1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/module.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/pcpu.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/systm.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_page.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_map.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_param.h> 56 57 #include <machine/cpu.h> 58 #include <machine/pcb.h> 59 #include <machine/smp.h> 60 #include <machine/md_var.h> 61 #include <x86/psl.h> 62 #include <x86/apicreg.h> 63 64 #include <machine/vmm.h> 65 #include <machine/vmm_dev.h> 66 #include <machine/vmm_instruction_emul.h> 67 68 #include "vmm_ioport.h" 69 #include "vmm_ktr.h" 70 #include "vmm_host.h" 71 #include "vmm_mem.h" 72 #include "vmm_util.h" 73 #include "vatpic.h" 74 #include "vatpit.h" 75 #include "vhpet.h" 76 #include "vioapic.h" 77 #include "vlapic.h" 78 #include "vpmtmr.h" 79 #include "vrtc.h" 80 #include "vmm_stat.h" 81 #include "vmm_lapic.h" 82 83 #include "io/ppt.h" 84 #include "io/iommu.h" 85 86 struct vlapic; 87 88 /* 89 * Initialization: 90 * (a) allocated when vcpu is created 91 * (i) initialized when vcpu is created and when it is reinitialized 92 * (o) initialized the first time the vcpu is created 93 * (x) initialized before use 94 */ 95 struct vcpu { 96 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 97 enum vcpu_state state; /* (o) vcpu state */ 98 int hostcpu; /* (o) vcpu's host cpu */ 99 int reqidle; /* (i) request vcpu to idle */ 100 struct vlapic *vlapic; /* (i) APIC device model */ 101 enum x2apic_state x2apic_state; /* (i) APIC mode */ 102 uint64_t exitintinfo; /* (i) events pending at VM exit */ 103 int nmi_pending; /* (i) NMI pending */ 104 int extint_pending; /* (i) INTR pending */ 105 int exception_pending; /* (i) exception pending */ 106 int exc_vector; /* (x) exception collateral */ 107 int exc_errcode_valid; 108 uint32_t exc_errcode; 109 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 110 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 111 void *stats; /* (a,i) statistics */ 112 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 113 uint64_t nextrip; /* (x) next instruction to execute */ 114 }; 115 116 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 117 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 118 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 119 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 120 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 121 122 struct mem_seg { 123 size_t len; 124 bool sysmem; 125 struct vm_object *object; 126 }; 127 #define VM_MAX_MEMSEGS 3 128 129 struct mem_map { 130 vm_paddr_t gpa; 131 size_t len; 132 vm_ooffset_t segoff; 133 int segid; 134 int prot; 135 int flags; 136 }; 137 #define VM_MAX_MEMMAPS 4 138 139 /* 140 * Initialization: 141 * (o) initialized the first time the VM is created 142 * (i) initialized when VM is created and when it is reinitialized 143 * (x) initialized before use 144 */ 145 struct vm { 146 void *cookie; /* (i) cpu-specific data */ 147 void *iommu; /* (x) iommu-specific data */ 148 struct vhpet *vhpet; /* (i) virtual HPET */ 149 struct vioapic *vioapic; /* (i) virtual ioapic */ 150 struct vatpic *vatpic; /* (i) virtual atpic */ 151 struct vatpit *vatpit; /* (i) virtual atpit */ 152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 153 struct vrtc *vrtc; /* (o) virtual RTC */ 154 volatile cpuset_t active_cpus; /* (i) active vcpus */ 155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 156 int suspend; /* (i) stop VM execution */ 157 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 158 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 159 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 160 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 161 void *rendezvous_arg; /* (x) rendezvous func/arg */ 162 vm_rendezvous_func_t rendezvous_func; 163 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 164 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 165 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 166 struct vmspace *vmspace; /* (o) guest's address space */ 167 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 168 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 169 /* The following describe the vm cpu topology */ 170 uint16_t sockets; /* (o) num of sockets */ 171 uint16_t cores; /* (o) num of cores/socket */ 172 uint16_t threads; /* (o) num of threads/core */ 173 uint16_t maxcpus; /* (o) max pluggable cpus */ 174 }; 175 176 static int vmm_initialized; 177 178 static struct vmm_ops *ops; 179 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 180 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 181 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 182 183 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 184 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ 185 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) 186 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 187 #define VMSPACE_ALLOC(min, max) \ 188 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 189 #define VMSPACE_FREE(vmspace) \ 190 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 191 #define VMGETREG(vmi, vcpu, num, retval) \ 192 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 193 #define VMSETREG(vmi, vcpu, num, val) \ 194 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 195 #define VMGETDESC(vmi, vcpu, num, desc) \ 196 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 197 #define VMSETDESC(vmi, vcpu, num, desc) \ 198 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 199 #define VMGETCAP(vmi, vcpu, num, retval) \ 200 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 201 #define VMSETCAP(vmi, vcpu, num, val) \ 202 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 203 #define VLAPIC_INIT(vmi, vcpu) \ 204 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 205 #define VLAPIC_CLEANUP(vmi, vlapic) \ 206 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 207 208 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 209 #define fpu_stop_emulating() clts() 210 211 SDT_PROVIDER_DEFINE(vmm); 212 213 static MALLOC_DEFINE(M_VM, "vm", "vm"); 214 215 /* statistics */ 216 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 217 218 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 219 220 /* 221 * Halt the guest if all vcpus are executing a HLT instruction with 222 * interrupts disabled. 