ 101 uint64_t exitintinfo; /* (i) events pending at VM exit */ 102 int nmi_pending; /* (i) NMI pending */ 103 int extint_pending; /* (i) INTR pending */ 104 int exception_pending; /* (i) exception pending */ 105 int exc_vector; /* (x) exception collateral */ 106 int exc_errcode_valid; 107 uint32_t exc_errcode; 108 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 109 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 110 void *stats; /* (a,i) statistics */ 111 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 112 uint64_t nextrip; /* (x) next instruction to execute */ 113 }; 114 115 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 116 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 117 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 118 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 119 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 120 121 struct mem_seg { 122 size_t len; 123 bool sysmem; 124 struct vm_object *object; 125 }; 126 #define VM_MAX_MEMSEGS 3 127 128 struct mem_map { 129 vm_paddr_t gpa; 130 size_t len; 131 vm_ooffset_t segoff; 132 int segid; 133 int prot; 134 int flags; 135 }; 136 #define VM_MAX_MEMMAPS 4 137 138 /* 139 * Initialization: 140 * (o) initialized the first time the VM is created 141 * (i) initialized when VM is created and when it is reinitialized 142 * (x) initialized before use 143 */ 144 struct vm { 145 void *cookie; /* (i) cpu-specific data */ 146 void *iommu; /* (x) iommu-specific data */ 147 struct vhpet *vhpet; /* (i) virtual HPET */ 148 struct vioapic *vioapic; /* (i) virtual ioapic */ 149 struct vatpic *vatpic; /* (i) virtual atpic */ 150 struct vatpit *vatpit; /* (i) virtual atpit */ 151 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 152 struct vrtc *vrtc; /* (o) virtual RTC */ 153 volatile cpuset_t active_cpus; /* (i) active vcpus */ 154 int suspend; /* (i) stop VM execution */ 155 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 156 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 157 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 158 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 159 void *rendezvous_arg; /* (x) rendezvous func/arg */ 160 vm_rendezvous_func_t rendezvous_func; 161 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 162 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 163 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 164 struct vmspace *vmspace; /* (o) guest's address space */ 165 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 166 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 167 }; 168 169 static int vmm_initialized; 170 171 static struct vmm_ops *ops; 172 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 173 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 174 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 175 176 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 177 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ 178 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) 179 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 180 #define VMSPACE_ALLOC(min, max) \ 181 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 182 #define VMSPACE_FREE(vmspace) \ 183 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 184 #define VMGETREG(vmi, vcpu, num, retval) \ 185 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 186 #define VMSETREG(vmi, vcpu, num, val) \ 187 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 188 #define VMGETDESC(vmi, vcpu, num, desc) \ 189 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 190 #define VMSETDESC(vmi, vcpu, num, desc) \ 191 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 192 #define VMGETCAP(vmi, vcpu, num, retval) \ 193 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 194 #define VMSETCAP(vmi, vcpu, num, val) \ 195 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 196 #define VLAPIC_INIT(vmi, vcpu) \ 197 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 198 #define VLAPIC_CLEANUP(vmi, vlapic) \ 199 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 200 201 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 202 #define fpu_stop_emulating() clts() 203 204 static MALLOC_DEFINE(M_VM, "vm", "vm"); 205 206 /* statistics */ 207 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 208 209 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 210 211 /* 212 * Halt the guest if all vcpus are executing a HLT instruction with 213 * interrupts disabled. 214 */ 215 static int halt_detection_enabled = 1; 216 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 217 &halt_detection_enabled, 0, 218 "Halt VM if all vcpus execute HLT with interrupts disabled"); 219 220 static int vmm_ipinum; 221 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 222 "IPI vector used for vcpu notifications"); 223 224 static int trace_guest_exceptions; 225 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 226 &trace_guest_exceptions, 0, 227 "Trap into hypervisor on all guest exceptions and reflect them back"); 228 229 static void vm_free_memmap(struct vm *vm, int ident); 230 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 231 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 232 233 #ifdef KTR 234 static const char * 235 vcpu_state2str(enum vcpu_state state) 236 { 237 238 switch (state) { 239 case VCPU_IDLE: 240 return ("idle"); 241 case VCPU_FROZEN: 242 return ("frozen"); 243 case VCPU_RUNNING: 244 return ("running"); 245 case VCPU_SLEEPING: 246 return ("sleeping"); 247 default: 248 return ("unknown"); 249 } 250 } 251 #endif 252 253 static void 254 vcpu_cleanup(struct vm *vm, int i, bool destroy) 255 { 256 struct vcpu *vcpu = &vm->vcpu[i]; 257 258 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 259 if (destroy) { 260 vmm_stat_free(vcpu->stats); 261 fpu_save_area_free(vcpu->guestfpu); 262 } 263 } 264 265 static void 266 vcpu_init(struct vm *vm, int vcpu_id, bool create) 267 { 268 struct vcpu *vcpu; 269 270 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 271 ("vcpu_init: invalid vcpu %d", vcpu_id)); 272 273 vcpu = &vm->vcpu[vcpu_id]; 274 275 if (create) { 276 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 277 "initialized", vcpu_id)); 278 vcpu_lock_init(vcpu); 279 vcpu->state = VCPU_IDLE; 280 vcpu->hostcpu = NOCPU; 281 vcpu->guestfpu = fpu_save_area_alloc(); 282 vcpu->stats = vmm_stat_alloc(); 283 } 284 285 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 286 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 287 vcpu->reqidle = 0; 288 vcpu->exitintinfo = 0; 289 vcpu->nmi_pending = 0; 290 vcpu->extint_pending = 0; 291 vcpu->exception_pending = 0; 292 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 293 fpu_save_area_reset(vcpu->guestfpu); 294 vmm_stat_init(vcpu->stats); 295 } 296 297 int 298 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 299 { 300 301 return (trace_guest_exceptions); 302 } 303 304 struct vm_exit * 305 vm_exitinfo(struct vm *vm, int cpuid) 306 { 307 struct vcpu *vcpu; 308 309 if (cpuid < 0 || cpuid >= VM_MAXCPU) 310 panic("vm_exitinfo: invalid cpuid %d", cpuid); 311 312 vcpu = &vm->vcpu[cpuid]; 313 314 return (&vcpu->exitinfo); 315 } 316 317 static void 318 vmm_resume(void) 319 { 320 VMM_RESUME(); 321 } 322 323 static int 324 vmm_init(void) 325 { 326 int error; 327 328 vmm_host_state_init(); 329 330 vmm_ipinum = lapic_ipi_alloc(&IDTVEC(justreturn)); 331 if (vmm_ipinum < 0) 332 vmm_ipinum = IPI_AST; 333 334 error = vmm_mem_init(); 335 if (error) 336 return (error); 337 338 if (vmm_is_intel()) 339 ops = &vmm_ops_intel; 340 else if (vmm_is_amd()) 341 ops = &vmm_ops_amd; 342 else 343 return (ENXIO); 344 345 vmm_resume_p = vmm_resume; 346 347 return (VMM_INIT(vmm_ipinum)); 348 } 349 350 static int 351 vmm_handler(module_t mod, int what, void *arg) 352 { 353 int error; 354 355 switch (what) { 356 case MOD_LOAD: 357 vmmdev_init(); 358 error = vmm_init(); 359 if (error == 0) 360 vmm_initialized = 1; 361 break; 362 case MOD_UNLOAD: 363 error = vmmdev_cleanup(); 364 if (error == 0) { 365 vmm_resume_p = NULL; 366 iommu_cleanup(); 367 if (vmm_ipinum != IPI_AST) 368 lapic_ipi_free(vmm_ipinum); 369 error = VMM_CLEANUP(); 370 /* 371 * Something bad happened - prevent new 372 * VMs from being created 373 */ 374 if (error) 375 vmm_initialized = 0; 376 } 377 break; 378 default: 379 error = 0; 380 break; 381 } 382 return (error); 383 } 384 385 static moduledata_t vmm_kmod = { 386 "vmm", 387 vmm_handler, 388 NULL 389 }; 390 391 /* 392 * vmm initialization has the following dependencies: 393 * 394 * - VT-x initialization requires smp_rendezvous() and therefore must happen 395 * after SMP is fully functional (after SI_SUB_SMP). 