1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vmm_msr.h" 78 #include "vmm_ipi.h" 79 #include "vmm_stat.h" 80 #include "vmm_lapic.h" 81 82 #include "io/ppt.h" 83 #include "io/iommu.h" 84 85 struct vlapic; 86 87 /* 88 * Initialization: 89 * (a) allocated when vcpu is created 90 * (i) initialized when vcpu is created and when it is reinitialized 91 * (o) initialized the first time the vcpu is created 92 * (x) initialized before use 93 */ 94 struct vcpu { 95 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 96 enum vcpu_state state; /* (o) vcpu state */ 97 int hostcpu; /* (o) vcpu's host cpu */ 98 struct vlapic *vlapic; /* (i) APIC device model */ 99 enum x2apic_state x2apic_state; /* (i) APIC mode */ 100 uint64_t exitintinfo; /* (i) events pending at VM exit */ 101 int nmi_pending; /* (i) NMI pending */ 102 int extint_pending; /* (i) INTR pending */ 103 struct vm_exception exception; /* (x) exception collateral */ 104 int exception_pending; /* (i) exception pending */ 105 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 106 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 107 void *stats; /* (a,i) statistics */ 108 uint64_t guest_msrs[VMM_MSR_NUM]; /* (i) emulated MSRs */ 109 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 110 }; 111 112 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 113 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 114 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 115 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 116 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 117 118 struct mem_seg { 119 vm_paddr_t gpa; 120 size_t len; 121 boolean_t wired; 122 vm_object_t object; 123 }; 124 #define VM_MAX_MEMORY_SEGMENTS 2 125 126 /* 127 * Initialization: 128 * (o) initialized the first time the VM is created 129 * (i) initialized when VM is created and when it is reinitialized 130 * (x) initialized before use 131 */ 132 struct vm { 133 void *cookie; /* (i) cpu-specific data */ 134 void *iommu; /* (x) iommu-specific data */ 135 struct vhpet *vhpet; /* (i) virtual HPET */ 136 struct vioapic *vioapic; /* (i) virtual ioapic */ 137 struct vatpic *vatpic; /* (i) virtual atpic */ 138 struct vatpit *vatpit; /* (i) virtual atpit */ 139 volatile cpuset_t active_cpus; /* (i) active vcpus */ 140 int suspend; /* (i) stop VM execution */ 141 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 142 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 143 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 144 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 145 void *rendezvous_arg; /* (x) rendezvous func/arg */ 146 vm_rendezvous_func_t rendezvous_func; 147 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 148 int num_mem_segs; /* (o) guest memory segments */ 149 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 150 struct vmspace *vmspace; /* (o) guest's address space */ 151 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 152 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 153 }; 154 155 static int vmm_initialized; 156 157 static struct vmm_ops *ops; 158 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 159 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 160 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 161 162 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 163 #define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \ 164 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO) 165 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 166 #define VMSPACE_ALLOC(min, max) \ 167 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 168 #define VMSPACE_FREE(vmspace) \ 169 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 170 #define VMGETREG(vmi, vcpu, num, retval) \ 171 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 172 #define VMSETREG(vmi, vcpu, num, val) \ 173 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 174 #define VMGETDESC(vmi, vcpu, num, desc) \ 175 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 176 #define VMSETDESC(vmi, vcpu, num, desc) \ 177 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 178 #define VMGETCAP(vmi, vcpu, num, retval) \ 179 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 180 #define VMSETCAP(vmi, vcpu, num, val) \ 181 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 182 #define VLAPIC_INIT(vmi, vcpu) \ 183 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 184 #define VLAPIC_CLEANUP(vmi, vlapic) \ 185 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 186 187 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 188 #define fpu_stop_emulating() clts() 189 190 static MALLOC_DEFINE(M_VM, "vm", "vm"); 191 CTASSERT(VMM_MSR_NUM <= 64); /* msr_mask can keep track of up to 64 msrs */ 192 193 /* statistics */ 194 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 195 196 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 197 198 /* 199 * Halt the guest if all vcpus are executing a HLT instruction with 200 * interrupts disabled. 201 */ 202 static int halt_detection_enabled = 1; 203 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 204 &halt_detection_enabled, 0, 205 "Halt VM if all vcpus execute HLT with interrupts disabled"); 206 207 static int vmm_ipinum; 208 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 209 "IPI vector used for vcpu notifications"); 210 211 static void 212 vcpu_cleanup(struct vm *vm, int i, bool destroy) 213 { 214 struct vcpu *vcpu = &vm->vcpu[i]; 215 216 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 217 if (destroy) { 218 vmm_stat_free(vcpu->stats); 219 fpu_save_area_free(vcpu->guestfpu); 220 } 221 } 222 223 static void 224 vcpu_init(struct vm *vm, int vcpu_id, bool create) 225 { 226 struct vcpu *vcpu; 227 228 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 229 ("vcpu_init: invalid vcpu %d", vcpu_id)); 230 231 vcpu = &vm->vcpu[vcpu_id]; 232 233 if (create) { 234 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 235 "initialized", vcpu_id)); 236 vcpu_lock_init(vcpu); 237 vcpu->state = VCPU_IDLE; 238 vcpu->hostcpu = NOCPU; 239 vcpu->guestfpu = fpu_save_area_alloc(); 240 vcpu->stats = vmm_stat_alloc(); 241 } 242 243 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 244 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 245 vcpu->exitintinfo = 0; 246 vcpu->nmi_pending = 0; 247 vcpu->extint_pending = 0; 248 vcpu->exception_pending = 0; 249 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 250 fpu_save_area_reset(vcpu->guestfpu); 251 vmm_stat_init(vcpu->stats); 252 guest_msrs_init(vm, vcpu_id); 253 } 254 255 struct vm_exit * 256 vm_exitinfo(struct vm *vm, int cpuid) 257 { 258 struct vcpu *vcpu; 259 260 if (cpuid < 0 || cpuid >= VM_MAXCPU) 261 panic("vm_exitinfo: invalid cpuid %d", cpuid); 262 263 vcpu = &vm->vcpu[cpuid]; 264 265 return (&vcpu->exitinfo); 266 } 267 268 static void 269 vmm_resume(void) 270 { 271 VMM_RESUME(); 272 } 273 274 static int 275 vmm_init(void) 276 { 277 int error; 278 279 vmm_host_state_init(); 280 281 vmm_ipinum = vmm_ipi_alloc(); 282 if (vmm_ipinum == 0) 283 vmm_ipinum = IPI_AST; 284 285 error = vmm_mem_init(); 286 if (error) 287 return (error); 288 289 if (vmm_is_intel()) 290 ops = &vmm_ops_intel; 291 else if (vmm_is_amd()) 292 ops = &vmm_ops_amd; 293 else 294 return (ENXIO); 295 296 vmm_msr_init(); 297 vmm_resume_p = vmm_resume; 298 299 return (VMM_INIT(vmm_ipinum)); 300 } 301 302 static int 303 vmm_handler(module_t mod, int what, void *arg) 304 { 305 int error; 306 307 switch (what) { 308 case MOD_LOAD: 309 vmmdev_init(); 310 if (ppt_avail_devices() > 0) 311 iommu_init(); 312 error = vmm_init(); 313 if (error == 0) 314 vmm_initialized = 1; 315 break; 316 case MOD_UNLOAD: 317 error = vmmdev_cleanup(); 318 if (error == 0) { 319 vmm_resume_p = NULL; 320 iommu_cleanup(); 321 if (vmm_ipinum != IPI_AST) 322 vmm_ipi_free(vmm_ipinum); 323 error = VMM_CLEANUP(); 324 /* 325 * Something bad happened - prevent new 326 * VMs from being created 327 */ 328 if (error) 329 vmm_initialized = 0; 330 } 331 break; 332 default: 333 error = 0; 334 break; 335 } 336 return (error); 337 } 338 339 static moduledata_t vmm_kmod = { 340 "vmm", 341 vmm_handler, 342 NULL 343 }; 344 345 /* 346 * vmm initialization has the following dependencies: 347 * 348 * - iommu initialization must happen after the pci passthru driver has had 349 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 350 * 351 * - VT-x initialization requires smp_rendezvous() and therefore must happen 352 * after SMP is fully functional (after SI_SUB_SMP). 353 */ 354 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 355 MODULE_VERSION(vmm, 1); 356 357 static void 358 vm_init(struct vm *vm, bool create) 359 { 360 int i; 361 362 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 363 vm->iommu = NULL; 364 vm->vioapic = vioapic_init(vm); 365 vm->vhpet = vhpet_init(vm); 366 vm->vatpic = vatpic_init(vm); 367 vm->vatpit = vatpit_init(vm); 368 369 CPU_ZERO(&vm->active_cpus); 370 371 vm->suspend = 0; 372 CPU_ZERO(&vm->suspended_cpus); 373 374 for (i = 0; i < VM_MAXCPU; i++) 375 vcpu_init(vm, i, create); 376 } 377 378 int 379 vm_create(const char *name, struct vm **retvm) 380 { 381 struct vm *vm; 382 struct vmspace *vmspace; 383 384 /* 385 * If vmm.ko could not be successfully initialized then don't attempt 386 * to create the virtual machine. 387 */ 388 if (!vmm_initialized) 389 return (ENXIO); 390 391 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 392 return (EINVAL); 393 394 vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); 395 if (vmspace == NULL) 396 return (ENOMEM); 397 398 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 399 strcpy(vm->name, name); 400 vm->num_mem_segs = 0; 401 vm->vmspace = vmspace; 402 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 403 404 vm_init(vm, true); 405 406 *retvm = vm; 407 return (0); 408 } 409 410 static void 411 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 412 { 413 414 if (seg->object != NULL) 415 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 416 417 bzero(seg, sizeof(*seg)); 418 } 419 420 static void 421 vm_cleanup(struct vm *vm, bool destroy) 422 { 423 int i; 424 425 ppt_unassign_all(vm); 426 427 if (vm->iommu != NULL) 428 iommu_destroy_domain(vm->iommu); 429 430 vatpit_cleanup(vm->vatpit); 431 vhpet_cleanup(vm->vhpet); 432 vatpic_cleanup(vm->vatpic); 433 vioapic_cleanup(vm->vioapic); 434 435 for (i = 0; i < VM_MAXCPU; i++) 436 vcpu_cleanup(vm, i, destroy); 437 438 VMCLEANUP(vm->cookie); 439 440 if (destroy) { 441 for (i = 0; i < vm->num_mem_segs; i++) 442 vm_free_mem_seg(vm, &vm->mem_segs[i]); 443 444 vm->num_mem_segs = 0; 445 446 VMSPACE_FREE(vm->vmspace); 447 vm->vmspace = NULL; 448 } 449 } 450 451 void 452 vm_destroy(struct vm *vm) 453 { 454 vm_cleanup(vm, true); 455 free(vm, M_VM); 456 } 457 458 int 459 vm_reinit(struct vm *vm) 460 { 461 int error; 462 463 /* 464 * A virtual machine can be reset only if all vcpus are suspended. 465 */ 466 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 467 vm_cleanup(vm, false); 468 vm_init(vm, false); 469 error = 0; 470 } else { 471 error = EBUSY; 472 } 473 474 return (error); 475 } 476 477 const char * 478 vm_name(struct vm *vm) 479 { 480 return (vm->name); 481 } 482 483 int 484 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 485 { 486 vm_object_t obj; 487 488 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 489 return (ENOMEM); 490 else 491 return (0); 492 } 493 494 int 495 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 496 { 497 498 vmm_mmio_free(vm->vmspace, gpa, len); 499 return (0); 500 } 501 502 boolean_t 503 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 504 { 505 int i; 506 vm_paddr_t gpabase, gpalimit; 507 508 for (i = 0; i < vm->num_mem_segs; i++) { 509 gpabase = vm->mem_segs[i].gpa; 510 gpalimit = gpabase + vm->mem_segs[i].len; 511 if (gpa >= gpabase && gpa < gpalimit) 512 return (TRUE); /* 'gpa' is regular memory */ 513 } 514 515 if (ppt_is_mmio(vm, gpa)) 516 return (TRUE); /* 'gpa' is pci passthru mmio */ 517 518 return (FALSE); 519 } 520 521 int 522 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 523 { 524 int available, allocated; 525 struct mem_seg *seg; 526 vm_object_t object; 527 vm_paddr_t g; 528 529 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 530 return (EINVAL); 531 532 available = allocated = 0; 533 g = gpa; 534 while (g < gpa + len) { 535 if (vm_mem_allocated(vm, g)) 536 allocated++; 537 else 538 available++; 539 540 g += PAGE_SIZE; 541 } 542 543 /* 544 * If there are some allocated and some available pages in the address 545 * range then it is an error. 546 */ 547 if (allocated && available) 548 return (EINVAL); 549 550 /* 551 * If the entire address range being requested has already been 552 * allocated then there isn't anything more to do. 553 */ 554 if (allocated && available == 0) 555 return (0); 556 557 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 558 return (E2BIG); 559 560 seg = &vm->mem_segs[vm->num_mem_segs]; 561 562 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 563 return (ENOMEM); 564 565 seg->gpa = gpa; 566 seg->len = len; 567 seg->object = object; 568 seg->wired = FALSE; 569 570 vm->num_mem_segs++; 571 572 return (0); 573 } 574 575 static void 576 vm_gpa_unwire(struct vm *vm) 577 { 578 int i, rv; 579 struct mem_seg *seg; 580 581 for (i = 0; i < vm->num_mem_segs; i++) { 582 seg = &vm->mem_segs[i]; 583 if (!seg->wired) 584 continue; 585 586 rv = vm_map_unwire(&vm->vmspace->vm_map, 587 seg->gpa, seg->gpa + seg->len, 588 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 589 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 590 "%#lx/%ld could not be unwired: %d", 591 vm_name(vm), seg->gpa, seg->len, rv)); 592 593 seg->wired = FALSE; 594 } 595 } 596 597 static int 598 vm_gpa_wire(struct vm *vm) 599 { 600 int i, rv; 601 struct mem_seg *seg; 602 603 for (i = 0; i < vm->num_mem_segs; i++) { 604 seg = &vm->mem_segs[i]; 605 if (seg->wired) 606 continue; 607 608 /* XXX rlimits? */ 609 rv = vm_map_wire(&vm->vmspace->vm_map, 610 seg->gpa, seg->gpa + seg->len, 611 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 612 if (rv != KERN_SUCCESS) 613 break; 614 615 seg->wired = TRUE; 616 } 617 618 if (i < vm->num_mem_segs) { 619 /* 620 * Undo the wiring before returning an error. 