223 */ 224 static int halt_detection_enabled = 1; 225 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 226 &halt_detection_enabled, 0, 227 "Halt VM if all vcpus execute HLT with interrupts disabled"); 228 229 static int vmm_ipinum; 230 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 231 "IPI vector used for vcpu notifications"); 232 233 static int trace_guest_exceptions; 234 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 235 &trace_guest_exceptions, 0, 236 "Trap into hypervisor on all guest exceptions and reflect them back"); 237 238 static void vm_free_memmap(struct vm *vm, int ident); 239 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 240 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 241 242 #ifdef KTR 243 static const char * 244 vcpu_state2str(enum vcpu_state state) 245 { 246 247 switch (state) { 248 case VCPU_IDLE: 249 return ("idle"); 250 case VCPU_FROZEN: 251 return ("frozen"); 252 case VCPU_RUNNING: 253 return ("running"); 254 case VCPU_SLEEPING: 255 return ("sleeping"); 256 default: 257 return ("unknown"); 258 } 259 } 260 #endif 261 262 static void 263 vcpu_cleanup(struct vm *vm, int i, bool destroy) 264 { 265 struct vcpu *vcpu = &vm->vcpu[i]; 266 267 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 268 if (destroy) { 269 vmm_stat_free(vcpu->stats); 270 fpu_save_area_free(vcpu->guestfpu); 271 } 272 } 273 274 static void 275 vcpu_init(struct vm *vm, int vcpu_id, bool create) 276 { 277 struct vcpu *vcpu; 278 279 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 280 ("vcpu_init: invalid vcpu %d", vcpu_id)); 281 282 vcpu = &vm->vcpu[vcpu_id]; 283 284 if (create) { 285 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 286 "initialized", vcpu_id)); 287 vcpu_lock_init(vcpu); 288 vcpu->state = VCPU_IDLE; 289 vcpu->hostcpu = NOCPU; 290 vcpu->guestfpu = fpu_save_area_alloc(); 291 vcpu->stats = vmm_stat_alloc(); 292 } 293 294 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 295 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 296 vcpu->reqidle = 0; 297 vcpu->exitintinfo = 0; 298 vcpu->nmi_pending = 0; 299 vcpu->extint_pending = 0; 300 vcpu->exception_pending = 0; 301 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 302 fpu_save_area_reset(vcpu->guestfpu); 303 vmm_stat_init(vcpu->stats); 304 } 305 306 int 307 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 308 { 309 310 return (trace_guest_exceptions); 311 } 312 313 struct vm_exit * 314 vm_exitinfo(struct vm *vm, int cpuid) 315 { 316 struct vcpu *vcpu; 317 318 if (cpuid < 0 || cpuid >= vm->maxcpus) 319 panic("vm_exitinfo: invalid cpuid %d", cpuid); 320 321 vcpu = &vm->vcpu[cpuid]; 322 323 return (&vcpu->exitinfo); 324 } 325 326 static void 327 vmm_resume(void) 328 { 329 VMM_RESUME(); 330 } 331 332 static int 333 vmm_init(void) 334 { 335 int error; 336 337 vmm_host_state_init(); 338 339 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 340 &IDTVEC(justreturn)); 341 if (vmm_ipinum < 0) 342 vmm_ipinum = IPI_AST; 343 344 error = vmm_mem_init(); 345 if (error) 346 return (error); 347 348 if (vmm_is_intel()) 349 ops = &vmm_ops_intel; 350 else if (vmm_is_amd()) 351 ops = &vmm_ops_amd; 352 else 353 return (ENXIO); 354 355 vmm_resume_p = vmm_resume; 356 357 return (VMM_INIT(vmm_ipinum)); 358 } 359 360 static int 361 vmm_handler(module_t mod, int what, void *arg) 362 { 363 int error; 364 365 switch (what) { 366 case MOD_LOAD: 367 vmmdev_init(); 368 error = vmm_init(); 369 if (error == 0) 370 vmm_initialized = 1; 371 break; 372 case MOD_UNLOAD: 373 error = vmmdev_cleanup(); 374 if (error == 0) { 375 vmm_resume_p = NULL; 376 iommu_cleanup(); 377 if (vmm_ipinum != IPI_AST) 378 lapic_ipi_free(vmm_ipinum); 379 error = VMM_CLEANUP(); 380 /* 381 * Something bad happened - prevent new 382 * VMs from being created 383 */ 384 if (error) 385 vmm_initialized = 0; 386 } 387 break; 388 default: 389 error = 0; 390 break; 391 } 392 return (error); 393 } 394 395 static moduledata_t vmm_kmod = { 396 "vmm", 397 vmm_handler, 398 NULL 399 }; 400 401 /* 402 * vmm initialization has the following dependencies: 403 * 404 * - VT-x initialization requires smp_rendezvous() and therefore must happen 405 * after SMP is fully functional (after SI_SUB_SMP). 406 */ 407 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 408 MODULE_VERSION(vmm, 1); 409 410 static void 411 vm_init(struct vm *vm, bool create) 412 { 413 int i; 414 415 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 416 vm->iommu = NULL; 417 vm->vioapic = vioapic_init(vm); 418 vm->vhpet = vhpet_init(vm); 419 vm->vatpic = vatpic_init(vm); 420 vm->vatpit = vatpit_init(vm); 421 vm->vpmtmr = vpmtmr_init(vm); 422 if (create) 423 vm->vrtc = vrtc_init(vm); 424 425 CPU_ZERO(&vm->active_cpus); 426 CPU_ZERO(&vm->debug_cpus); 427 428 vm->suspend = 0; 429 CPU_ZERO(&vm->suspended_cpus); 430 431 for (i = 0; i < vm->maxcpus; i++) 432 vcpu_init(vm, i, create); 433 } 434 435 /* 436 * The default CPU topology is a single thread per package. 437 */ 438 u_int cores_per_package = 1; 439 u_int threads_per_core = 1; 440 441 int 442 vm_create(const char *name, struct vm **retvm) 443 { 444 struct vm *vm; 445 struct vmspace *vmspace; 446 447 /* 448 * If vmm.ko could not be successfully initialized then don't attempt 449 * to create the virtual machine. 450 */ 451 if (!vmm_initialized) 452 return (ENXIO); 453 454 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 455 return (EINVAL); 456 457 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 458 if (vmspace == NULL) 459 return (ENOMEM); 460 461 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 462 strcpy(vm->name, name); 463 vm->vmspace = vmspace; 464 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 465 466 vm->sockets = 1; 467 vm->cores = cores_per_package; /* XXX backwards compatibility */ 468 vm->threads = threads_per_core; /* XXX backwards compatibility */ 469 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 470 471 vm_init(vm, true); 472 473 *retvm = vm; 474 return (0); 475 } 476 477 void 478 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 479 uint16_t *threads, uint16_t *maxcpus) 480 { 481 *sockets = vm->sockets; 482 *cores = vm->cores; 483 *threads = vm->threads; 484 *maxcpus = vm->maxcpus; 485 } 486 487 uint16_t 488 vm_get_maxcpus(struct vm *vm) 489 { 490 return (vm->maxcpus); 491 } 492 493 int 494 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 495 uint16_t threads, uint16_t maxcpus) 496 { 497 if (maxcpus != 0) 498 return (EINVAL); /* XXX remove when supported */ 499 if ((sockets * cores * threads) > vm->maxcpus) 500 return (EINVAL); 501 /* XXX need to check sockets * cores * threads == vCPU, how? */ 502 vm->sockets = sockets; 503 vm->cores = cores; 504 vm->threads = threads; 505 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 506 return(0); 507 } 508 509 static void 510 vm_cleanup(struct vm *vm, bool destroy) 511 { 512 struct mem_map *mm; 513 int i; 514 515 ppt_unassign_all(vm); 516 517 if (vm->iommu != NULL) 518 iommu_destroy_domain(vm->iommu); 519 520 if (destroy) 521 vrtc_cleanup(vm->vrtc); 522 else 523 vrtc_reset(vm->vrtc); 524 vpmtmr_cleanup(vm->vpmtmr); 525 vatpit_cleanup(vm->vatpit); 526 vhpet_cleanup(vm->vhpet); 527 vatpic_cleanup(vm->vatpic); 528 vioapic_cleanup(vm->vioapic); 529 530 for (i = 0; i < vm->maxcpus; i++) 531 vcpu_cleanup(vm, i, destroy); 532 533 VMCLEANUP(vm->cookie); 534 535 /* 536 * System memory is removed from the guest address space only when 537 * the VM is destroyed. This is because the mapping remains the same 538 * across VM reset. 539 * 540 * Device memory can be relocated by the guest (e.g. using PCI BARs) 541 * so those mappings are removed on a VM reset. 542 */ 543 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 544 mm = &vm->mem_maps[i]; 545 if (destroy || !sysmem_mapping(vm, mm)) 546 vm_free_memmap(vm, i); 547 } 548 549 if (destroy) { 550 for (i = 0; i < VM_MAX_MEMSEGS; i++) 551 vm_free_memseg(vm, i); 552 553 VMSPACE_FREE(vm->vmspace); 554 vm->vmspace = NULL; 555 } 556 } 557 558 void 559 vm_destroy(struct vm *vm) 560 { 561 vm_cleanup(vm, true); 562 free(vm, M_VM); 563 } 564 565 int 566 vm_reinit(struct vm *vm) 567 { 568 int error; 569 570 /* 571 * A virtual machine can be reset only if all vcpus are suspended. 