396 */ 397 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 398 MODULE_VERSION(vmm, 1); 399 400 static void 401 vm_init(struct vm *vm, bool create) 402 { 403 int i; 404 405 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 406 vm->iommu = NULL; 407 vm->vioapic = vioapic_init(vm); 408 vm->vhpet = vhpet_init(vm); 409 vm->vatpic = vatpic_init(vm); 410 vm->vatpit = vatpit_init(vm); 411 vm->vpmtmr = vpmtmr_init(vm); 412 if (create) 413 vm->vrtc = vrtc_init(vm); 414 415 CPU_ZERO(&vm->active_cpus); 416 417 vm->suspend = 0; 418 CPU_ZERO(&vm->suspended_cpus); 419 420 for (i = 0; i < VM_MAXCPU; i++) 421 vcpu_init(vm, i, create); 422 } 423 424 int 425 vm_create(const char *name, struct vm **retvm) 426 { 427 struct vm *vm; 428 struct vmspace *vmspace; 429 430 /* 431 * If vmm.ko could not be successfully initialized then don't attempt 432 * to create the virtual machine. 433 */ 434 if (!vmm_initialized) 435 return (ENXIO); 436 437 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 438 return (EINVAL); 439 440 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 441 if (vmspace == NULL) 442 return (ENOMEM); 443 444 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 445 strcpy(vm->name, name); 446 vm->vmspace = vmspace; 447 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 448 449 vm_init(vm, true); 450 451 *retvm = vm; 452 return (0); 453 } 454 455 static void 456 vm_cleanup(struct vm *vm, bool destroy) 457 { 458 struct mem_map *mm; 459 int i; 460 461 ppt_unassign_all(vm); 462 463 if (vm->iommu != NULL) 464 iommu_destroy_domain(vm->iommu); 465 466 if (destroy) 467 vrtc_cleanup(vm->vrtc); 468 else 469 vrtc_reset(vm->vrtc); 470 vpmtmr_cleanup(vm->vpmtmr); 471 vatpit_cleanup(vm->vatpit); 472 vhpet_cleanup(vm->vhpet); 473 vatpic_cleanup(vm->vatpic); 474 vioapic_cleanup(vm->vioapic); 475 476 for (i = 0; i < VM_MAXCPU; i++) 477 vcpu_cleanup(vm, i, destroy); 478 479 VMCLEANUP(vm->cookie); 480 481 /* 482 * System memory is removed from the guest address space only when 483 * the VM is destroyed. This is because the mapping remains the same 484 * across VM reset. 485 * 486 * Device memory can be relocated by the guest (e.g. using PCI BARs) 487 * so those mappings are removed on a VM reset. 488 */ 489 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 490 mm = &vm->mem_maps[i]; 491 if (destroy || !sysmem_mapping(vm, mm)) 492 vm_free_memmap(vm, i); 493 } 494 495 if (destroy) { 496 for (i = 0; i < VM_MAX_MEMSEGS; i++) 497 vm_free_memseg(vm, i); 498 499 VMSPACE_FREE(vm->vmspace); 500 vm->vmspace = NULL; 501 } 502 } 503 504 void 505 vm_destroy(struct vm *vm) 506 { 507 vm_cleanup(vm, true); 508 free(vm, M_VM); 509 } 510 511 int 512 vm_reinit(struct vm *vm) 513 { 514 int error; 515 516 /* 517 * A virtual machine can be reset only if all vcpus are suspended. 518 */ 519 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 520 vm_cleanup(vm, false); 521 vm_init(vm, false); 522 error = 0; 523 } else { 524 error = EBUSY; 525 } 526 527 return (error); 528 } 529 530 const char * 531 vm_name(struct vm *vm) 532 { 533 return (vm->name); 534 } 535 536 int 537 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 538 { 539 vm_object_t obj; 540 541 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 542 return (ENOMEM); 543 else 544 return (0); 545 } 546 547 int 548 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 549 { 550 551 vmm_mmio_free(vm->vmspace, gpa, len); 552 return (0); 553 } 554 555 /* 556 * Return 'true' if 'gpa' is allocated in the guest address space. 557 * 558 * This function is called in the context of a running vcpu which acts as 559 * an implicit lock on 'vm->mem_maps[]'. 560 */ 561 bool 562 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 563 { 564 struct mem_map *mm; 565 int i; 566 567 #ifdef INVARIANTS 568 int hostcpu, state; 569 state = vcpu_get_state(vm, vcpuid, &hostcpu); 570 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 571 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 572 #endif 573 574 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 575 mm = &vm->mem_maps[i]; 576 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 577 return (true); /* 'gpa' is sysmem or devmem */ 578 } 579 580 if (ppt_is_mmio(vm, gpa)) 581 return (true); /* 'gpa' is pci passthru mmio */ 582 583 return (false); 584 } 585 586 int 587 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 588 { 589 struct mem_seg *seg; 590 vm_object_t obj; 591 592 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 593 return (EINVAL); 594 595 if (len == 0 || (len & PAGE_MASK)) 596 return (EINVAL); 597 598 seg = &vm->mem_segs[ident]; 599 if (seg->object != NULL) { 600 if (seg->len == len && seg->sysmem == sysmem) 601 return (EEXIST); 602 else 603 return (EINVAL); 604 } 605 606 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 607 if (obj == NULL) 608 return (ENOMEM); 609 610 seg->len = len; 611 seg->object = obj; 612 seg->sysmem = sysmem; 613 return (0); 614 } 615 616 int 617 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 618 vm_object_t *objptr) 619 { 620 struct mem_seg *seg; 621 622 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 623 return (EINVAL); 624 625 seg = &vm->mem_segs[ident]; 626 if (len) 627 *len = seg->len; 628 if (sysmem) 629 *sysmem = seg->sysmem; 630 if (objptr) 631 *objptr = seg->object; 632 return (0); 633 } 634 635 void 636 vm_free_memseg(struct vm *vm, int ident) 637 { 638 struct mem_seg *seg; 639 640 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 641 ("%s: invalid memseg ident %d", __func__, ident)); 642 643 seg = &vm->mem_segs[ident]; 644 if (seg->object != NULL) { 645 vm_object_deallocate(seg->object); 646 bzero(seg, sizeof(struct mem_seg)); 647 } 648 } 649 650 int 651 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 652 size_t len, int prot, int flags) 653 { 654 struct mem_seg *seg; 655 struct mem_map *m, *map; 656 vm_ooffset_t last; 657 int i, error; 658 659 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 660 return (EINVAL); 661 662 if (flags & ~VM_MEMMAP_F_WIRED) 663 return (EINVAL); 664 665 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 666 return (EINVAL); 667 668 seg = &vm->mem_segs[segid]; 669 if (seg->object == NULL) 670 return (EINVAL); 671 672 last = first + len; 673 if (first < 0 || first >= last || last > seg->len) 674 return (EINVAL); 675 676 if ((gpa | first | last) & PAGE_MASK) 677 return (EINVAL); 678 679 map = NULL; 680 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 681 m = &vm->mem_maps[i]; 682 if (m->len == 0) { 683 map = m; 684 break; 685 } 686 } 687 688 if (map == NULL) 689 return (ENOSPC); 690 691 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 692 len, 0, VMFS_NO_SPACE, prot, prot, 0); 693 if (error != KERN_SUCCESS) 694 return (EFAULT); 695 696 vm_object_reference(seg->object); 697 698 if (flags & VM_MEMMAP_F_WIRED) { 699 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 700 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 701 if (error != KERN_SUCCESS) { 702 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 703 return (EFAULT); 704 } 705 } 706 707 map->gpa = gpa; 708 map->len = len; 709 map->segoff = first; 710 map->segid = segid; 711 map->prot = prot; 712 map->flags = flags; 713 return (0); 714 } 715 716 int 717 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 718 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 719 { 720 struct mem_map *mm, *mmnext; 721 int i; 722 723 mmnext = NULL; 724 