621 */ 622 vm_gpa_unwire(vm); 623 return (EAGAIN); 624 } 625 626 return (0); 627 } 628 629 static void 630 vm_iommu_modify(struct vm *vm, boolean_t map) 631 { 632 int i, sz; 633 vm_paddr_t gpa, hpa; 634 struct mem_seg *seg; 635 void *vp, *cookie, *host_domain; 636 637 sz = PAGE_SIZE; 638 host_domain = iommu_host_domain(); 639 640 for (i = 0; i < vm->num_mem_segs; i++) { 641 seg = &vm->mem_segs[i]; 642 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 643 vm_name(vm), seg->gpa, seg->len)); 644 645 gpa = seg->gpa; 646 while (gpa < seg->gpa + seg->len) { 647 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 648 &cookie); 649 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 650 vm_name(vm), gpa)); 651 652 vm_gpa_release(cookie); 653 654 hpa = DMAP_TO_PHYS((uintptr_t)vp); 655 if (map) { 656 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 657 iommu_remove_mapping(host_domain, hpa, sz); 658 } else { 659 iommu_remove_mapping(vm->iommu, gpa, sz); 660 iommu_create_mapping(host_domain, hpa, hpa, sz); 661 } 662 663 gpa += PAGE_SIZE; 664 } 665 } 666 667 /* 668 * Invalidate the cached translations associated with the domain 669 * from which pages were removed. 670 */ 671 if (map) 672 iommu_invalidate_tlb(host_domain); 673 else 674 iommu_invalidate_tlb(vm->iommu); 675 } 676 677 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 678 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 679 680 int 681 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 682 { 683 int error; 684 685 error = ppt_unassign_device(vm, bus, slot, func); 686 if (error) 687 return (error); 688 689 if (ppt_assigned_devices(vm) == 0) { 690 vm_iommu_unmap(vm); 691 vm_gpa_unwire(vm); 692 } 693 return (0); 694 } 695 696 int 697 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 698 { 699 int error; 700 vm_paddr_t maxaddr; 701 702 /* 703 * Virtual machines with pci passthru devices get special treatment: 704 * - the guest physical memory is wired 705 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 706 * 707 * We need to do this before the first pci passthru device is attached. 708 */ 709 if (ppt_assigned_devices(vm) == 0) { 710 KASSERT(vm->iommu == NULL, 711 ("vm_assign_pptdev: iommu must be NULL")); 712 maxaddr = vmm_mem_maxaddr(); 713 vm->iommu = iommu_create_domain(maxaddr); 714 715 error = vm_gpa_wire(vm); 716 if (error) 717 return (error); 718 719 vm_iommu_map(vm); 720 } 721 722 error = ppt_assign_device(vm, bus, slot, func); 723 return (error); 724 } 725 726 void * 727 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 728 void **cookie) 729 { 730 int count, pageoff; 731 vm_page_t m; 732 733 pageoff = gpa & PAGE_MASK; 734 if (len > PAGE_SIZE - pageoff) 735 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 736 737 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 738 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 739 740 if (count == 1) { 741 *cookie = m; 742 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 743 } else { 744 *cookie = NULL; 745 return (NULL); 746 } 747 } 748 749 void 750 vm_gpa_release(void *cookie) 751 { 752 vm_page_t m = cookie; 753 754 vm_page_lock(m); 755 vm_page_unhold(m); 756 vm_page_unlock(m); 757 } 758 759 int 760 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 761 struct vm_memory_segment *seg) 762 { 763 int i; 764 765 for (i = 0; i < vm->num_mem_segs; i++) { 766 if (gpabase == vm->mem_segs[i].gpa) { 767 seg->gpa = vm->mem_segs[i].gpa; 768 seg->len = vm->mem_segs[i].len; 769 seg->wired = vm->mem_segs[i].wired; 770 return (0); 771 } 772 } 773 return (-1); 774 } 775 776 int 777 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 778 vm_offset_t *offset, struct vm_object **object) 779 { 780 int i; 781 size_t seg_len; 782 vm_paddr_t seg_gpa; 783 vm_object_t seg_obj; 784 785 for (i = 0; i < vm->num_mem_segs; i++) { 786 if ((seg_obj = vm->mem_segs[i].object) == NULL) 787 continue; 788 789 seg_gpa = vm->mem_segs[i].gpa; 790 seg_len = vm->mem_segs[i].len; 791 792 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 793 *offset = gpa - seg_gpa; 794 *object = seg_obj; 795 vm_object_reference(seg_obj); 796 return (0); 797 } 798 } 799 800 return (EINVAL); 801 } 802 803 int 804 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 805 { 806 807 if (vcpu < 0 || vcpu >= VM_MAXCPU) 808 return (EINVAL); 809 810 if (reg >= VM_REG_LAST) 811 return (EINVAL); 812 813 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 814 } 815 816 int 817 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val) 818 { 819 820 if (vcpu < 0 || vcpu >= VM_MAXCPU) 821 return (EINVAL); 822 823 if (reg >= VM_REG_LAST) 824 return (EINVAL); 825 826 return (VMSETREG(vm->cookie, vcpu, reg, val)); 827 } 828 829 static boolean_t 830 is_descriptor_table(int reg) 831 { 832 833 switch (reg) { 834 case VM_REG_GUEST_IDTR: 835 case VM_REG_GUEST_GDTR: 836 return (TRUE); 837 default: 838 return (FALSE); 839 } 840 } 841 842 static boolean_t 843 is_segment_register(int reg) 844 { 845 846 switch (reg) { 847 case VM_REG_GUEST_ES: 848 case VM_REG_GUEST_CS: 849 case VM_REG_GUEST_SS: 850 case VM_REG_GUEST_DS: 851 case VM_REG_GUEST_FS: 852 case VM_REG_GUEST_GS: 853 case VM_REG_GUEST_TR: 854 case VM_REG_GUEST_LDTR: 855 return (TRUE); 856 default: 857 return (FALSE); 858 } 859 } 860 861 int 862 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 863 struct seg_desc *desc) 864 { 865 866 if (vcpu < 0 || vcpu >= VM_MAXCPU) 867 return (EINVAL); 868 869 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 870 return (EINVAL); 871 872 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 873 } 874 875 int 876 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 877 struct seg_desc *desc) 878 { 879 if (vcpu < 0 || vcpu >= VM_MAXCPU) 880 return (EINVAL); 881 882 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 883 return (EINVAL); 884 885 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 886 } 887 888 static void 889 restore_guest_fpustate(struct vcpu *vcpu) 890 { 891 892 /* flush host state to the pcb */ 893 fpuexit(curthread); 894 895 /* restore guest FPU state */ 896 fpu_stop_emulating(); 897 fpurestore(vcpu->guestfpu); 898 899 /* restore guest XCR0 if XSAVE is enabled in the host */ 900 if (rcr4() & CR4_XSAVE) 901 load_xcr(0, vcpu->guest_xcr0); 902 903 /* 904 * The FPU is now "dirty" with the guest's state so turn on emulation 905 * to trap any access to the FPU by the host. 906 */ 907 fpu_start_emulating(); 908 } 909 910 static void 911 save_guest_fpustate(struct vcpu *vcpu) 912 { 913 914 if ((rcr0() & CR0_TS) == 0) 915 panic("fpu emulation not enabled in host!"); 916 917 /* save guest XCR0 and restore host XCR0 */ 918 if (rcr4() & CR4_XSAVE) { 919 vcpu->guest_xcr0 = rxcr(0); 920 load_xcr(0, vmm_get_host_xcr0()); 921 } 922 923 /* save guest FPU state */ 924 fpu_stop_emulating(); 925 fpusave(vcpu->guestfpu); 926 fpu_start_emulating(); 927 } 928 929 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 930 931 static int 932 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 933 bool from_idle) 934 { 935 int error; 936 937 vcpu_assert_locked(vcpu); 938 939 /* 940 * State transitions from the vmmdev_ioctl() must always begin from 941 * the VCPU_IDLE state. This guarantees that there is only a single 942 * ioctl() operating on a vcpu at any point. 