572 */ 573 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 574 vm_cleanup(vm, false); 575 vm_init(vm, false); 576 error = 0; 577 } else { 578 error = EBUSY; 579 } 580 581 return (error); 582 } 583 584 const char * 585 vm_name(struct vm *vm) 586 { 587 return (vm->name); 588 } 589 590 int 591 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 592 { 593 vm_object_t obj; 594 595 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 596 return (ENOMEM); 597 else 598 return (0); 599 } 600 601 int 602 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 603 { 604 605 vmm_mmio_free(vm->vmspace, gpa, len); 606 return (0); 607 } 608 609 /* 610 * Return 'true' if 'gpa' is allocated in the guest address space. 611 * 612 * This function is called in the context of a running vcpu which acts as 613 * an implicit lock on 'vm->mem_maps[]'. 614 */ 615 bool 616 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 617 { 618 struct mem_map *mm; 619 int i; 620 621 #ifdef INVARIANTS 622 int hostcpu, state; 623 state = vcpu_get_state(vm, vcpuid, &hostcpu); 624 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 625 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 626 #endif 627 628 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 629 mm = &vm->mem_maps[i]; 630 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 631 return (true); /* 'gpa' is sysmem or devmem */ 632 } 633 634 if (ppt_is_mmio(vm, gpa)) 635 return (true); /* 'gpa' is pci passthru mmio */ 636 637 return (false); 638 } 639 640 int 641 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 642 { 643 struct mem_seg *seg; 644 vm_object_t obj; 645 646 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 647 return (EINVAL); 648 649 if (len == 0 || (len & PAGE_MASK)) 650 return (EINVAL); 651 652 seg = &vm->mem_segs[ident]; 653 if (seg->object != NULL) { 654 if (seg->len == len && seg->sysmem == sysmem) 655 return (EEXIST); 656 else 657 return (EINVAL); 658 } 659 660 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 661 if (obj == NULL) 662 return (ENOMEM); 663 664 seg->len = len; 665 seg->object = obj; 666 seg->sysmem = sysmem; 667 return (0); 668 } 669 670 int 671 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 672 vm_object_t *objptr) 673 { 674 struct mem_seg *seg; 675 676 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 677 return (EINVAL); 678 679 seg = &vm->mem_segs[ident]; 680 if (len) 681 *len = seg->len; 682 if (sysmem) 683 *sysmem = seg->sysmem; 684 if (objptr) 685 *objptr = seg->object; 686 return (0); 687 } 688 689 void 690 vm_free_memseg(struct vm *vm, int ident) 691 { 692 struct mem_seg *seg; 693 694 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 695 ("%s: invalid memseg ident %d", __func__, ident)); 696 697 seg = &vm->mem_segs[ident]; 698 if (seg->object != NULL) { 699 vm_object_deallocate(seg->object); 700 bzero(seg, sizeof(struct mem_seg)); 701 } 702 } 703 704 int 705 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 706 size_t len, int prot, int flags) 707 { 708 struct mem_seg *seg; 709 struct mem_map *m, *map; 710 vm_ooffset_t last; 711 int i, error; 712 713 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 714 return (EINVAL); 715 716 if (flags & ~VM_MEMMAP_F_WIRED) 717 return (EINVAL); 718 719 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 720 return (EINVAL); 721 722 seg = &vm->mem_segs[segid]; 723 if (seg->object == NULL) 724 return (EINVAL); 725 726 last = first + len; 727 if (first < 0 || first >= last || last > seg->len) 728 return (EINVAL); 729 730 if ((gpa | first | last) & PAGE_MASK) 731 return (EINVAL); 732 733 map = NULL; 734 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 735 m = &vm->mem_maps[i]; 736 if (m->len == 0) { 737 map = m; 738 break; 739 } 740 } 741 742 if (map == NULL) 743 return (ENOSPC); 744 745 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 746 len, 0, VMFS_NO_SPACE, prot, prot, 0); 747 if (error != KERN_SUCCESS) 748 return (EFAULT); 749 750 vm_object_reference(seg->object); 751 752 if (flags & VM_MEMMAP_F_WIRED) { 753 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 754 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 755 if (error != KERN_SUCCESS) { 756 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 757 return (EFAULT); 758 } 759 } 760 761 map->gpa = gpa; 762 map->len = len; 763 map->segoff = first; 764 map->segid = segid; 765 map->prot = prot; 766 map->flags = flags; 767 return (0); 768 } 769 770 int 771 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 772 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 773 { 774 struct mem_map *mm, *mmnext; 775 int i; 776 777 mmnext = NULL; 778 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 779 mm = &vm->mem_maps[i]; 780 if (mm->len == 0 || mm->gpa < *gpa) 781 continue; 782 if (mmnext == NULL || mm->gpa < mmnext->gpa) 783 mmnext = mm; 784 } 785 786 if (mmnext != NULL) { 787 *gpa = mmnext->gpa; 788 if (segid) 789 *segid = mmnext->segid; 790 if (segoff) 791 *segoff = mmnext->segoff; 792 if (len) 793 *len = mmnext->len; 794 if (prot) 795 *prot = mmnext->prot; 796 if (flags) 797 *flags = mmnext->flags; 798 return (0); 799 } else { 800 return (ENOENT); 801 } 802 } 803 804 static void 805 vm_free_memmap(struct vm *vm, int ident) 806 { 807 struct mem_map *mm; 808 int error; 809 810 mm = &vm->mem_maps[ident]; 811 if (mm->len) { 812 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 813 mm->gpa + mm->len); 814 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 815 __func__, error)); 816 bzero(mm, sizeof(struct mem_map)); 817 } 818 } 819 820 static __inline bool 821 sysmem_mapping(struct vm *vm, struct mem_map *mm) 822 { 823 824 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 825 return (true); 826 else 827 return (false); 828 } 829 830 vm_paddr_t 831 vmm_sysmem_maxaddr(struct vm *vm) 832 { 833 struct mem_map *mm; 834 vm_paddr_t maxaddr; 835 int i; 836 837 maxaddr = 0; 838 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 839 mm = &vm->mem_maps[i]; 840 if (sysmem_mapping(vm, mm)) { 841 if (maxaddr < mm->gpa + mm->len) 842 maxaddr = mm->gpa + mm->len; 843 } 844 } 845 return (maxaddr); 846 } 847 848 static void 849 vm_iommu_modify(struct vm *vm, boolean_t map) 850 { 851 int i, sz; 852 vm_paddr_t gpa, hpa; 853 struct mem_map *mm; 854 void *vp, *cookie, *host_domain; 855 856 sz = PAGE_SIZE; 857 host_domain = iommu_host_domain(); 858 859 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 860 mm = &vm->mem_maps[i]; 861 if (!sysmem_mapping(vm, mm)) 862 continue; 863 864 if (map) { 865 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 866 ("iommu map found invalid memmap %#lx/%#lx/%#x", 867 mm->gpa, mm->len, mm->flags)); 868 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 869 continue; 870 mm->flags |= VM_MEMMAP_F_IOMMU; 871 } else { 872 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 873 continue; 874 mm->flags &= ~VM_MEMMAP_F_IOMMU; 875 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 876 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 877 mm->gpa, mm->len, mm->flags)); 878 } 879 880 gpa = mm->gpa; 881 while (gpa < mm->gpa + mm->len) { 882 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 883 &cookie); 884 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 885 vm_name(vm), gpa)); 886 887 vm_gpa_release(cookie); 888 889 hpa = DMAP_TO_PHYS((uintptr_t)vp); 890 if (map) { 891 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 892 iommu_remove_mapping(host_domain, hpa, sz); 893 } else { 894 iommu_remove_mapping(vm->iommu, gpa, sz); 895 iommu_create_mapping(host_domain, hpa, hpa, sz); 896 } 897 898 gpa += PAGE_SIZE; 899 } 900 } 901 902 /* 903 * Invalidate the cached translations associated with the domain 904 * from which pages were removed. 