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 725 mm = &vm->mem_maps[i]; 726 if (mm->len == 0 || mm->gpa < *gpa) 727 continue; 728 if (mmnext == NULL || mm->gpa < mmnext->gpa) 729 mmnext = mm; 730 } 731 732 if (mmnext != NULL) { 733 *gpa = mmnext->gpa; 734 if (segid) 735 *segid = mmnext->segid; 736 if (segoff) 737 *segoff = mmnext->segoff; 738 if (len) 739 *len = mmnext->len; 740 if (prot) 741 *prot = mmnext->prot; 742 if (flags) 743 *flags = mmnext->flags; 744 return (0); 745 } else { 746 return (ENOENT); 747 } 748 } 749 750 static void 751 vm_free_memmap(struct vm *vm, int ident) 752 { 753 struct mem_map *mm; 754 int error; 755 756 mm = &vm->mem_maps[ident]; 757 if (mm->len) { 758 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 759 mm->gpa + mm->len); 760 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 761 __func__, error)); 762 bzero(mm, sizeof(struct mem_map)); 763 } 764 } 765 766 static __inline bool 767 sysmem_mapping(struct vm *vm, struct mem_map *mm) 768 { 769 770 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 771 return (true); 772 else 773 return (false); 774 } 775 776 static vm_paddr_t 777 sysmem_maxaddr(struct vm *vm) 778 { 779 struct mem_map *mm; 780 vm_paddr_t maxaddr; 781 int i; 782 783 maxaddr = 0; 784 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 785 mm = &vm->mem_maps[i]; 786 if (sysmem_mapping(vm, mm)) { 787 if (maxaddr < mm->gpa + mm->len) 788 maxaddr = mm->gpa + mm->len; 789 } 790 } 791 return (maxaddr); 792 } 793 794 static void 795 vm_iommu_modify(struct vm *vm, boolean_t map) 796 { 797 int i, sz; 798 vm_paddr_t gpa, hpa; 799 struct mem_map *mm; 800 void *vp, *cookie, *host_domain; 801 802 sz = PAGE_SIZE; 803 host_domain = iommu_host_domain(); 804 805 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 806 mm = &vm->mem_maps[i]; 807 if (!sysmem_mapping(vm, mm)) 808 continue; 809 810 if (map) { 811 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 812 ("iommu map found invalid memmap %#lx/%#lx/%#x", 813 mm->gpa, mm->len, mm->flags)); 814 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 815 continue; 816 mm->flags |= VM_MEMMAP_F_IOMMU; 817 } else { 818 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 819 continue; 820 mm->flags &= ~VM_MEMMAP_F_IOMMU; 821 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 822 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 823 mm->gpa, mm->len, mm->flags)); 824 } 825 826 gpa = mm->gpa; 827 while (gpa < mm->gpa + mm->len) { 828 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 829 &cookie); 830 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 831 vm_name(vm), gpa)); 832 833 vm_gpa_release(cookie); 834 835 hpa = DMAP_TO_PHYS((uintptr_t)vp); 836 if (map) { 837 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 838 iommu_remove_mapping(host_domain, hpa, sz); 839 } else { 840 iommu_remove_mapping(vm->iommu, gpa, sz); 841 iommu_create_mapping(host_domain, hpa, hpa, sz); 842 } 843 844 gpa += PAGE_SIZE; 845 } 846 } 847 848 /* 849 * Invalidate the cached translations associated with the domain 850 * from which pages were removed. 851 */ 852 if (map) 853 iommu_invalidate_tlb(host_domain); 854 else 855 iommu_invalidate_tlb(vm->iommu); 856 } 857 858 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 859 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 860 861 int 862 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 863 { 864 int error; 865 866 error = ppt_unassign_device(vm, bus, slot, func); 867 if (error) 868 return (error); 869 870 if (ppt_assigned_devices(vm) == 0) 871 vm_iommu_unmap(vm); 872 873 return (0); 874 } 875 876 int 877 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 878 { 879 int error; 880 vm_paddr_t maxaddr; 881 882 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 883 if (ppt_assigned_devices(vm) == 0) { 884 KASSERT(vm->iommu == NULL, 885 ("vm_assign_pptdev: iommu must be NULL")); 886 maxaddr = sysmem_maxaddr(vm); 887 vm->iommu = iommu_create_domain(maxaddr); 888 if (vm->iommu == NULL) 889 return (ENXIO); 890 vm_iommu_map(vm); 891 } 892 893 error = ppt_assign_device(vm, bus, slot, func); 894 return (error); 895 } 896 897 void * 898 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 899 void **cookie) 900 { 901 int i, count, pageoff; 902 struct mem_map *mm; 903 vm_page_t m; 904 #ifdef INVARIANTS 905 /* 906 * All vcpus are frozen by ioctls that modify the memory map 907 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 908 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 909 */ 910 int state; 911 KASSERT(vcpuid >= -1 && vcpuid < VM_MAXCPU, ("%s: invalid vcpuid %d", 912 __func__, vcpuid)); 913 for (i = 0; i < VM_MAXCPU; i++) { 914 if (vcpuid != -1 && vcpuid != i) 915 continue; 916 state = vcpu_get_state(vm, i, NULL); 917 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 918 __func__, state)); 919 } 920 #endif 921 pageoff = gpa & PAGE_MASK; 922 if (len > PAGE_SIZE - pageoff) 923 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 924 925 count = 0; 926 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 927 mm = &vm->mem_maps[i]; 928 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 929 gpa < mm->gpa + mm->len) { 930 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 931 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 932 break; 933 } 934 } 935 936 if (count == 1) { 937 *cookie = m; 938 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 939 } else { 940 *cookie = NULL; 941 return (NULL); 942 } 943 } 944 945 void 946 vm_gpa_release(void *cookie) 947 { 948 vm_page_t m = cookie; 949 950 vm_page_lock(m); 951 vm_page_unhold(m); 952 vm_page_unlock(m); 953 } 954 955 int 956 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 957 { 958 959 if (vcpu < 0 || vcpu >= VM_MAXCPU) 960 return (EINVAL); 961 962 if (reg >= VM_REG_LAST) 963 return (EINVAL); 964 965 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 966 } 967 968 int 969 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 970 { 971 struct vcpu *vcpu; 972 int error; 973 974 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 975 return (EINVAL); 976 977 if (reg >= VM_REG_LAST) 978 return (EINVAL); 979 980 error = VMSETREG(vm->cookie, vcpuid, reg, val); 981 if (error || reg != VM_REG_GUEST_RIP) 982 return (error); 983 984 /* Set 'nextrip' to match the value of %rip */ 985 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 986 vcpu = &vm->vcpu[vcpuid]; 987 vcpu->nextrip = val; 988 return (0); 989 } 990 991 static boolean_t 992 is_descriptor_table(int reg) 993 { 994 995 switch (reg) { 996 case VM_REG_GUEST_IDTR: 997 case VM_REG_GUEST_GDTR: 998 return (TRUE); 999 default: 1000 return (FALSE); 1001 } 1002 } 1003 1004 static boolean_t 1005 is_segment_register(int reg) 1006 { 1007 1008 switch (reg) { 1009 case VM_REG_GUEST_ES: 1010 case VM_REG_GUEST_CS: 1011 case VM_REG_GUEST_SS: 1012 case VM_REG_GUEST_DS: 1013 case VM_REG_GUEST_FS: 1014 case VM_REG_GUEST_GS: 1015 case VM_REG_GUEST_TR: 1016 case VM_REG_GUEST_LDTR: 1017 return (TRUE); 1018 default: 1019 return (FALSE); 1020 } 1021 } 1022 1023 int 1024 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1025 struct seg_desc *desc) 1026 { 1027 1028 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1029 return (EINVAL); 1030 1031 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1032 return (EINVAL); 1033 1034 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 1035 } 1036 1037 int 1038 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1039 struct seg_desc *desc) 1040 { 1041 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1042 return (EINVAL); 1043 1044 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1045 return (EINVAL); 1046 1047 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 1048 } 1049 1050 static void 1051 restore_guest_fpustate(struct vcpu *vcpu) 1052 { 1053 1054 /* flush host state to the pcb */ 1055 fpuexit(curthread); 1056 1057 /* restore guest FPU state */ 1058 fpu_stop_emulating(); 1059 fpurestore(vcpu->guestfpu); 1060 1061 /* restore guest XCR0 if XSAVE is enabled in the host */ 1062 if (rcr4() & CR4_XSAVE) 1063 load_xcr(0, vcpu->guest_xcr0); 1064 1065 /* 1066 * The FPU is now "dirty" with the guest's state so turn on emulation 1067 * to trap any access to the FPU by the host. 1068 */ 1069 fpu_start_emulating(); 1070 } 1071 1072 static void 1073 save_guest_fpustate(struct vcpu *vcpu) 1074 { 1075 1076 if ((rcr0() & CR0_TS) == 0) 1077 panic("fpu emulation not enabled in host!"); 1078 1079 /* save guest XCR0 and restore host XCR0 */ 1080 if (rcr4() & CR4_XSAVE) { 1081 vcpu->guest_xcr0 = rxcr(0); 1082 load_xcr(0, vmm_get_host_xcr0()); 1083 } 1084 1085 /* save guest FPU state */ 1086 fpu_stop_emulating(); 1087 fpusave(vcpu->guestfpu); 1088 fpu_start_emulating(); 1089 } 1090 1091 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1092 1093 static int 1094 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1095 bool from_idle) 1096 { 1097 struct vcpu *vcpu; 1098 int error; 1099 1100 vcpu = &vm->vcpu[vcpuid]; 1101 vcpu_assert_locked(vcpu); 1102 1103 /* 1104 * State transitions from the vmmdev_ioctl() must always begin from 1105 * the VCPU_IDLE state. This guarantees that there is only a single 1106 * ioctl() operating on a vcpu at any point. 