943 */ 944 if (from_idle) { 945 while (vcpu->state != VCPU_IDLE) 946 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 947 } else { 948 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 949 "vcpu idle state")); 950 } 951 952 if (vcpu->state == VCPU_RUNNING) { 953 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 954 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 955 } else { 956 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 957 "vcpu that is not running", vcpu->hostcpu)); 958 } 959 960 /* 961 * The following state transitions are allowed: 962 * IDLE -> FROZEN -> IDLE 963 * FROZEN -> RUNNING -> FROZEN 964 * FROZEN -> SLEEPING -> FROZEN 965 */ 966 switch (vcpu->state) { 967 case VCPU_IDLE: 968 case VCPU_RUNNING: 969 case VCPU_SLEEPING: 970 error = (newstate != VCPU_FROZEN); 971 break; 972 case VCPU_FROZEN: 973 error = (newstate == VCPU_FROZEN); 974 break; 975 default: 976 error = 1; 977 break; 978 } 979 980 if (error) 981 return (EBUSY); 982 983 vcpu->state = newstate; 984 if (newstate == VCPU_RUNNING) 985 vcpu->hostcpu = curcpu; 986 else 987 vcpu->hostcpu = NOCPU; 988 989 if (newstate == VCPU_IDLE) 990 wakeup(&vcpu->state); 991 992 return (0); 993 } 994 995 static void 996 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 997 { 998 int error; 999 1000 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1001 panic("Error %d setting state to %d\n", error, newstate); 1002 } 1003 1004 static void 1005 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1006 { 1007 int error; 1008 1009 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1010 panic("Error %d setting state to %d", error, newstate); 1011 } 1012 1013 static void 1014 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1015 { 1016 1017 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1018 1019 /* 1020 * Update 'rendezvous_func' and execute a write memory barrier to 1021 * ensure that it is visible across all host cpus. This is not needed 1022 * for correctness but it does ensure that all the vcpus will notice 1023 * that the rendezvous is requested immediately. 1024 */ 1025 vm->rendezvous_func = func; 1026 wmb(); 1027 } 1028 1029 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1030 do { \ 1031 if (vcpuid >= 0) \ 1032 VCPU_CTR0(vm, vcpuid, fmt); \ 1033 else \ 1034 VM_CTR0(vm, fmt); \ 1035 } while (0) 1036 1037 static void 1038 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1039 { 1040 1041 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1042 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1043 1044 mtx_lock(&vm->rendezvous_mtx); 1045 while (vm->rendezvous_func != NULL) { 1046 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1047 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1048 1049 if (vcpuid != -1 && 1050 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1051 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1052 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1053 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1054 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1055 } 1056 if (CPU_CMP(&vm->rendezvous_req_cpus, 1057 &vm->rendezvous_done_cpus) == 0) { 1058 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1059 vm_set_rendezvous_func(vm, NULL); 1060 wakeup(&vm->rendezvous_func); 1061 break; 1062 } 1063 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1064 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1065 "vmrndv", 0); 1066 } 1067 mtx_unlock(&vm->rendezvous_mtx); 1068 } 1069 1070 /* 1071 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1072 */ 1073 static int 1074 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1075 { 1076 struct vcpu *vcpu; 1077 const char *wmesg; 1078 int t, vcpu_halted, vm_halted; 1079 1080 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1081 1082 vcpu = &vm->vcpu[vcpuid]; 1083 vcpu_halted = 0; 1084 vm_halted = 0; 1085 1086 vcpu_lock(vcpu); 1087 while (1) { 1088 /* 1089 * Do a final check for pending NMI or interrupts before 1090 * really putting this thread to sleep. Also check for 1091 * software events that would cause this vcpu to wakeup. 1092 * 1093 * These interrupts/events could have happened after the 1094 * vcpu returned from VMRUN() and before it acquired the 1095 * vcpu lock above. 1096 */ 1097 if (vm->rendezvous_func != NULL || vm->suspend) 1098 break; 1099 if (vm_nmi_pending(vm, vcpuid)) 1100 break; 1101 if (!intr_disabled) { 1102 if (vm_extint_pending(vm, vcpuid) || 1103 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1104 break; 1105 } 1106 } 1107 1108 /* Don't go to sleep if the vcpu thread needs to yield */ 1109 if (vcpu_should_yield(vm, vcpuid)) 1110 break; 1111 1112 /* 1113 * Some Linux guests implement "halt" by having all vcpus 1114 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1115 * track of the vcpus that have entered this state. When all 1116 * vcpus enter the halted state the virtual machine is halted. 1117 */ 1118 if (intr_disabled) { 1119 wmesg = "vmhalt"; 1120 VCPU_CTR0(vm, vcpuid, "Halted"); 1121 if (!vcpu_halted && halt_detection_enabled) { 1122 vcpu_halted = 1; 1123 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1124 } 1125 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1126 vm_halted = 1; 1127 break; 1128 } 1129 } else { 1130 wmesg = "vmidle"; 1131 } 1132 1133 t = ticks; 1134 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1135 /* 1136 * XXX msleep_spin() cannot be interrupted by signals so 1137 * wake up periodically to check pending signals. 1138 */ 1139 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1140 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1141 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1142 } 1143 1144 if (vcpu_halted) 1145 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1146 1147 vcpu_unlock(vcpu); 1148 1149 if (vm_halted) 1150 vm_suspend(vm, VM_SUSPEND_HALT); 1151 1152 return (0); 1153 } 1154 1155 static int 1156 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1157 { 1158 int rv, ftype; 1159 struct vm_map *map; 1160 struct vcpu *vcpu; 1161 struct vm_exit *vme; 1162 1163 vcpu = &vm->vcpu[vcpuid]; 1164 vme = &vcpu->exitinfo; 1165 1166 ftype = vme->u.paging.fault_type; 1167 KASSERT(ftype == VM_PROT_READ || 1168 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1169 ("vm_handle_paging: invalid fault_type %d", ftype)); 1170 1171 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1172 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1173 vme->u.paging.gpa, ftype); 1174 if (rv == 0) 1175 goto done; 1176 } 1177 1178 map = &vm->vmspace->vm_map; 1179 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1180 1181 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1182 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1183 1184 if (rv != KERN_SUCCESS) 1185 return (EFAULT); 1186 done: 1187 /* restart