905 */ 906 if (map) 907 iommu_invalidate_tlb(host_domain); 908 else 909 iommu_invalidate_tlb(vm->iommu); 910 } 911 912 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 913 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 914 915 int 916 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 917 { 918 int error; 919 920 error = ppt_unassign_device(vm, bus, slot, func); 921 if (error) 922 return (error); 923 924 if (ppt_assigned_devices(vm) == 0) 925 vm_iommu_unmap(vm); 926 927 return (0); 928 } 929 930 int 931 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 932 { 933 int error; 934 vm_paddr_t maxaddr; 935 936 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 937 if (ppt_assigned_devices(vm) == 0) { 938 KASSERT(vm->iommu == NULL, 939 ("vm_assign_pptdev: iommu must be NULL")); 940 maxaddr = vmm_sysmem_maxaddr(vm); 941 vm->iommu = iommu_create_domain(maxaddr); 942 if (vm->iommu == NULL) 943 return (ENXIO); 944 vm_iommu_map(vm); 945 } 946 947 error = ppt_assign_device(vm, bus, slot, func); 948 return (error); 949 } 950 951 void * 952 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 953 void **cookie) 954 { 955 int i, count, pageoff; 956 struct mem_map *mm; 957 vm_page_t m; 958 #ifdef INVARIANTS 959 /* 960 * All vcpus are frozen by ioctls that modify the memory map 961 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 962 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 963 */ 964 int state; 965 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 966 __func__, vcpuid)); 967 for (i = 0; i < vm->maxcpus; i++) { 968 if (vcpuid != -1 && vcpuid != i) 969 continue; 970 state = vcpu_get_state(vm, i, NULL); 971 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 972 __func__, state)); 973 } 974 #endif 975 pageoff = gpa & PAGE_MASK; 976 if (len > PAGE_SIZE - pageoff) 977 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 978 979 count = 0; 980 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 981 mm = &vm->mem_maps[i]; 982 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 983 gpa < mm->gpa + mm->len) { 984 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 985 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 986 break; 987 } 988 } 989 990 if (count == 1) { 991 *cookie = m; 992 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 993 } else { 994 *cookie = NULL; 995 return (NULL); 996 } 997 } 998 999 void 1000 vm_gpa_release(void *cookie) 1001 { 1002 vm_page_t m = cookie; 1003 1004 vm_page_lock(m); 1005 vm_page_unhold(m); 1006 vm_page_unlock(m); 1007 } 1008 1009 int 1010 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1011 { 1012 1013 if (vcpu < 0 || vcpu >= vm->maxcpus) 1014 return (EINVAL); 1015 1016 if (reg >= VM_REG_LAST) 1017 return (EINVAL); 1018 1019 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 1020 } 1021 1022 int 1023 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1024 { 1025 struct vcpu *vcpu; 1026 int error; 1027 1028 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1029 return (EINVAL); 1030 1031 if (reg >= VM_REG_LAST) 1032 return (EINVAL); 1033 1034 error = VMSETREG(vm->cookie, vcpuid, reg, val); 1035 if (error || reg != VM_REG_GUEST_RIP) 1036 return (error); 1037 1038 /* Set 'nextrip' to match the value of %rip */ 1039 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1040 vcpu = &vm->vcpu[vcpuid]; 1041 vcpu->nextrip = val; 1042 return (0); 1043 } 1044 1045 static boolean_t 1046 is_descriptor_table(int reg) 1047 { 1048 1049 switch (reg) { 1050 case VM_REG_GUEST_IDTR: 1051 case VM_REG_GUEST_GDTR: 1052 return (TRUE); 1053 default: 1054 return (FALSE); 1055 } 1056 } 1057 1058 static boolean_t 1059 is_segment_register(int reg) 1060 { 1061 1062 switch (reg) { 1063 case VM_REG_GUEST_ES: 1064 case VM_REG_GUEST_CS: 1065 case VM_REG_GUEST_SS: 1066 case VM_REG_GUEST_DS: 1067 case VM_REG_GUEST_FS: 1068 case VM_REG_GUEST_GS: 1069 case VM_REG_GUEST_TR: 1070 case VM_REG_GUEST_LDTR: 1071 return (TRUE); 1072 default: 1073 return (FALSE); 1074 } 1075 } 1076 1077 int 1078 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1079 struct seg_desc *desc) 1080 { 1081 1082 if (vcpu < 0 || vcpu >= vm->maxcpus) 1083 return (EINVAL); 1084 1085 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1086 return (EINVAL); 1087 1088 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 1089 } 1090 1091 int 1092 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1093 struct seg_desc *desc) 1094 { 1095 if (vcpu < 0 || vcpu >= vm->maxcpus) 1096 return (EINVAL); 1097 1098 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1099 return (EINVAL); 1100 1101 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 1102 } 1103 1104 static void 1105 restore_guest_fpustate(struct vcpu *vcpu) 1106 { 1107 1108 /* flush host state to the pcb */ 1109 fpuexit(curthread); 1110 1111 /* restore guest FPU state */ 1112 fpu_stop_emulating(); 1113 fpurestore(vcpu->guestfpu); 1114 1115 /* restore guest XCR0 if XSAVE is enabled in the host */ 1116 if (rcr4() & CR4_XSAVE) 1117 load_xcr(0, vcpu->guest_xcr0); 1118 1119 /* 1120 * The FPU is now "dirty" with the guest's state so turn on emulation 1121 * to trap any access to the FPU by the host. 1122 */ 1123 fpu_start_emulating(); 1124 } 1125 1126 static void 1127 save_guest_fpustate(struct vcpu *vcpu) 1128 { 1129 1130 if ((rcr0() & CR0_TS) == 0) 1131 panic("fpu emulation not enabled in host!"); 1132 1133 /* save guest XCR0 and restore host XCR0 */ 1134 if (rcr4() & CR4_XSAVE) { 1135 vcpu->guest_xcr0 = rxcr(0); 1136 load_xcr(0, vmm_get_host_xcr0()); 1137 } 1138 1139 /* save guest FPU state */ 1140 fpu_stop_emulating(); 1141 fpusave(vcpu->guestfpu); 1142 fpu_start_emulating(); 1143 } 1144 1145 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1146 1147 static int 1148 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1149 bool from_idle) 1150 { 1151 struct vcpu *vcpu; 1152 int error; 1153 1154 vcpu = &vm->vcpu[vcpuid]; 1155 vcpu_assert_locked(vcpu); 1156 1157 /* 1158 * State transitions from the vmmdev_ioctl() must always begin from 1159 * the VCPU_IDLE state. This guarantees that there is only a single 1160 * ioctl() operating on a vcpu at any point. 