1107 */ 1108 if (from_idle) { 1109 while (vcpu->state != VCPU_IDLE) { 1110 vcpu->reqidle = 1; 1111 vcpu_notify_event_locked(vcpu, false); 1112 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1113 "idle requested", vcpu_state2str(vcpu->state)); 1114 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1115 } 1116 } else { 1117 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1118 "vcpu idle state")); 1119 } 1120 1121 if (vcpu->state == VCPU_RUNNING) { 1122 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1123 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1124 } else { 1125 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1126 "vcpu that is not running", vcpu->hostcpu)); 1127 } 1128 1129 /* 1130 * The following state transitions are allowed: 1131 * IDLE -> FROZEN -> IDLE 1132 * FROZEN -> RUNNING -> FROZEN 1133 * FROZEN -> SLEEPING -> FROZEN 1134 */ 1135 switch (vcpu->state) { 1136 case VCPU_IDLE: 1137 case VCPU_RUNNING: 1138 case VCPU_SLEEPING: 1139 error = (newstate != VCPU_FROZEN); 1140 break; 1141 case VCPU_FROZEN: 1142 error = (newstate == VCPU_FROZEN); 1143 break; 1144 default: 1145 error = 1; 1146 break; 1147 } 1148 1149 if (error) 1150 return (EBUSY); 1151 1152 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1153 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1154 1155 vcpu->state = newstate; 1156 if (newstate == VCPU_RUNNING) 1157 vcpu->hostcpu = curcpu; 1158 else 1159 vcpu->hostcpu = NOCPU; 1160 1161 if (newstate == VCPU_IDLE) 1162 wakeup(&vcpu->state); 1163 1164 return (0); 1165 } 1166 1167 static void 1168 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1169 { 1170 int error; 1171 1172 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1173 panic("Error %d setting state to %d\n", error, newstate); 1174 } 1175 1176 static void 1177 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1178 { 1179 int error; 1180 1181 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1182 panic("Error %d setting state to %d", error, newstate); 1183 } 1184 1185 static void 1186 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1187 { 1188 1189 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1190 1191 /* 1192 * Update 'rendezvous_func' and execute a write memory barrier to 1193 * ensure that it is visible across all host cpus. This is not needed 1194 * for correctness but it does ensure that all the vcpus will notice 1195 * that the rendezvous is requested immediately. 1196 */ 1197 vm->rendezvous_func = func; 1198 wmb(); 1199 } 1200 1201 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1202 do { \ 1203 if (vcpuid >= 0) \ 1204 VCPU_CTR0(vm, vcpuid, fmt); \ 1205 else \ 1206 VM_CTR0(vm, fmt); \ 1207 } while (0) 1208 1209 static void 1210 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1211 { 1212 1213 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1214 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1215 1216 mtx_lock(&vm->rendezvous_mtx); 1217 while (vm->rendezvous_func != NULL) { 1218 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1219 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1220 1221 if (vcpuid != -1 && 1222 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1223 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1224 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1225 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1226 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1227 } 1228 if (CPU_CMP(&vm->rendezvous_req_cpus, 1229 &vm->rendezvous_done_cpus) == 0) { 1230 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1231 vm_set_rendezvous_func(vm, NULL); 1232 wakeup(&vm->rendezvous_func); 1233 break; 1234 } 1235 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1236 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1237 "vmrndv", 0); 1238 } 1239 mtx_unlock(&vm->rendezvous_mtx); 1240 } 1241 1242 /* 1243 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1244 */ 1245 static int 1246 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1247 { 1248 struct vcpu *vcpu; 1249 const char *wmesg; 1250 int t, vcpu_halted, vm_halted; 1251 1252 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1253 1254 vcpu = &vm->vcpu[vcpuid]; 1255 vcpu_halted = 0; 1256 vm_halted = 0; 1257 1258 vcpu_lock(vcpu); 1259 while (1) { 1260 /* 1261 * Do a final check for pending NMI or interrupts before 1262 * really putting this thread to sleep. Also check for 1263 * software events that would cause this vcpu to wakeup. 1264 * 1265 * These interrupts/events could have happened after the 1266 * vcpu returned from VMRUN() and before it acquired the 1267 * vcpu lock above. 1268 */ 1269 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1270 break; 1271 if (vm_nmi_pending(vm, vcpuid)) 1272 break; 1273 if (!intr_disabled) { 1274 if (vm_extint_pending(vm, vcpuid) || 1275 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1276 break; 1277 } 1278 } 1279 1280 /* Don't go to sleep if the vcpu thread needs to yield */ 1281 if (vcpu_should_yield(vm, vcpuid)) 1282 break; 1283 1284 /* 1285 * Some Linux guests implement "halt" by having all vcpus 1286 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1287 * track of the vcpus that have entered this state. When all 1288 * vcpus enter the halted state the virtual machine is halted. 1289 */ 1290 if (intr_disabled) { 1291 wmesg = "vmhalt"; 1292 VCPU_CTR0(vm, vcpuid, "Halted"); 1293 if (!vcpu_halted && halt_detection_enabled) { 1294 vcpu_halted = 1; 1295 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1296 } 1297 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1298 vm_halted = 1; 1299 break; 1300 } 1301 } else { 1302 wmesg = "vmidle"; 1303 } 1304 1305 t = ticks; 1306 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1307 /* 1308 * XXX msleep_spin() cannot be interrupted by signals so 1309 * wake up periodically to check pending signals. 