execution at the faulting instruction */ 1188 vme->inst_length = 0; 1189 1190 return (0); 1191 } 1192 1193 static int 1194 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1195 { 1196 struct vie *vie; 1197 struct vcpu *vcpu; 1198 struct vm_exit *vme; 1199 uint64_t gla, gpa; 1200 struct vm_guest_paging *paging; 1201 mem_region_read_t mread; 1202 mem_region_write_t mwrite; 1203 enum vm_cpu_mode cpu_mode; 1204 int cs_d, error; 1205 1206 vcpu = &vm->vcpu[vcpuid]; 1207 vme = &vcpu->exitinfo; 1208 1209 gla = vme->u.inst_emul.gla; 1210 gpa = vme->u.inst_emul.gpa; 1211 cs_d = vme->u.inst_emul.cs_d; 1212 vie = &vme->u.inst_emul.vie; 1213 paging = &vme->u.inst_emul.paging; 1214 cpu_mode = paging->cpu_mode; 1215 1216 vie_init(vie); 1217 1218 /* Fetch, decode and emulate the faulting instruction */ 1219 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip, 1220 vme->inst_length, vie); 1221 if (error == 1) 1222 return (0); /* Resume guest to handle page fault */ 1223 else if (error == -1) 1224 return (EFAULT); 1225 else if (error != 0) 1226 panic("%s: vmm_fetch_instruction error %d", __func__, error); 1227 1228 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) 1229 return (EFAULT); 1230 1231 /* return to userland unless this is an in-kernel emulated device */ 1232 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1233 mread = lapic_mmio_read; 1234 mwrite = lapic_mmio_write; 1235 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1236 mread = vioapic_mmio_read; 1237 mwrite = vioapic_mmio_write; 1238 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1239 mread = vhpet_mmio_read; 1240 mwrite = vhpet_mmio_write; 1241 } else { 1242 *retu = true; 1243 return (0); 1244 } 1245 1246 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1247 mread, mwrite, retu); 1248 1249 return (error); 1250 } 1251 1252 static int 1253 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1254 { 1255 int i, done; 1256 struct vcpu *vcpu; 1257 1258 done = 0; 1259 vcpu = &vm->vcpu[vcpuid]; 1260 1261 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1262 1263 /* 1264 * Wait until all 'active_cpus' have suspended themselves. 1265 * 1266 * Since a VM may be suspended at any time including when one or 1267 * more vcpus are doing a rendezvous we need to call the rendezvous 1268 * handler while we are waiting to prevent a deadlock. 1269 */ 1270 vcpu_lock(vcpu); 1271 while (1) { 1272 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1273 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1274 break; 1275 } 1276 1277 if (vm->rendezvous_func == NULL) { 1278 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1279 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1280 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1281 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1282 } else { 1283 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1284 vcpu_unlock(vcpu); 1285 vm_handle_rendezvous(vm, vcpuid); 1286 vcpu_lock(vcpu); 1287 } 1288 } 1289 vcpu_unlock(vcpu); 1290 1291 /* 1292 * Wakeup the other sleeping vcpus and return to userspace. 1293 */ 1294 for (i = 0; i < VM_MAXCPU; i++) { 1295 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1296 vcpu_notify_event(vm, i, false); 1297 } 1298 } 1299 1300 *retu = true; 1301 return (0); 1302 } 1303 1304 int 1305 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1306 { 1307 int i; 1308 1309 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1310 return (EINVAL); 1311 1312 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1313 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1314 vm->suspend, how); 1315 return (EALREADY); 1316 } 1317 1318 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1319 1320 /* 1321 * Notify all active vcpus that they are now suspended. 1322 */ 1323 for (i = 0; i < VM_MAXCPU; i++) { 1324 if (CPU_ISSET(i, &vm->active_cpus)) 1325 vcpu_notify_event(vm, i, false); 1326 } 1327 1328 return (0); 1329 } 1330 1331 void 1332 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1333 { 1334 struct vm_exit *vmexit; 1335 1336 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1337 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1338 1339 vmexit = vm_exitinfo(vm, vcpuid); 1340 vmexit->rip = rip; 1341 vmexit->inst_length = 0; 1342 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1343 vmexit->u.suspended.how = vm->suspend; 1344 } 1345 1346 void 1347 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1348 { 1349 struct vm_exit *vmexit; 1350 1351 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1352 1353 vmexit = vm_exitinfo(vm, vcpuid); 1354 vmexit->rip = rip; 1355 vmexit->inst_length = 0; 1356 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1357 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1358 } 1359 1360 void 1361 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1362 { 1363 struct vm_exit *vmexit; 1364 1365 vmexit = vm_exitinfo(vm, vcpuid); 1366 vmexit->rip = rip; 1367 vmexit->inst_length = 0; 1368 vmexit->exitcode = VM_EXITCODE_BOGUS; 1369 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1370 } 1371 1372 int 1373 vm_run(struct vm *vm, struct vm_run *vmrun) 1374 { 1375 int error, vcpuid; 1376 struct vcpu *vcpu; 1377 struct pcb *pcb; 1378 uint64_t tscval, rip; 1379 struct vm_exit *vme; 1380 bool retu, intr_disabled; 1381 pmap_t pmap; 1382 void *rptr, *sptr; 1383 1384 vcpuid = vmrun->cpuid; 1385 1386 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1387 return (EINVAL); 1388 1389 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1390 return (EINVAL); 1391 1392 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1393 return (EINVAL); 1394 1395 rptr = &vm->rendezvous_func; 1396 sptr = &vm->suspend; 1397 pmap = vmspace_pmap(vm->vmspace); 1398 vcpu = &vm->vcpu[vcpuid]; 1399 vme = &vcpu->exitinfo; 1400 rip = vmrun->rip; 1401 restart: 1402 critical_enter(); 1403 1404 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1405 ("vm_run: absurd pm_active")); 1406 1407 tscval = rdtsc(); 1408 1409 pcb = PCPU_GET(curpcb); 1410 set_pcb_flags(pcb, PCB_FULL_IRET); 1411 1412 restore_guest_msrs(vm, vcpuid); 1413 restore_guest_fpustate(vcpu); 1414 1415 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1416 error = VMRUN(vm->cookie, vcpuid, rip, pmap, rptr, sptr); 1417 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1418 1419 save_guest_fpustate(vcpu); 1420 restore_host_msrs(vm, vcpuid); 1421 1422 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1423 1424 critical_exit(); 1425 1426 if (error == 0) { 1427 retu = false; 1428 switch (vme->exitcode) { 1429 case VM_EXITCODE_SUSPENDED: 1430 error = vm_handle_suspend(vm, vcpuid, &retu); 1431 break; 1432 case VM_EXITCODE_IOAPIC_EOI: 1433 vioapic_process_eoi(vm, vcpuid, 1434 vme->u.ioapic_eoi.vector); 1435 break; 1436 case VM_EXITCODE_RENDEZVOUS: 1437 vm_handle_rendezvous(vm, vcpuid); 1438 error = 0; 1439 break; 1440 case VM_EXITCODE_HLT: 1441 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1442 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1443 break; 1444 case VM_EXITCODE_PAGING: 1445 error = vm_handle_paging(vm, vcpuid, &retu); 