1161 */ 1162 if (from_idle) { 1163 while (vcpu->state != VCPU_IDLE) { 1164 vcpu->reqidle = 1; 1165 vcpu_notify_event_locked(vcpu, false); 1166 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1167 "idle requested", vcpu_state2str(vcpu->state)); 1168 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1169 } 1170 } else { 1171 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1172 "vcpu idle state")); 1173 } 1174 1175 if (vcpu->state == VCPU_RUNNING) { 1176 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1177 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1178 } else { 1179 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1180 "vcpu that is not running", vcpu->hostcpu)); 1181 } 1182 1183 /* 1184 * The following state transitions are allowed: 1185 * IDLE -> FROZEN -> IDLE 1186 * FROZEN -> RUNNING -> FROZEN 1187 * FROZEN -> SLEEPING -> FROZEN 1188 */ 1189 switch (vcpu->state) { 1190 case VCPU_IDLE: 1191 case VCPU_RUNNING: 1192 case VCPU_SLEEPING: 1193 error = (newstate != VCPU_FROZEN); 1194 break; 1195 case VCPU_FROZEN: 1196 error = (newstate == VCPU_FROZEN); 1197 break; 1198 default: 1199 error = 1; 1200 break; 1201 } 1202 1203 if (error) 1204 return (EBUSY); 1205 1206 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1207 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1208 1209 vcpu->state = newstate; 1210 if (newstate == VCPU_RUNNING) 1211 vcpu->hostcpu = curcpu; 1212 else 1213 vcpu->hostcpu = NOCPU; 1214 1215 if (newstate == VCPU_IDLE) 1216 wakeup(&vcpu->state); 1217 1218 return (0); 1219 } 1220 1221 static void 1222 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1223 { 1224 int error; 1225 1226 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1227 panic("Error %d setting state to %d\n", error, newstate); 1228 } 1229 1230 static void 1231 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1232 { 1233 int error; 1234 1235 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1236 panic("Error %d setting state to %d", error, newstate); 1237 } 1238 1239 static void 1240 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1241 { 1242 1243 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1244 1245 /* 1246 * Update 'rendezvous_func' and execute a write memory barrier to 1247 * ensure that it is visible across all host cpus. This is not needed 1248 * for correctness but it does ensure that all the vcpus will notice 1249 * that the rendezvous is requested immediately. 1250 */ 1251 vm->rendezvous_func = func; 1252 wmb(); 1253 } 1254 1255 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1256 do { \ 1257 if (vcpuid >= 0) \ 1258 VCPU_CTR0(vm, vcpuid, fmt); \ 1259 else \ 1260 VM_CTR0(vm, fmt); \ 1261 } while (0) 1262 1263 static void 1264 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1265 { 1266 1267 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1268 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1269 1270 mtx_lock(&vm->rendezvous_mtx); 1271 while (vm->rendezvous_func != NULL) { 1272 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1273 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1274 1275 if (vcpuid != -1 && 1276 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1277 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1278 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1279 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1280 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1281 } 1282 if (CPU_CMP(&vm->rendezvous_req_cpus, 1283 &vm->rendezvous_done_cpus) == 0) { 1284 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1285 vm_set_rendezvous_func(vm, NULL); 1286 wakeup(&vm->rendezvous_func); 1287 break; 1288 } 1289 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1290 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1291 "vmrndv", 0); 1292 } 1293 mtx_unlock(&vm->rendezvous_mtx); 1294 } 1295 1296 /* 1297 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1298 */ 1299 static int 1300 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1301 { 1302 struct vcpu *vcpu; 1303 const char *wmesg; 1304 int t, vcpu_halted, vm_halted; 1305 1306 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1307 1308 vcpu = &vm->vcpu[vcpuid]; 1309 vcpu_halted = 0; 1310 vm_halted = 0; 1311 1312 vcpu_lock(vcpu); 1313 while (1) { 1314 /* 1315 * Do a final check for pending NMI or interrupts before 1316 * really putting this thread to sleep. Also check for 1317 * software events that would cause this vcpu to wakeup. 1318 * 1319 * These interrupts/events could have happened after the 1320 * vcpu returned from VMRUN() and before it acquired the 1321 * vcpu lock above. 1322 */ 1323 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1324 break; 1325 if (vm_nmi_pending(vm, vcpuid)) 1326 break; 1327 if (!intr_disabled) { 1328 if (vm_extint_pending(vm, vcpuid) || 1329 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1330 break; 1331 } 1332 } 1333 1334 /* Don't go to sleep if the vcpu thread needs to yield */ 1335 if (vcpu_should_yield(vm, vcpuid)) 1336 break; 1337 1338 if (vcpu_debugged(vm, vcpuid)) 1339 break; 1340 1341 /* 1342 * Some Linux guests implement "halt" by having all vcpus 1343 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1344 * track of the vcpus that have entered this state. When all 1345 * vcpus enter the halted state the virtual machine is halted. 1346 */ 1347 if (intr_disabled) { 1348 wmesg = "vmhalt"; 1349 VCPU_CTR0(vm, vcpuid, "Halted"); 1350 if (!vcpu_halted && halt_detection_enabled) { 1351 vcpu_halted = 1; 1352 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1353 } 1354 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1355 vm_halted = 1; 1356 break; 1357 } 1358 } else { 1359 wmesg = "vmidle"; 1360 } 1361 1362 t = ticks; 1363 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1364 /* 1365 * XXX msleep_spin() cannot be interrupted by signals so 1366 * wake up periodically to check pending signals. 1367 */ 1368 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1369 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1370 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1371 } 1372 1373 if (vcpu_halted) 1374 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1375 1376 vcpu_unlock(vcpu); 1377 1378 if (vm_halted) 1379 vm_suspend(vm, VM_SUSPEND_HALT); 1380 1381 return (0); 1382 } 1383 1384 static int 1385 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1386 { 1387 int rv, ftype; 1388 struct vm_map *map; 1389 struct vcpu *vcpu; 1390 struct vm_exit *vme; 1391 1392 vcpu = &vm->vcpu[vcpuid]; 1393 vme = &vcpu->exitinfo; 1394 1395 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1396 __func__, vme->inst_length)); 1397 1398 ftype = vme->u.paging.fault_type; 1399 KASSERT(ftype == VM_PROT_READ || 1400 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1401 ("vm_handle_paging: invalid fault_type %d", ftype)); 1402 1403 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1404 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1405 vme->u.paging.gpa, ftype); 1406 if (rv == 0) { 1407 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1408 ftype == VM_PROT_READ ? "accessed" : "dirty", 1409 vme->u.paging.gpa); 1410 goto done; 1411 } 1412 } 1413 1414 map = &vm->vmspace->vm_map; 1415 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1416 1417 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1418 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1419 1420 if (rv != KERN_SUCCESS) 1421 return (EFAULT); 