1310 */ 1311 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1312 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1313 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1314 } 1315 1316 if (vcpu_halted) 1317 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1318 1319 vcpu_unlock(vcpu); 1320 1321 if (vm_halted) 1322 vm_suspend(vm, VM_SUSPEND_HALT); 1323 1324 return (0); 1325 } 1326 1327 static int 1328 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1329 { 1330 int rv, ftype; 1331 struct vm_map *map; 1332 struct vcpu *vcpu; 1333 struct vm_exit *vme; 1334 1335 vcpu = &vm->vcpu[vcpuid]; 1336 vme = &vcpu->exitinfo; 1337 1338 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1339 __func__, vme->inst_length)); 1340 1341 ftype = vme->u.paging.fault_type; 1342 KASSERT(ftype == VM_PROT_READ || 1343 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1344 ("vm_handle_paging: invalid fault_type %d", ftype)); 1345 1346 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1347 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1348 vme->u.paging.gpa, ftype); 1349 if (rv == 0) { 1350 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1351 ftype == VM_PROT_READ ? "accessed" : "dirty", 1352 vme->u.paging.gpa); 1353 goto done; 1354 } 1355 } 1356 1357 map = &vm->vmspace->vm_map; 1358 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1359 1360 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1361 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1362 1363 if (rv != KERN_SUCCESS) 1364 return (EFAULT); 1365 done: 1366 return (0); 1367 } 1368 1369 static int 1370 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1371 { 1372 struct vie *vie; 1373 struct vcpu *vcpu; 1374 struct vm_exit *vme; 1375 uint64_t gla, gpa, cs_base; 1376 struct vm_guest_paging *paging; 1377 mem_region_read_t mread; 1378 mem_region_write_t mwrite; 1379 enum vm_cpu_mode cpu_mode; 1380 int cs_d, error, fault; 1381 1382 vcpu = &vm->vcpu[vcpuid]; 1383 vme = &vcpu->exitinfo; 1384 1385 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1386 __func__, vme->inst_length)); 1387 1388 gla = vme->u.inst_emul.gla; 1389 gpa = vme->u.inst_emul.gpa; 1390 cs_base = vme->u.inst_emul.cs_base; 1391 cs_d = vme->u.inst_emul.cs_d; 1392 vie = &vme->u.inst_emul.vie; 1393 paging = &vme->u.inst_emul.paging; 1394 cpu_mode = paging->cpu_mode; 1395 1396 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1397 1398 /* Fetch, decode and emulate the faulting instruction */ 1399 if (vie->num_valid == 0) { 1400 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1401 cs_base, VIE_INST_SIZE, vie, &fault); 1402 } else { 1403 /* 1404 * The instruction bytes have already been copied into 'vie' 1405 */ 1406 error = fault = 0; 1407 } 1408 if (error || fault) 1409 return (error); 1410 1411 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1412 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1413 vme->rip + cs_base); 1414 *retu = true; /* dump instruction bytes in userspace */ 1415 return (0); 1416 } 1417 1418 /* 1419 * Update 'nextrip' based on the length of the emulated instruction. 1420 */ 1421 vme->inst_length = vie->num_processed; 1422 vcpu->nextrip += vie->num_processed; 1423 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1424 "decoding", vcpu->nextrip); 1425 1426 /* return to userland unless this is an in-kernel emulated device */ 1427 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1428 mread = lapic_mmio_read; 1429 mwrite = lapic_mmio_write; 1430 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1431 mread = vioapic_mmio_read; 1432 mwrite = vioapic_mmio_write; 1433 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1434 mread = vhpet_mmio_read; 1435 mwrite = vhpet_mmio_write; 1436 } else { 1437 *retu = true; 1438 return (0); 1439 } 1440 1441 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1442 mread, mwrite, retu); 1443 1444 return (error); 1445 } 1446 1447 static int 1448 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1449 { 1450 int i, done; 1451 struct vcpu *vcpu; 1452 1453 done = 0; 1454 vcpu = &vm->vcpu[vcpuid]; 1455 1456 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1457 1458 /* 1459 * Wait until all 'active_cpus' have suspended themselves. 1460 * 1461 * Since a VM may be suspended at any time including when one or 1462 * more vcpus are doing a rendezvous we need to call the rendezvous 1463 * handler while we are waiting to prevent a deadlock. 1464 */ 1465 vcpu_lock(vcpu); 1466 while (1) { 1467 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1468 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1469 break; 1470 } 1471 1472 if (vm->rendezvous_func == NULL) { 1473 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1474 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1475 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1476 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1477 } else { 1478 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1479 vcpu_unlock(vcpu); 1480 vm_handle_rendezvous(vm, vcpuid); 1481 vcpu_lock(vcpu); 1482 } 1483 } 1484 vcpu_unlock(vcpu); 1485 1486 /* 1487 * Wakeup the other sleeping vcpus and return to userspace. 1488 */ 1489 for (i = 0; i < VM_MAXCPU; i++) { 1490 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1491 vcpu_notify_event(vm, i, false); 1492 } 1493 } 1494 1495 *retu = true; 1496 return (0); 1497 } 1498 1499 static int 1500 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1501 { 1502 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1503 1504 vcpu_lock(vcpu); 1505 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1506 vcpu->reqidle = 0; 1507 vcpu_unlock(vcpu); 1508 *retu = true; 1509 return (0); 1510 } 1511 1512 int 1513 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1514 { 1515 int i; 1516 1517 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1518 return (EINVAL); 1519 1520 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1521 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1522 vm->suspend, how); 1523 return (EALREADY); 1524 } 1525 1526 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1527 1528 /* 1529 * Notify all active vcpus that they are now suspended. 1530 */ 1531 for (i = 0; i < VM_MAXCPU; i++) { 1532 if (CPU_ISSET(i, &vm->active_cpus)) 1533 vcpu_notify_event(vm, i, false); 1534 } 1535 1536 return (0); 1537 } 1538 1539 void 1540 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1541 { 1542 struct vm_exit *vmexit; 1543 1544 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1545 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1546 1547 vmexit = vm_exitinfo(vm, vcpuid); 1548 vmexit->rip = rip; 1549 vmexit->inst_length = 0; 1550 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1551 vmexit->u.suspended.how = vm->suspend; 1552 } 1553 1554 void 1555 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1556 { 1557 struct vm_exit *vmexit; 1558 1559 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1560 1561 vmexit = vm_exitinfo(vm, vcpuid); 1562 vmexit->rip = rip; 1563 vmexit->inst_length = 0; 1564 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1565 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1566 } 1567 1568 void 1569 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1570 { 1571 struct vm_exit *vmexit; 1572 1573 vmexit = vm_exitinfo(vm, vcpuid); 1574 vmexit->rip = rip; 1575 vmexit->inst_length = 0; 1576 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1577 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1578 } 1579 1580 void 1581 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1582 { 1583 struct vm_exit *vmexit; 1584 1585 vmexit = vm_exitinfo(vm, vcpuid); 1586 vmexit->rip = rip; 1587 vmexit->inst_length = 0; 1588 vmexit->exitcode = VM_EXITCODE_BOGUS; 1589 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1590 } 1591 1592 int 1593 vm_run(struct vm *vm, struct vm_run *vmrun) 1594 { 1595 struct vm_eventinfo evinfo; 1596 int error, vcpuid; 1597 struct vcpu *vcpu; 1598 struct pcb *pcb; 1599 uint64_t tscval; 1600 struct vm_exit *vme; 1601 bool retu, intr_disabled; 1602 pmap_t pmap; 1603 1604 vcpuid = vmrun->cpuid; 1605 1606 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1607 return (EINVAL); 1608 1609 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1610 return (EINVAL); 1611 1612 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1613 return (EINVAL); 1614 1615 pmap = vmspace_pmap(vm->vmspace); 1616 vcpu = &vm->vcpu[vcpuid]; 1617 vme = &vcpu->exitinfo; 1618 evinfo.rptr = &vm->rendezvous_func; 1619 evinfo.sptr = &vm->suspend; 1620 evinfo.iptr = &vcpu->reqidle; 1621 restart: 1622 critical_enter(); 1623 1624 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1625 ("vm_run: absurd pm_active")); 1626 1627 tscval = rdtsc(); 1628 1629 pcb = PCPU_GET(curpcb); 1630 set_pcb_flags(pcb, PCB_FULL_IRET); 1631 1632 restore_guest_fpustate(vcpu); 1633 1634 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1635 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1636 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1637 1638 save_guest_fpustate(vcpu); 1639 1640 