1446 break; 1447 case VM_EXITCODE_INST_EMUL: 1448 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1449 break; 1450 case VM_EXITCODE_INOUT: 1451 case VM_EXITCODE_INOUT_STR: 1452 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1453 break; 1454 default: 1455 retu = true; /* handled in userland */ 1456 break; 1457 } 1458 } 1459 1460 if (error == 0 && retu == false) { 1461 rip = vme->rip + vme->inst_length; 1462 goto restart; 1463 } 1464 1465 /* copy the exit information */ 1466 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1467 return (error); 1468 } 1469 1470 int 1471 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1472 { 1473 struct vcpu *vcpu; 1474 int type, vector; 1475 1476 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1477 return (EINVAL); 1478 1479 vcpu = &vm->vcpu[vcpuid]; 1480 1481 if (info & VM_INTINFO_VALID) { 1482 type = info & VM_INTINFO_TYPE; 1483 vector = info & 0xff; 1484 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1485 return (EINVAL); 1486 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1487 return (EINVAL); 1488 if (info & VM_INTINFO_RSVD) 1489 return (EINVAL); 1490 } else { 1491 info = 0; 1492 } 1493 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1494 vcpu->exitintinfo = info; 1495 return (0); 1496 } 1497 1498 enum exc_class { 1499 EXC_BENIGN, 1500 EXC_CONTRIBUTORY, 1501 EXC_PAGEFAULT 1502 }; 1503 1504 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1505 1506 static enum exc_class 1507 exception_class(uint64_t info) 1508 { 1509 int type, vector; 1510 1511 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1512 type = info & VM_INTINFO_TYPE; 1513 vector = info & 0xff; 1514 1515 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1516 switch (type) { 1517 case VM_INTINFO_HWINTR: 1518 case VM_INTINFO_SWINTR: 1519 case VM_INTINFO_NMI: 1520 return (EXC_BENIGN); 1521 default: 1522 /* 1523 * Hardware exception. 1524 * 1525 * SVM and VT-x use identical type values to represent NMI, 1526 * hardware interrupt and software interrupt. 1527 * 1528 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1529 * for exceptions except #BP and #OF. #BP and #OF use a type 1530 * value of '5' or '6'. Therefore we don't check for explicit 1531 * values of 'type' to classify 'intinfo' into a hardware 1532 * exception. 1533 */ 1534 break; 1535 } 1536 1537 switch (vector) { 1538 case IDT_PF: 1539 case IDT_VE: 1540 return (EXC_PAGEFAULT); 1541 case IDT_DE: 1542 case IDT_TS: 1543 case IDT_NP: 1544 case IDT_SS: 1545 case IDT_GP: 1546 return (EXC_CONTRIBUTORY); 1547 default: 1548 return (EXC_BENIGN); 1549 } 1550 } 1551 1552 static int 1553 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1554 uint64_t *retinfo) 1555 { 1556 enum exc_class exc1, exc2; 1557 int type1, vector1; 1558 1559 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1560 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1561 1562 /* 1563 * If an exception occurs while attempting to call the double-fault 1564 * handler the processor enters shutdown mode (aka triple fault). 1565 */ 1566 type1 = info1 & VM_INTINFO_TYPE; 1567 vector1 = info1 & 0xff; 1568 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1569 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1570 info1, info2); 1571 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1572 *retinfo = 0; 1573 return (0); 1574 } 1575 1576 /* 1577 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1578 */ 1579 exc1 = exception_class(info1); 1580 exc2 = exception_class(info2); 1581 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1582 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1583 /* Convert nested fault into a double fault. */ 1584 *retinfo = IDT_DF; 1585 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1586 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1587 } else { 1588 /* Handle exceptions serially */ 1589 *retinfo = info2; 1590 } 1591 return (1); 1592 } 1593 1594 static uint64_t 1595 vcpu_exception_intinfo(struct vcpu *vcpu) 1596 { 1597 uint64_t info = 0; 1598 1599 if (vcpu->exception_pending) { 1600 info = vcpu->exception.vector & 0xff; 1601 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1602 if (vcpu->exception.error_code_valid) { 1603 info |= VM_INTINFO_DEL_ERRCODE; 1604 info |= (uint64_t)vcpu->exception.error_code << 32; 1605 } 1606 } 1607 return (info); 1608 } 1609 1610 int 1611 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1612 { 1613 struct vcpu *vcpu; 1614 uint64_t info1, info2; 1615 int valid; 1616 1617 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1618 1619 vcpu = &vm->vcpu[vcpuid]; 1620 1621 info1 = vcpu->exitintinfo; 1622 vcpu->exitintinfo = 0; 1623 1624 info2 = 0; 1625 if (vcpu->exception_pending) { 1626 info2 = vcpu_exception_intinfo(vcpu); 1627 vcpu->exception_pending = 0; 1628 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1629 vcpu->exception.vector, info2); 1630 } 1631 1632 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1633 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1634 } else if (info1 & VM_INTINFO_VALID) { 1635 *retinfo = info1; 1636 valid = 1; 1637 } else if (info2 & VM_INTINFO_VALID) { 1638 *retinfo = info2; 1639 valid = 1; 1640 } else { 1641 valid = 0; 1642 } 1643 1644 if (valid) { 1645 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1646 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1647 } 1648 1649 return (valid); 1650 } 1651 1652 int 1653 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1654 { 1655 struct vcpu *vcpu; 1656 1657 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1658 return (EINVAL); 1659 1660 vcpu = &vm->vcpu[vcpuid]; 1661 *info1 = vcpu->exitintinfo; 1662 *info2 = vcpu_exception_intinfo(vcpu); 1663 return (0); 1664 } 1665 1666 int 1667 vm_inject_exception(struct vm *vm, int vcpuid, struct vm_exception *exception) 1668 { 1669 struct vcpu *vcpu; 1670 1671 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1672 return (EINVAL); 1673 1674 if (exception->vector < 0 || exception->vector >= 32) 1675 return (EINVAL); 1676 1677 /* 1678 * A double fault exception should never be injected directly into 1679 * the guest. It is a derived exception that results from specific 1680 * combinations of nested faults. 1681 */ 1682 if (exception->vector == IDT_DF) 1683 return (EINVAL); 1684 1685 vcpu = &vm->vcpu[vcpuid]; 1686 1687 if (vcpu->exception_pending) { 1688 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1689 "pending exception %d", exception->vector, 1690 vcpu->exception.vector); 1691 return (EBUSY); 1692 } 1693 1694 vcpu->exception_pending = 1; 1695 vcpu->exception = *exception; 1696 VCPU_CTR1(vm, vcpuid, "Exception %d pending", exception->vector); 1697 return (0); 1698 } 1699 1700 void 1701 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 1702 int errcode) 1703 { 1704 struct vm_exception exception; 1705 struct vm_exit *vmexit; 1706 struct vm *vm; 1707 int error; 1708 1709 vm = vmarg; 1710 1711 exception.vector = vector; 1712 exception.error_code = errcode; 1713 exception.error_code_valid = errcode_valid; 1714 error = vm_inject_exception(vm, vcpuid, &exception); 1715 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1716 1717 /* 1718 * A fault-like exception allows the instruction to be restarted 1719 * after the exception handler returns. 