1422 done: 1423 return (0); 1424 } 1425 1426 static int 1427 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1428 { 1429 struct vie *vie; 1430 struct vcpu *vcpu; 1431 struct vm_exit *vme; 1432 uint64_t gla, gpa, cs_base; 1433 struct vm_guest_paging *paging; 1434 mem_region_read_t mread; 1435 mem_region_write_t mwrite; 1436 enum vm_cpu_mode cpu_mode; 1437 int cs_d, error, fault; 1438 1439 vcpu = &vm->vcpu[vcpuid]; 1440 vme = &vcpu->exitinfo; 1441 1442 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1443 __func__, vme->inst_length)); 1444 1445 gla = vme->u.inst_emul.gla; 1446 gpa = vme->u.inst_emul.gpa; 1447 cs_base = vme->u.inst_emul.cs_base; 1448 cs_d = vme->u.inst_emul.cs_d; 1449 vie = &vme->u.inst_emul.vie; 1450 paging = &vme->u.inst_emul.paging; 1451 cpu_mode = paging->cpu_mode; 1452 1453 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1454 1455 /* Fetch, decode and emulate the faulting instruction */ 1456 if (vie->num_valid == 0) { 1457 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1458 cs_base, VIE_INST_SIZE, vie, &fault); 1459 } else { 1460 /* 1461 * The instruction bytes have already been copied into 'vie' 1462 */ 1463 error = fault = 0; 1464 } 1465 if (error || fault) 1466 return (error); 1467 1468 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1469 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1470 vme->rip + cs_base); 1471 *retu = true; /* dump instruction bytes in userspace */ 1472 return (0); 1473 } 1474 1475 /* 1476 * Update 'nextrip' based on the length of the emulated instruction. 1477 */ 1478 vme->inst_length = vie->num_processed; 1479 vcpu->nextrip += vie->num_processed; 1480 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1481 "decoding", vcpu->nextrip); 1482 1483 /* return to userland unless this is an in-kernel emulated device */ 1484 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1485 mread = lapic_mmio_read; 1486 mwrite = lapic_mmio_write; 1487 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1488 mread = vioapic_mmio_read; 1489 mwrite = vioapic_mmio_write; 1490 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1491 mread = vhpet_mmio_read; 1492 mwrite = vhpet_mmio_write; 1493 } else { 1494 *retu = true; 1495 return (0); 1496 } 1497 1498 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1499 mread, mwrite, retu); 1500 1501 return (error); 1502 } 1503 1504 static int 1505 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1506 { 1507 int i, done; 1508 struct vcpu *vcpu; 1509 1510 done = 0; 1511 vcpu = &vm->vcpu[vcpuid]; 1512 1513 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1514 1515 /* 1516 * Wait until all 'active_cpus' have suspended themselves. 1517 * 1518 * Since a VM may be suspended at any time including when one or 1519 * more vcpus are doing a rendezvous we need to call the rendezvous 1520 * handler while we are waiting to prevent a deadlock. 1521 */ 1522 vcpu_lock(vcpu); 1523 while (1) { 1524 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1525 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1526 break; 1527 } 1528 1529 if (vm->rendezvous_func == NULL) { 1530 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1531 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1532 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1533 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1534 } else { 1535 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1536 vcpu_unlock(vcpu); 1537 vm_handle_rendezvous(vm, vcpuid); 1538 vcpu_lock(vcpu); 1539 } 1540 } 1541 vcpu_unlock(vcpu); 1542 1543 /* 1544 * Wakeup the other sleeping vcpus and return to userspace. 1545 */ 1546 for (i = 0; i < vm->maxcpus; i++) { 1547 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1548 vcpu_notify_event(vm, i, false); 1549 } 1550 } 1551 1552 *retu = true; 1553 return (0); 1554 } 1555 1556 static int 1557 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1558 { 1559 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1560 1561 vcpu_lock(vcpu); 1562 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1563 vcpu->reqidle = 0; 1564 vcpu_unlock(vcpu); 1565 *retu = true; 1566 return (0); 1567 } 1568 1569 int 1570 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1571 { 1572 int i; 1573 1574 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1575 return (EINVAL); 1576 1577 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1578 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1579 vm->suspend, how); 1580 return (EALREADY); 1581 } 1582 1583 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1584 1585 /* 1586 * Notify all active vcpus that they are now suspended. 1587 */ 1588 for (i = 0; i < vm->maxcpus; i++) { 1589 if (CPU_ISSET(i, &vm->active_cpus)) 1590 vcpu_notify_event(vm, i, false); 1591 } 1592 1593 return (0); 1594 } 1595 1596 void 1597 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1598 { 1599 struct vm_exit *vmexit; 1600 1601 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1602 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1603 1604 vmexit = vm_exitinfo(vm, vcpuid); 1605 vmexit->rip = rip; 1606 vmexit->inst_length = 0; 1607 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1608 vmexit->u.suspended.how = vm->suspend; 1609 } 1610 1611 void 1612 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1613 { 1614 struct vm_exit *vmexit; 1615 1616 vmexit = vm_exitinfo(vm, vcpuid); 1617 vmexit->rip = rip; 1618 vmexit->inst_length = 0; 1619 vmexit->exitcode = VM_EXITCODE_DEBUG; 1620 } 1621 1622 void 1623 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1624 { 1625 struct vm_exit *vmexit; 1626 1627 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1628 1629 vmexit = vm_exitinfo(vm, vcpuid); 1630 vmexit->rip = rip; 1631 vmexit->inst_length = 0; 1632 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1633 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1634 } 1635 1636 void 1637 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1638 { 1639 struct vm_exit *vmexit; 1640 1641 vmexit = vm_exitinfo(vm, vcpuid); 1642 vmexit->rip = rip; 1643 vmexit->inst_length = 0; 1644 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1645 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1646 } 1647 1648 void 1649 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1650 { 1651 struct vm_exit *vmexit; 1652 1653 vmexit = vm_exitinfo(vm, vcpuid); 1654 vmexit->rip = rip; 1655 vmexit->inst_length = 0; 1656 vmexit->exitcode = VM_EXITCODE_BOGUS; 1657 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1658 } 1659 1660 int 1661 vm_run(struct vm *vm, struct vm_run *vmrun) 1662 { 1663 struct vm_eventinfo evinfo; 1664 int error, vcpuid; 1665 struct vcpu *vcpu; 1666 struct pcb *pcb; 1667 uint64_t tscval; 1668 struct vm_exit *vme; 1669 bool retu, intr_disabled; 1670 pmap_t pmap; 1671 1672 vcpuid = vmrun->cpuid; 1673 1674 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1675 return (EINVAL); 1676 1677 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1678 return (EINVAL); 1679 1680 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1681 return (EINVAL); 1682 1683 pmap = vmspace_pmap(vm->vmspace); 1684 vcpu = &vm->vcpu[vcpuid]; 1685 vme = &vcpu->exitinfo; 1686 