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1641 1642 critical_exit(); 1643 1644 if (error == 0) { 1645 retu = false; 1646 vcpu->nextrip = vme->rip + vme->inst_length; 1647 switch (vme->exitcode) { 1648 case VM_EXITCODE_REQIDLE: 1649 error = vm_handle_reqidle(vm, vcpuid, &retu); 1650 break; 1651 case VM_EXITCODE_SUSPENDED: 1652 error = vm_handle_suspend(vm, vcpuid, &retu); 1653 break; 1654 case VM_EXITCODE_IOAPIC_EOI: 1655 vioapic_process_eoi(vm, vcpuid, 1656 vme->u.ioapic_eoi.vector); 1657 break; 1658 case VM_EXITCODE_RENDEZVOUS: 1659 vm_handle_rendezvous(vm, vcpuid); 1660 error = 0; 1661 break; 1662 case VM_EXITCODE_HLT: 1663 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1664 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1665 break; 1666 case VM_EXITCODE_PAGING: 1667 error = vm_handle_paging(vm, vcpuid, &retu); 1668 break; 1669 case VM_EXITCODE_INST_EMUL: 1670 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1671 break; 1672 case VM_EXITCODE_INOUT: 1673 case VM_EXITCODE_INOUT_STR: 1674 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1675 break; 1676 case VM_EXITCODE_MONITOR: 1677 case VM_EXITCODE_MWAIT: 1678 vm_inject_ud(vm, vcpuid); 1679 break; 1680 default: 1681 retu = true; /* handled in userland */ 1682 break; 1683 } 1684 } 1685 1686 if (error == 0 && retu == false) 1687 goto restart; 1688 1689 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1690 1691 /* copy the exit information */ 1692 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1693 return (error); 1694 } 1695 1696 int 1697 vm_restart_instruction(void *arg, int vcpuid) 1698 { 1699 struct vm *vm; 1700 struct vcpu *vcpu; 1701 enum vcpu_state state; 1702 uint64_t rip; 1703 int error; 1704 1705 vm = arg; 1706 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1707 return (EINVAL); 1708 1709 vcpu = &vm->vcpu[vcpuid]; 1710 state = vcpu_get_state(vm, vcpuid, NULL); 1711 if (state == VCPU_RUNNING) { 1712 /* 1713 * When a vcpu is "running" the next instruction is determined 1714 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1715 * Thus setting 'inst_length' to zero will cause the current 1716 * instruction to be restarted. 1717 */ 1718 vcpu->exitinfo.inst_length = 0; 1719 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1720 "setting inst_length to zero", vcpu->exitinfo.rip); 1721 } else if (state == VCPU_FROZEN) { 1722 /* 1723 * When a vcpu is "frozen" it is outside the critical section 1724 * around VMRUN() and 'nextrip' points to the next instruction. 1725 * Thus instruction restart is achieved by setting 'nextrip' 1726 * to the vcpu's %rip. 1727 */ 1728 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1729 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1730 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1731 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1732 vcpu->nextrip = rip; 1733 } else { 1734 panic("%s: invalid state %d", __func__, state); 1735 } 1736 return (0); 1737 } 1738 1739 int 1740 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1741 { 1742 struct vcpu *vcpu; 1743 int type, vector; 1744 1745 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1746 return (EINVAL); 1747 1748 vcpu = &vm->vcpu[vcpuid]; 1749 1750 if (info & VM_INTINFO_VALID) { 1751 type = info & VM_INTINFO_TYPE; 1752 vector = info & 0xff; 1753 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1754 return (EINVAL); 1755 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1756 return (EINVAL); 1757 if (info & VM_INTINFO_RSVD) 1758 return (EINVAL); 1759 } else { 1760 info = 0; 1761 } 1762 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1763 vcpu->exitintinfo = info; 1764 return (0); 1765 } 1766 1767 enum exc_class { 1768 EXC_BENIGN, 1769 EXC_CONTRIBUTORY, 1770 EXC_PAGEFAULT 1771 }; 1772 1773 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1774 1775 static enum exc_class 1776 exception_class(uint64_t info) 1777 { 1778 int type, vector; 1779 1780 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1781 type = info & VM_INTINFO_TYPE; 1782 vector = info & 0xff; 1783 1784 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1785 switch (type) { 1786 case VM_INTINFO_HWINTR: 1787 case VM_INTINFO_SWINTR: 1788 case VM_INTINFO_NMI: 1789 return (EXC_BENIGN); 1790 default: 1791 /* 1792 * Hardware exception. 1793 * 1794 * SVM and VT-x use identical type values to represent NMI, 1795 * hardware interrupt and software interrupt. 1796 * 1797 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1798 * for exceptions except #BP and #OF. #BP and #OF use a type 1799 * value of '5' or '6'. Therefore we don't check for explicit 1800 * values of 'type' to classify 'intinfo' into a hardware 1801 * exception. 1802 */ 1803 break; 1804 } 1805 1806 switch (vector) { 1807 case IDT_PF: 1808 case IDT_VE: 1809 return (EXC_PAGEFAULT); 1810 case IDT_DE: 1811 case IDT_TS: 1812 case IDT_NP: 1813 case IDT_SS: 1814 case IDT_GP: 1815 return (EXC_CONTRIBUTORY); 1816 default: 1817 return (EXC_BENIGN); 1818 } 1819 } 1820 1821 static int 1822 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1823 uint64_t *retinfo) 1824 { 1825 enum exc_class exc1, exc2; 1826 int type1, vector1; 1827 1828 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1829 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1830 1831 /* 1832 * If an exception occurs while attempting to call the double-fault 1833 * handler the processor enters shutdown mode (aka triple fault). 1834 */ 1835 type1 = info1 & VM_INTINFO_TYPE; 1836 vector1 = info1 & 0xff; 1837 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1838 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1839 info1, info2); 1840 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1841 *retinfo = 0; 1842 return (0); 1843 } 1844 1845 /* 1846 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1847 */ 1848 exc1 = exception_class(info1); 1849 exc2 = exception_class(info2); 1850 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1851 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1852 /* Convert nested fault into a double fault. */ 1853 *retinfo = IDT_DF; 1854 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1855 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1856 } else { 1857 /* Handle exceptions serially */ 1858 *retinfo = info2; 1859 } 1860 return (1); 1861 } 1862 1863 static uint64_t 1864 vcpu_exception_intinfo(struct vcpu *vcpu) 1865 { 1866 uint64_t info = 0; 1867 1868 if (vcpu->exception_pending) { 1869 info = vcpu->exc_vector & 0xff; 1870 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1871 if (vcpu->exc_errcode_valid) { 1872 info |= VM_INTINFO_DEL_ERRCODE; 1873 info |= (uint64_t)vcpu->exc_errcode << 32; 1874 } 1875 } 1876 return (info); 1877 } 1878 1879 int 1880 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1881 { 1882 struct vcpu *vcpu; 1883 uint64_t info1, info2; 1884 int valid; 1885 1886 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1887 1888 vcpu = &vm->vcpu[vcpuid]; 1889 1890 info1 = vcpu->exitintinfo; 1891 vcpu->exitintinfo = 0; 1892 1893 info2 = 0; 1894 if (vcpu->exception_pending) { 1895 info2 = vcpu_exception_intinfo(vcpu); 1896 vcpu->exception_pending = 0; 1897 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1898 vcpu->exc_vector, info2); 1899 } 1900 1901 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1902 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1903 } else if (info1 & VM_INTINFO_VALID) { 1904 *retinfo = info1; 1905 valid = 1; 1906 } else if (info2 & VM_INTINFO_VALID) { 1907 *retinfo = info2; 1908 valid = 1; 1909 } else { 1910 valid = 0; 1911 } 1912 1913 if (valid) { 1914 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1915 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1916 } 1917 1918 return (valid); 1919 } 1920 1921 int 1922 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1923 { 1924 struct vcpu *vcpu; 1925 1926 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1927 return (EINVAL); 1928 1929 vcpu = &vm->vcpu[vcpuid]; 1930 *info1 = vcpu->exitintinfo; 1931 *info2 = vcpu_exception_intinfo(vcpu); 1932 return (0); 1933 } 1934 1935 int 1936 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 1937 uint32_t errcode, int restart_instruction) 1938 { 1939 struct vcpu *vcpu; 1940 uint64_t regval; 1941 int error; 1942 1943 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1944 return (EINVAL); 1945 1946 if (vector < 0 || vector >= 32) 1947 return (EINVAL); 1948 1949 /* 1950 * A double fault exception should never be injected directly into 1951 * the guest. It is a derived exception that results from specific 1952 * combinations of nested faults. 