1720 * 1721 * By setting the inst_length to 0 we ensure that the instruction 1722 * pointer remains at the faulting instruction. 1723 */ 1724 vmexit = vm_exitinfo(vm, vcpuid); 1725 vmexit->inst_length = 0; 1726 } 1727 1728 void 1729 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 1730 { 1731 struct vm *vm; 1732 int error; 1733 1734 vm = vmarg; 1735 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 1736 error_code, cr2); 1737 1738 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 1739 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 1740 1741 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 1742 } 1743 1744 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1745 1746 int 1747 vm_inject_nmi(struct vm *vm, int vcpuid) 1748 { 1749 struct vcpu *vcpu; 1750 1751 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1752 return (EINVAL); 1753 1754 vcpu = &vm->vcpu[vcpuid]; 1755 1756 vcpu->nmi_pending = 1; 1757 vcpu_notify_event(vm, vcpuid, false); 1758 return (0); 1759 } 1760 1761 int 1762 vm_nmi_pending(struct vm *vm, int vcpuid) 1763 { 1764 struct vcpu *vcpu; 1765 1766 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1767 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1768 1769 vcpu = &vm->vcpu[vcpuid]; 1770 1771 return (vcpu->nmi_pending); 1772 } 1773 1774 void 1775 vm_nmi_clear(struct vm *vm, int vcpuid) 1776 { 1777 struct vcpu *vcpu; 1778 1779 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1780 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1781 1782 vcpu = &vm->vcpu[vcpuid]; 1783 1784 if (vcpu->nmi_pending == 0) 1785 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1786 1787 vcpu->nmi_pending = 0; 1788 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1789 } 1790 1791 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1792 1793 int 1794 vm_inject_extint(struct vm *vm, int vcpuid) 1795 { 1796 struct vcpu *vcpu; 1797 1798 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1799 return (EINVAL); 1800 1801 vcpu = &vm->vcpu[vcpuid]; 1802 1803 vcpu->extint_pending = 1; 1804 vcpu_notify_event(vm, vcpuid, false); 1805 return (0); 1806 } 1807 1808 int 1809 vm_extint_pending(struct vm *vm, int vcpuid) 1810 { 1811 struct vcpu *vcpu; 1812 1813 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1814 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1815 1816 vcpu = &vm->vcpu[vcpuid]; 1817 1818 return (vcpu->extint_pending); 1819 } 1820 1821 void 1822 vm_extint_clear(struct vm *vm, int vcpuid) 1823 { 1824 struct vcpu *vcpu; 1825 1826 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1827 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1828 1829 vcpu = &vm->vcpu[vcpuid]; 1830 1831 if (vcpu->extint_pending == 0) 1832 panic("vm_extint_clear: inconsistent extint_pending state"); 1833 1834 vcpu->extint_pending = 0; 1835 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1836 } 1837 1838 int 1839 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1840 { 1841 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1842 return (EINVAL); 1843 1844 if (type < 0 || type >= VM_CAP_MAX) 1845 return (EINVAL); 1846 1847 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1848 } 1849 1850 int 1851 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1852 { 1853 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1854 return (EINVAL); 1855 1856 if (type < 0 || type >= VM_CAP_MAX) 1857 return (EINVAL); 1858 1859 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1860 } 1861 1862 uint64_t * 1863 vm_guest_msrs(struct vm *vm, int cpu) 1864 { 1865 return (vm->vcpu[cpu].guest_msrs); 1866 } 1867 1868 struct vlapic * 1869 vm_lapic(struct vm *vm, int cpu) 1870 { 1871 return (vm->vcpu[cpu].vlapic); 1872 } 1873 1874 struct vioapic * 1875 vm_ioapic(struct vm *vm) 1876 { 1877 1878 return (vm->vioapic); 1879 } 1880 1881 struct vhpet * 1882 vm_hpet(struct vm *vm) 1883 { 1884 1885 return (vm->vhpet); 1886 } 1887 1888 boolean_t 1889 vmm_is_pptdev(int bus, int slot, int func) 1890 { 1891 int found, i, n; 1892 int b, s, f; 1893 char *val, *cp, *cp2; 1894 1895 /* 1896 * XXX 1897 * The length of an environment variable is limited to 128 bytes which 1898 * puts an upper limit on the number of passthru devices that may be 1899 * specified using a single environment variable. 1900 * 1901 * Work around this by scanning multiple environment variable 1902 * names instead of a single one - yuck! 1903 */ 1904 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 1905 1906 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 1907 found = 0; 1908 for (i = 0; names[i] != NULL && !found; i++) { 1909 cp = val = getenv(names[i]); 1910 while (cp != NULL && *cp != '\0') { 1911 if ((cp2 = strchr(cp, ' ')) != NULL) 1912 *cp2 = '\0'; 1913 1914 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 1915 if (n == 3 && bus == b && slot == s && func == f) { 1916 found = 1; 1917 break; 1918 } 1919 1920 if (cp2 != NULL) 1921 *cp2++ = ' '; 1922 1923 cp = cp2; 1924 } 1925 freeenv(val); 1926 } 1927 return (found); 1928 } 1929 1930 void * 1931 vm_iommu_domain(struct vm *vm) 1932 { 1933 1934 return (vm->iommu); 1935 } 1936 1937 int 1938 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1939 bool from_idle) 1940 { 1941 int error; 1942 struct vcpu *vcpu; 1943 1944 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1945 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 1946 1947 vcpu = &vm->vcpu[vcpuid]; 1948 1949 vcpu_lock(vcpu); 1950 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1951 vcpu_unlock(vcpu); 1952 1953 return (error); 1954 } 1955 1956 enum vcpu_state 1957 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 1958 { 1959 struct vcpu *vcpu; 1960 enum vcpu_state state; 1961 1962 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1963 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 1964 1965 vcpu = &vm->vcpu[vcpuid]; 1966 1967 vcpu_lock(vcpu); 1968 state = vcpu->state; 1969 if (hostcpu != NULL) 1970 *hostcpu = vcpu->hostcpu; 1971 vcpu_unlock(vcpu); 1972 1973 return (state); 1974 } 1975 1976 int 1977 vm_activate_cpu(struct vm *vm, int vcpuid) 1978 { 1979 1980 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1981 return (EINVAL); 1982 1983 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 1984 return (EBUSY); 1985 1986 VCPU_CTR0(vm, vcpuid, "activated"); 1987 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 1988 return (0); 1989 } 1990 1991 cpuset_t 1992 vm_active_cpus(struct vm *vm) 1993 { 1994 1995 return (vm->active_cpus); 1996 } 1997 1998 cpuset_t 1999 vm_suspended_cpus(struct vm *vm) 2000 { 2001 2002 return (vm->suspended_cpus); 2003 } 2004 2005 void * 2006 vcpu_stats(struct vm *vm, int vcpuid) 2007 { 2008 2009 return (vm->vcpu[vcpuid].stats); 2010 } 2011 2012 int 2013 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2014 { 2015 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2016 return (EINVAL); 2017 2018 *state = vm->vcpu[vcpuid].x2apic_state; 2019 2020 return (0); 2021 } 2022 2023 int 2024 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2025 { 2026 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2027 return (EINVAL); 2028 2029 if (state >= X2APIC_STATE_LAST) 2030 return (EINVAL); 2031 2032 vm->vcpu[vcpuid].x2apic_state = state; 2033 2034 vlapic_set_x2apic_state(vm, vcpuid, state); 2035 2036 return (0); 2037 } 2038 2039 /* 2040 * This function is called to ensure that a vcpu "sees" a pending event 2041 * as soon as possible: 2042 * - If the vcpu thread is sleeping then it is woken up. 2043 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2044 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2045 */ 2046 void 2047 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2048 { 2049 int hostcpu; 2050 struct vcpu *vcpu; 2051 2052 vcpu = &vm->vcpu[vcpuid]; 2053 2054 vcpu_lock(vcpu); 2055 hostcpu = vcpu->hostcpu; 2056 if (vcpu->state == VCPU_RUNNING) { 2057 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2058 if (hostcpu != curcpu) { 2059 if (lapic_intr) { 2060 vlapic_post_intr(vcpu->vlapic, hostcpu, 2061 vmm_ipinum); 2062 } else { 2063 ipi_cpu(hostcpu, vmm_ipinum); 2064 } 2065 } else { 2066 /* 2067 * If the 'vcpu' is running on 'curcpu' then it must 2068 * be sending a notification to itself (e.g. SELF_IPI). 2069 * The pending event will be picked up when the vcpu 2070 * transitions back to guest context. 2071 */ 2072 } 2073 } else { 2074 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2075 "with hostcpu %d", vcpu->state, hostcpu)); 2076 if (vcpu->state == VCPU_SLEEPING) 2077 wakeup_one(vcpu); 2078 } 2079 vcpu_unlock(vcpu); 2080 } 2081 2082 struct vmspace * 2083 vm_get_vmspace(struct vm *vm) 2084 { 2085 2086 return (vm->vmspace); 2087 } 2088 2089 int 2090 vm_apicid2vcpuid(struct vm *vm, int apicid) 2091 { 2092 /* 2093 * XXX apic id is assumed to be numerically identical to vcpu id 2094 */ 2095 return (apicid); 2096 } 2097 2098 void 2099 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2100 vm_rendezvous_func_t func, void *arg) 2101 { 2102 int i; 2103 2104 /* 2105 * Enforce that this function is called without any locks 2106 */ 2107 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2108 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2109 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2110 2111 restart: 2112 mtx_lock(&vm->rendezvous_mtx); 2113 if (vm->rendezvous_func != NULL) { 2114 /* 2115 * If a rendezvous is already in progress then we need to 2116 * call the rendezvous handler in case this 'vcpuid' is one 2117 * of the targets of the rendezvous. 2118 */ 2119 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2120 mtx_unlock(&vm->rendezvous_mtx); 2121 vm_handle_rendezvous(vm, vcpuid); 2122 goto restart; 2123 } 2124 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2125 "rendezvous is still in progress")); 2126 2127 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2128 vm->rendezvous_req_cpus = dest; 2129 CPU_ZERO(&vm->rendezvous_done_cpus); 2130 vm->rendezvous_arg = arg; 2131 vm_set_rendezvous_func(vm, func); 2132 mtx_unlock(&vm->rendezvous_mtx); 2133 2134 /* 2135 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2136 * vcpus so they handle the rendezvous as soon as possible. 2137 */ 2138 for (i = 0; i < VM_MAXCPU; i++) { 2139 if (CPU_ISSET(i, &dest)) 2140 vcpu_notify_event(vm, i, false); 2141 } 2142 2143 vm_handle_rendezvous(vm, vcpuid); 2144 } 2145 2146 struct vatpic * 2147 vm_atpic(struct vm *vm) 2148 { 2149 return (vm->vatpic); 2150 } 2151 2152 struct vatpit * 2153 vm_atpit(struct vm *vm) 2154 { 2155 return (vm->vatpit); 2156 } 2157 2158 enum vm_reg_name 2159 vm_segment_name(int seg) 2160 { 2161 static enum vm_reg_name seg_names[] = { 2162 VM_REG_GUEST_ES, 2163 VM_REG_GUEST_CS, 2164 VM_REG_GUEST_SS, 2165 VM_REG_GUEST_DS, 2166 VM_REG_GUEST_FS, 2167 VM_REG_GUEST_GS 2168 }; 2169 2170 KASSERT(seg >= 0 && seg < nitems(seg_names), 2171 ("%s: invalid segment encoding %d", __func__, seg)); 2172 return (seg_names[seg]); 2173 } 2174 2175 void 2176 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2177 int num_copyinfo) 2178 { 2179 int idx; 2180 2181 for (idx = 0; idx < num_copyinfo; idx++) { 2182 if (copyinfo[idx].cookie != NULL) 2183 vm_gpa_release(copyinfo[idx].cookie); 2184 } 2185 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2186 } 2187 2188 int 2189 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2190 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2191 int num_copyinfo) 2192 { 2193 int error, idx, nused; 2194 size_t n, off, remaining; 2195 void *hva, *cookie; 2196 uint64_t gpa; 2197 2198 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2199 2200 nused = 0; 2201 remaining = len; 2202 while (remaining > 0) { 2203 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2204 error = vmm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa); 2205 if (error) 2206 return (error); 2207 off = gpa & PAGE_MASK; 2208 n = min(remaining, PAGE_SIZE - off); 2209 copyinfo[nused].gpa = gpa; 2210 copyinfo[nused].len = n; 2211 remaining -= n; 2212 gla += n; 2213 nused++; 2214 } 2215 2216 for (idx = 0; idx < nused; idx++) { 2217 hva = vm_gpa_hold(vm, copyinfo[idx].gpa, copyinfo[idx].len, 2218 prot, &cookie); 2219 if (hva == NULL) 2220 break; 2221 copyinfo[idx].hva = hva; 2222 copyinfo[idx].cookie = cookie; 2223 } 2224 2225 if (idx != nused) { 2226 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2227 return (-1); 2228 } else { 2229 return (0); 2230 } 2231 } 2232 2233 void 2234 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2235 size_t len) 2236 { 2237 char *dst; 2238 int idx; 2239 2240 dst = kaddr; 2241 idx = 0; 2242 while (len > 0) { 2243 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2244 len -= copyinfo[idx].len; 2245 dst += copyinfo[idx].len; 2246 idx++; 2247 } 2248 } 2249 2250 void 2251 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2252 struct vm_copyinfo *copyinfo, size_t len) 2253 { 2254 const char *src; 2255 int idx; 2256 2257 src = kaddr; 2258 idx = 0; 2259 while (len > 0) { 2260 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2261 len -= copyinfo[idx].len; 2262 src += copyinfo[idx].len; 2263 idx++; 2264 } 2265 } 2266 2267 /* 2268 * Return the amount of in-use and wired memory for the VM. Since 2269 * these are global stats, only return the values with for vCPU 0 2270 */ 2271 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2272 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2273 2274 static void 2275 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2276 { 2277 2278 if (vcpu == 0) { 2279 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2280 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2281 } 2282 } 2283 2284 static void 2285 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2286 { 2287 2288 if (vcpu == 0) { 2289 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2290 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2291 } 2292 } 2293 2294 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2295 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2296