evinfo.rptr = &vm->rendezvous_func; 1687 evinfo.sptr = &vm->suspend; 1688 evinfo.iptr = &vcpu->reqidle; 1689 restart: 1690 critical_enter(); 1691 1692 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1693 ("vm_run: absurd pm_active")); 1694 1695 tscval = rdtsc(); 1696 1697 pcb = PCPU_GET(curpcb); 1698 set_pcb_flags(pcb, PCB_FULL_IRET); 1699 1700 restore_guest_fpustate(vcpu); 1701 1702 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1703 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1704 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1705 1706 save_guest_fpustate(vcpu); 1707 1708 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1709 1710 critical_exit(); 1711 1712 if (error == 0) { 1713 retu = false; 1714 vcpu->nextrip = vme->rip + vme->inst_length; 1715 switch (vme->exitcode) { 1716 case VM_EXITCODE_REQIDLE: 1717 error = vm_handle_reqidle(vm, vcpuid, &retu); 1718 break; 1719 case VM_EXITCODE_SUSPENDED: 1720 error = vm_handle_suspend(vm, vcpuid, &retu); 1721 break; 1722 case VM_EXITCODE_IOAPIC_EOI: 1723 vioapic_process_eoi(vm, vcpuid, 1724 vme->u.ioapic_eoi.vector); 1725 break; 1726 case VM_EXITCODE_RENDEZVOUS: 1727 vm_handle_rendezvous(vm, vcpuid); 1728 error = 0; 1729 break; 1730 case VM_EXITCODE_HLT: 1731 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1732 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1733 break; 1734 case VM_EXITCODE_PAGING: 1735 error = vm_handle_paging(vm, vcpuid, &retu); 1736 break; 1737 case VM_EXITCODE_INST_EMUL: 1738 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1739 break; 1740 case VM_EXITCODE_INOUT: 1741 case VM_EXITCODE_INOUT_STR: 1742 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1743 break; 1744 case VM_EXITCODE_MONITOR: 1745 case VM_EXITCODE_MWAIT: 1746 case VM_EXITCODE_VMINSN: 1747 vm_inject_ud(vm, vcpuid); 1748 break; 1749 default: 1750 retu = true; /* handled in userland */ 1751 break; 1752 } 1753 } 1754 1755 if (error == 0 && retu == false) 1756 goto restart; 1757 1758 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1759 1760 /* copy the exit information */ 1761 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1762 return (error); 1763 } 1764 1765 int 1766 vm_restart_instruction(void *arg, int vcpuid) 1767 { 1768 struct vm *vm; 1769 struct vcpu *vcpu; 1770 enum vcpu_state state; 1771 uint64_t rip; 1772 int error; 1773 1774 vm = arg; 1775 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1776 return (EINVAL); 1777 1778 vcpu = &vm->vcpu[vcpuid]; 1779 state = vcpu_get_state(vm, vcpuid, NULL); 1780 if (state == VCPU_RUNNING) { 1781 /* 1782 * When a vcpu is "running" the next instruction is determined 1783 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1784 * Thus setting 'inst_length' to zero will cause the current 1785 * instruction to be restarted. 1786 */ 1787 vcpu->exitinfo.inst_length = 0; 1788 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1789 "setting inst_length to zero", vcpu->exitinfo.rip); 1790 } else if (state == VCPU_FROZEN) { 1791 /* 1792 * When a vcpu is "frozen" it is outside the critical section 1793 * around VMRUN() and 'nextrip' points to the next instruction. 1794 * Thus instruction restart is achieved by setting 'nextrip' 1795 * to the vcpu's %rip. 1796 */ 1797 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1798 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1799 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1800 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1801 vcpu->nextrip = rip; 1802 } else { 1803 panic("%s: invalid state %d", __func__, state); 1804 } 1805 return (0); 1806 } 1807 1808 int 1809 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1810 { 1811 struct vcpu *vcpu; 1812 int type, vector; 1813 1814 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1815 return (EINVAL); 1816 1817 vcpu = &vm->vcpu[vcpuid]; 1818 1819 if (info & VM_INTINFO_VALID) { 1820 type = info & VM_INTINFO_TYPE; 1821 vector = info & 0xff; 1822 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1823 return (EINVAL); 1824 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1825 return (EINVAL); 1826 if (info & VM_INTINFO_RSVD) 1827 return (EINVAL); 1828 } else { 1829 info = 0; 1830 } 1831 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1832 vcpu->exitintinfo = info; 1833 return (0); 1834 } 1835 1836 enum exc_class { 1837 EXC_BENIGN, 1838 EXC_CONTRIBUTORY, 1839 EXC_PAGEFAULT 1840 }; 1841 1842 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1843 1844 static enum exc_class 1845 exception_class(uint64_t info) 1846 { 1847 int type, vector; 1848 1849 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1850 type = info & VM_INTINFO_TYPE; 1851 vector = info & 0xff; 1852 1853 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1854 switch (type) { 1855 case VM_INTINFO_HWINTR: 1856 case VM_INTINFO_SWINTR: 1857 case VM_INTINFO_NMI: 1858 return (EXC_BENIGN); 1859 default: 1860 /* 1861 * Hardware exception. 1862 * 1863 * SVM and VT-x use identical type values to represent NMI, 1864 * hardware interrupt and software interrupt. 1865 * 1866 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1867 * for exceptions except #BP and #OF. #BP and #OF use a type 1868 * value of '5' or '6'. Therefore we don't check for explicit 1869 * values of 'type' to classify 'intinfo' into a hardware 1870 * exception. 1871 */ 1872 break; 1873 } 1874 1875 switch (vector) { 1876 case IDT_PF: 1877 case IDT_VE: 1878 return (EXC_PAGEFAULT); 1879 case IDT_DE: 1880 case IDT_TS: 1881 case IDT_NP: 1882 case IDT_SS: 1883 case IDT_GP: 1884 return (EXC_CONTRIBUTORY); 1885 default: 1886 return (EXC_BENIGN); 1887 } 1888 } 1889 1890 static int 1891 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1892 uint64_t *retinfo) 1893 { 1894 enum exc_class exc1, exc2; 1895 int type1, vector1; 1896 1897 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1898 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1899 1900 /* 1901 * If an exception occurs while attempting to call the double-fault 1902 * handler the processor enters shutdown mode (aka triple fault). 1903 */ 1904 type1 = info1 & VM_INTINFO_TYPE; 1905 vector1 = info1 & 0xff; 1906 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1907 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1908 info1, info2); 1909 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1910 *retinfo = 0; 1911 return (0); 1912 } 1913 1914 /* 1915 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1916 */ 1917 exc1 = exception_class(info1); 1918 exc2 = exception_class(info2); 1919 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1920 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1921 /* Convert nested fault into a double fault. */ 1922 *retinfo = IDT_DF; 1923 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1924 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1925 } else { 1926 /* Handle exceptions serially */ 1927 *retinfo = info2; 1928 } 1929 return (1); 1930 } 1931 1932 static uint64_t 1933 vcpu_exception_intinfo(struct vcpu *vcpu) 1934 { 1935 uint64_t info = 0; 1936 1937 if (vcpu->exception_pending) { 1938 info = vcpu->exc_vector & 0xff; 1939 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1940 