1953 */ 1954 if (vector == IDT_DF) 1955 return (EINVAL); 1956 1957 vcpu = &vm->vcpu[vcpuid]; 1958 1959 if (vcpu->exception_pending) { 1960 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1961 "pending exception %d", vector, vcpu->exc_vector); 1962 return (EBUSY); 1963 } 1964 1965 if (errcode_valid) { 1966 /* 1967 * Exceptions don't deliver an error code in real mode. 1968 */ 1969 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 1970 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 1971 if (!(regval & CR0_PE)) 1972 errcode_valid = 0; 1973 } 1974 1975 /* 1976 * From section 26.6.1 "Interruptibility State" in Intel SDM: 1977 * 1978 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 1979 * one instruction or incurs an exception. 1980 */ 1981 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 1982 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 1983 __func__, error)); 1984 1985 if (restart_instruction) 1986 vm_restart_instruction(vm, vcpuid); 1987 1988 vcpu->exception_pending = 1; 1989 vcpu->exc_vector = vector; 1990 vcpu->exc_errcode = errcode; 1991 vcpu->exc_errcode_valid = errcode_valid; 1992 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 1993 return (0); 1994 } 1995 1996 void 1997 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 1998 int errcode) 1999 { 2000 struct vm *vm; 2001 int error, restart_instruction; 2002 2003 vm = vmarg; 2004 restart_instruction = 1; 2005 2006 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2007 errcode, restart_instruction); 2008 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2009 } 2010 2011 void 2012 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2013 { 2014 struct vm *vm; 2015 int error; 2016 2017 vm = vmarg; 2018 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2019 error_code, cr2); 2020 2021 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2022 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2023 2024 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2025 } 2026 2027 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2028 2029 int 2030 vm_inject_nmi(struct vm *vm, int vcpuid) 2031 { 2032 struct vcpu *vcpu; 2033 2034 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2035 return (EINVAL); 2036 2037 vcpu = &vm->vcpu[vcpuid]; 2038 2039 vcpu->nmi_pending = 1; 2040 vcpu_notify_event(vm, vcpuid, false); 2041 return (0); 2042 } 2043 2044 int 2045 vm_nmi_pending(struct vm *vm, int vcpuid) 2046 { 2047 struct vcpu *vcpu; 2048 2049 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2050 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2051 2052 vcpu = &vm->vcpu[vcpuid]; 2053 2054 return (vcpu->nmi_pending); 2055 } 2056 2057 void 2058 vm_nmi_clear(struct vm *vm, int vcpuid) 2059 { 2060 struct vcpu *vcpu; 2061 2062 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2063 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2064 2065 vcpu = &vm->vcpu[vcpuid]; 2066 2067 if (vcpu->nmi_pending == 0) 2068 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2069 2070 vcpu->nmi_pending = 0; 2071 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2072 } 2073 2074 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2075 2076 int 2077 vm_inject_extint(struct vm *vm, int vcpuid) 2078 { 2079 struct vcpu *vcpu; 2080 2081 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2082 return (EINVAL); 2083 2084 vcpu = &vm->vcpu[vcpuid]; 2085 2086 vcpu->extint_pending = 1; 2087 vcpu_notify_event(vm, vcpuid, false); 2088 return (0); 2089 } 2090 2091 int 2092 vm_extint_pending(struct vm *vm, int vcpuid) 2093 { 2094 struct vcpu *vcpu; 2095 2096 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2097 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2098 2099 vcpu = &vm->vcpu[vcpuid]; 2100 2101 return (vcpu->extint_pending); 2102 } 2103 2104 void 2105 vm_extint_clear(struct vm *vm, int vcpuid) 2106 { 2107 struct vcpu *vcpu; 2108 2109 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2110 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2111 2112 vcpu = &vm->vcpu[vcpuid]; 2113 2114 if (vcpu->extint_pending == 0) 2115 panic("vm_extint_clear: inconsistent extint_pending state"); 2116 2117 vcpu->extint_pending = 0; 2118 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2119 } 2120 2121 int 2122 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2123 { 2124 if (vcpu < 0 || vcpu >= VM_MAXCPU) 2125 return (EINVAL); 2126 2127 if (type < 0 || type >= VM_CAP_MAX) 2128 return (EINVAL); 2129 2130 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 2131 } 2132 2133 int 2134 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2135 { 2136 if (vcpu < 0 || vcpu >= VM_MAXCPU) 2137 return (EINVAL); 2138 2139 if (type < 0 || type >= VM_CAP_MAX) 2140 return (EINVAL); 2141 2142 return (VMSETCAP(vm->cookie, vcpu, type, val)); 2143 } 2144 2145 struct vlapic * 2146 vm_lapic(struct vm *vm, int cpu) 2147 { 2148 return (vm->vcpu[cpu].vlapic); 2149 } 2150 2151 struct vioapic * 2152 vm_ioapic(struct vm *vm) 2153 { 2154 2155 return (vm->vioapic); 2156 } 2157 2158 struct vhpet * 2159 vm_hpet(struct vm *vm) 2160 { 2161 2162 return (vm->vhpet); 2163 } 2164 2165 boolean_t 2166 vmm_is_pptdev(int bus, int slot, int func) 2167 { 2168 int found, i, n; 2169 int b, s, f; 2170 char *val, *cp, *cp2; 2171 2172 /* 2173 * XXX 2174 * The length of an environment variable is limited to 128 bytes which 2175 * puts an upper limit on the number of passthru devices that may be 2176 * specified using a single environment variable. 2177 * 2178 * Work around this by scanning multiple environment variable 2179 * names instead of a single one - yuck! 2180 */ 2181 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2182 2183 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2184 found = 0; 2185 for (i = 0; names[i] != NULL && !found; i++) { 2186 cp = val = kern_getenv(names[i]); 2187 while (cp != NULL && *cp != '\0') { 2188 if ((cp2 = strchr(cp, ' ')) != NULL) 2189 *cp2 = '\0'; 2190 2191 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2192 if (n == 3 && bus == b && slot == s && func == f) { 2193 found = 1; 2194 break; 2195 } 2196 2197 if (cp2 != NULL) 2198 *cp2++ = ' '; 2199 2200 cp = cp2; 2201 } 2202 freeenv(val); 2203 } 2204 return (found); 2205 } 2206 2207 void * 2208 vm_iommu_domain(struct vm *vm) 2209 { 2210 2211 return (vm->iommu); 2212 } 2213 2214 int 2215 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2216 bool from_idle) 2217 { 2218 int error; 2219 struct vcpu *vcpu; 2220 2221 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2222 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2223 2224 vcpu = &vm->vcpu[vcpuid]; 2225 2226 vcpu_lock(vcpu); 2227 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2228 vcpu_unlock(vcpu); 2229 2230 return (error); 2231 } 2232 2233 enum vcpu_state 2234 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2235 { 2236 struct vcpu *vcpu; 2237 enum vcpu_state state; 2238 2239 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2240 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2241 2242 vcpu = &vm->vcpu[vcpuid]; 2243 2244 vcpu_lock(vcpu); 2245 state = vcpu->state; 2246 if (hostcpu != NULL) 2247 *hostcpu = vcpu->hostcpu; 2248 vcpu_unlock(vcpu); 2249 2250 return (state); 2251 } 2252 2253 int 2254 vm_activate_cpu(struct vm *vm, int vcpuid) 2255 { 2256 2257 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2258 return (EINVAL); 2259 2260 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2261 return (EBUSY); 2262 2263 VCPU_CTR0(vm, vcpuid, "activated"); 2264 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2265 return (0); 2266 } 2267 2268 cpuset_t 2269 vm_active_cpus(struct vm *vm) 2270 { 2271 2272 return (vm->active_cpus); 2273 } 2274 2275 cpuset_t 2276 vm_suspended_cpus(struct vm *vm) 2277 { 2278 2279 return (vm->suspended_cpus); 2280 } 2281 2282 void * 2283 vcpu_stats(struct vm *vm, int vcpuid) 2284 { 2285 2286 return (vm->vcpu[vcpuid].stats); 2287 } 2288 2289 int 2290 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2291 { 2292 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2293 return (EINVAL); 2294 2295 *state = vm->vcpu[vcpuid].x2apic_state; 2296 2297 return (0); 2298 } 2299 2300 int 2301 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2302 { 2303 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2304 return (EINVAL); 2305 2306 if (state >= X2APIC_STATE_LAST) 2307 return (EINVAL); 2308 2309 vm->vcpu[vcpuid].x2apic_state = state; 2310 2311 vlapic_set_x2apic_state(vm, vcpuid, state); 2312 2313 return (0); 2314 } 2315 2316 /* 2317 * This function is called to ensure that a vcpu "sees" a pending event 2318 * as soon as possible: 2319 * - If the vcpu thread is sleeping then it is woken up. 2320 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2321 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2322 */ 2323 static void 2324 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2325 { 2326 int hostcpu; 2327 2328 hostcpu = vcpu->hostcpu; 2329 if (vcpu->state == VCPU_RUNNING) { 2330 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2331 if (hostcpu != curcpu) { 2332 if (lapic_intr) { 2333 vlapic_post_intr(vcpu->vlapic, hostcpu, 2334 vmm_ipinum); 2335 } else { 2336 ipi_cpu(hostcpu, vmm_ipinum); 2337 } 2338 } else { 2339 /* 2340 * If the 'vcpu' is running on 'curcpu' then it must 2341 * be sending a notification to itself (e.g. SELF_IPI). 2342 * The pending event will be picked up when the vcpu 2343 * transitions back to guest context. 2344 */ 2345 } 2346 } else { 2347 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2348 "with hostcpu %d", vcpu->state, hostcpu)); 2349 if (vcpu->state == VCPU_SLEEPING) 2350 wakeup_one(vcpu); 2351 } 2352 } 2353 2354 void 2355 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2356 { 2357 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2358 2359 vcpu_lock(vcpu); 2360 vcpu_notify_event_locked(vcpu, lapic_intr); 2361 vcpu_unlock(vcpu); 2362 } 2363 2364 struct vmspace * 2365 vm_get_vmspace(struct vm *vm) 2366 { 2367 2368 return (vm->vmspace); 2369 } 2370 2371 int 2372 vm_apicid2vcpuid(struct vm *vm, int apicid) 2373 { 2374 /* 2375 * XXX apic id is assumed to be numerically identical to vcpu id 2376 */ 2377 return (apicid); 2378 } 2379 2380 void 2381 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2382 vm_rendezvous_func_t func, void *arg) 2383 { 2384 int i; 2385 2386 /* 2387 * Enforce that this function is called without any locks 2388 */ 2389 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2390 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2391 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2392 2393 restart: 2394 mtx_lock(&vm->rendezvous_mtx); 2395 if (vm->rendezvous_func != NULL) { 2396 /* 2397 * If a rendezvous is already in progress then we need to 2398 * call the rendezvous handler in case this 'vcpuid' is one 2399 * of the targets of the rendezvous. 2400 */ 2401 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2402 mtx_unlock(&vm->rendezvous_mtx); 2403 vm_handle_rendezvous(vm, vcpuid); 2404 goto restart; 2405 } 2406 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2407 "rendezvous is still in progress")); 2408 2409 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2410 vm->rendezvous_req_cpus = dest; 2411 CPU_ZERO(&vm->rendezvous_done_cpus); 2412 vm->rendezvous_arg = arg; 2413 vm_set_rendezvous_func(vm, func); 2414 mtx_unlock(&vm->rendezvous_mtx); 2415 2416 /* 2417 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2418 * vcpus so they handle the rendezvous as soon as possible. 2419 */ 2420 for (i = 0; i < VM_MAXCPU; i++) { 2421 if (CPU_ISSET(i, &dest)) 2422 vcpu_notify_event(vm, i, false); 2423 } 2424 2425 vm_handle_rendezvous(vm, vcpuid); 2426 } 2427 2428 struct vatpic * 2429 vm_atpic(struct vm *vm) 2430 { 2431 return (vm->vatpic); 2432 } 2433 2434 struct vatpit * 2435 vm_atpit(struct vm *vm) 2436 { 2437 return (vm->vatpit); 2438 } 2439 2440 struct vpmtmr * 2441 vm_pmtmr(struct vm *vm) 2442 { 2443 2444 return (vm->vpmtmr); 2445 } 2446 2447 struct vrtc * 2448 vm_rtc(struct vm *vm) 2449 { 2450 2451 return (vm->vrtc); 2452 } 2453 2454 enum vm_reg_name 2455 vm_segment_name(int seg) 2456 { 2457 static enum vm_reg_name seg_names[] = { 2458 VM_REG_GUEST_ES, 2459 VM_REG_GUEST_CS, 2460 VM_REG_GUEST_SS, 2461 VM_REG_GUEST_DS, 2462 VM_REG_GUEST_FS, 2463 VM_REG_GUEST_GS 2464 }; 2465 2466 KASSERT(seg >= 0 && seg < nitems(seg_names), 2467 ("%s: invalid segment encoding %d", __func__, seg)); 2468 return (seg_names[seg]); 2469 } 2470 2471 void 2472 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2473 int num_copyinfo) 2474 { 2475 int idx; 2476 2477 for (idx = 0; idx < num_copyinfo; idx++) { 2478 if (copyinfo[idx].cookie != NULL) 2479 vm_gpa_release(copyinfo[idx].cookie); 2480 } 2481 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2482 } 2483 2484 int 2485 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2486 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2487 int num_copyinfo, int *fault) 2488 { 2489 int error, idx, nused; 2490 size_t n, off, remaining; 2491 void *hva, *cookie; 2492 uint64_t gpa; 2493 2494 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2495 2496 nused = 0; 2497 remaining = len; 2498 while (remaining > 0) { 2499 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2500 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2501 if (error || *fault) 2502 return (error); 2503 off = gpa & PAGE_MASK; 2504 n = min(remaining, PAGE_SIZE - off); 2505 copyinfo[nused].gpa = gpa; 2506 copyinfo[nused].len = n; 2507 remaining -= n; 2508 gla += n; 2509 nused++; 2510 } 2511 2512 for (idx = 0; idx < nused; idx++) { 2513 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2514 copyinfo[idx].len, prot, &cookie); 2515 if (hva == NULL) 2516 break; 2517 copyinfo[idx].hva = hva; 2518 copyinfo[idx].cookie = cookie; 2519 } 2520 2521 if (idx != nused) { 2522 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2523 return (EFAULT); 2524 } else { 2525 *fault = 0; 2526 return (0); 2527 } 2528 } 2529 2530 void 2531 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2532 size_t len) 2533 { 2534 char *dst; 2535 int idx; 2536 2537 dst = kaddr; 2538 idx = 0; 2539 while (len > 0) { 2540 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2541 len -= copyinfo[idx].len; 2542 dst += copyinfo[idx].len; 2543 idx++; 2544 } 2545 } 2546 2547 void 2548 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2549 struct vm_copyinfo *copyinfo, size_t len) 2550 { 2551 const char *src; 2552 int idx; 2553 2554 src = kaddr; 2555 idx = 0; 2556 while (len > 0) { 2557 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2558 len -= copyinfo[idx].len; 2559 src += copyinfo[idx].len; 2560 idx++; 2561 } 2562 } 2563 2564 /* 2565 * Return the amount of in-use and wired memory for the VM. Since 2566 * these are global stats, only return the values with for vCPU 0 2567 */ 2568 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2569 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2570 2571 static void 2572 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2573 { 2574 2575 if (vcpu == 0) { 2576 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2577 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2578 } 2579 } 2580 2581 static void 2582 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2583 { 2584 2585 if (vcpu == 0) { 2586 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2587 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2588 } 2589 } 2590 2591 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2592 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2593