if (vcpu->exc_errcode_valid) { 1941 info |= VM_INTINFO_DEL_ERRCODE; 1942 info |= (uint64_t)vcpu->exc_errcode << 32; 1943 } 1944 } 1945 return (info); 1946 } 1947 1948 int 1949 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1950 { 1951 struct vcpu *vcpu; 1952 uint64_t info1, info2; 1953 int valid; 1954 1955 KASSERT(vcpuid >= 0 && 1956 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 1957 1958 vcpu = &vm->vcpu[vcpuid]; 1959 1960 info1 = vcpu->exitintinfo; 1961 vcpu->exitintinfo = 0; 1962 1963 info2 = 0; 1964 if (vcpu->exception_pending) { 1965 info2 = vcpu_exception_intinfo(vcpu); 1966 vcpu->exception_pending = 0; 1967 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1968 vcpu->exc_vector, info2); 1969 } 1970 1971 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1972 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1973 } else if (info1 & VM_INTINFO_VALID) { 1974 *retinfo = info1; 1975 valid = 1; 1976 } else if (info2 & VM_INTINFO_VALID) { 1977 *retinfo = info2; 1978 valid = 1; 1979 } else { 1980 valid = 0; 1981 } 1982 1983 if (valid) { 1984 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1985 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1986 } 1987 1988 return (valid); 1989 } 1990 1991 int 1992 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1993 { 1994 struct vcpu *vcpu; 1995 1996 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1997 return (EINVAL); 1998 1999 vcpu = &vm->vcpu[vcpuid]; 2000 *info1 = vcpu->exitintinfo; 2001 *info2 = vcpu_exception_intinfo(vcpu); 2002 return (0); 2003 } 2004 2005 int 2006 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2007 uint32_t errcode, int restart_instruction) 2008 { 2009 struct vcpu *vcpu; 2010 uint64_t regval; 2011 int error; 2012 2013 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2014 return (EINVAL); 2015 2016 if (vector < 0 || vector >= 32) 2017 return (EINVAL); 2018 2019 /* 2020 * A double fault exception should never be injected directly into 2021 * the guest. It is a derived exception that results from specific 2022 * combinations of nested faults. 2023 */ 2024 if (vector == IDT_DF) 2025 return (EINVAL); 2026 2027 vcpu = &vm->vcpu[vcpuid]; 2028 2029 if (vcpu->exception_pending) { 2030 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2031 "pending exception %d", vector, vcpu->exc_vector); 2032 return (EBUSY); 2033 } 2034 2035 if (errcode_valid) { 2036 /* 2037 * Exceptions don't deliver an error code in real mode. 2038 */ 2039 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2040 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2041 if (!(regval & CR0_PE)) 2042 errcode_valid = 0; 2043 } 2044 2045 /* 2046 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2047 * 2048 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2049 * one instruction or incurs an exception. 2050 */ 2051 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2052 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2053 __func__, error)); 2054 2055 if (restart_instruction) 2056 vm_restart_instruction(vm, vcpuid); 2057 2058 vcpu->exception_pending = 1; 2059 vcpu->exc_vector = vector; 2060 vcpu->exc_errcode = errcode; 2061 vcpu->exc_errcode_valid = errcode_valid; 2062 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2063 return (0); 2064 } 2065 2066 void 2067 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2068 int errcode) 2069 { 2070 struct vm *vm; 2071 int error, restart_instruction; 2072 2073 vm = vmarg; 2074 restart_instruction = 1; 2075 2076 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2077 errcode, restart_instruction); 2078 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2079 } 2080 2081 void 2082 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2083 { 2084 struct vm *vm; 2085 int error; 2086 2087 vm = vmarg; 2088 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2089 error_code, cr2); 2090 2091 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2092 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2093 2094 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2095 } 2096 2097 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2098 2099 int 2100 vm_inject_nmi(struct vm *vm, int vcpuid) 2101 { 2102 struct vcpu *vcpu; 2103 2104 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2105 return (EINVAL); 2106 2107 vcpu = &vm->vcpu[vcpuid]; 2108 2109 vcpu->nmi_pending = 1; 2110 vcpu_notify_event(vm, vcpuid, false); 2111 return (0); 2112 } 2113 2114 int 2115 vm_nmi_pending(struct vm *vm, int vcpuid) 2116 { 2117 struct vcpu *vcpu; 2118 2119 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2120 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2121 2122 vcpu = &vm->vcpu[vcpuid]; 2123 2124 return (vcpu->nmi_pending); 2125 } 2126 2127 void 2128 vm_nmi_clear(struct vm *vm, int vcpuid) 2129 { 2130 struct vcpu *vcpu; 2131 2132 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2133 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2134 2135 vcpu = &vm->vcpu[vcpuid]; 2136 2137 if (vcpu->nmi_pending == 0) 2138 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2139 2140 vcpu->nmi_pending = 0; 2141 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2142 } 2143 2144 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2145 2146 int 2147 vm_inject_extint(struct vm *vm, int vcpuid) 2148 { 2149 struct vcpu *vcpu; 2150 2151 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2152 return (EINVAL); 2153 2154 vcpu = &vm->vcpu[vcpuid]; 2155 2156 vcpu->extint_pending = 1; 2157 vcpu_notify_event(vm, vcpuid, false); 2158 return (0); 2159 } 2160 2161 int 2162 vm_extint_pending(struct vm *vm, int vcpuid) 2163 { 2164 struct vcpu *vcpu; 2165 2166 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2167 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2168 2169 vcpu = &vm->vcpu[vcpuid]; 2170 2171 return (vcpu->extint_pending); 2172 } 2173 2174 void 2175 vm_extint_clear(struct vm *vm, int vcpuid) 2176 { 2177 struct vcpu *vcpu; 2178 2179 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2180 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2181 2182 vcpu = &vm->vcpu[vcpuid]; 2183 2184 if (vcpu->extint_pending == 0) 2185 panic("vm_extint_clear: inconsistent extint_pending state"); 2186 2187 vcpu->extint_pending = 0; 2188 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2189 } 2190 2191 int 2192 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2193 { 2194 if (vcpu < 0 || vcpu >= vm->maxcpus) 2195 return (EINVAL); 2196 2197 if (type < 0 || type >= VM_CAP_MAX) 2198 return (EINVAL); 2199 2200 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 2201 } 2202 2203 int 2204 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2205 { 2206 if (vcpu < 0 || vcpu >= vm->maxcpus) 2207 return (EINVAL); 2208 2209 if (type < 0 || type >= VM_CAP_MAX) 2210 return (EINVAL); 2211 2212 return (VMSETCAP(vm->cookie, vcpu, type, val)); 2213 } 2214 2215 struct vlapic * 2216 vm_lapic(struct vm *vm, int cpu) 2217 { 2218 return (vm->vcpu[cpu].vlapic); 2219 } 2220 2221 struct vioapic * 2222 vm_ioapic(struct vm *vm) 2223 { 2224 2225 return (vm->vioapic); 2226 } 2227 2228 struct vhpet * 2229 vm_hpet(struct vm *vm) 2230 { 2231 2232 return (vm->vhpet); 2233 } 2234 2235 boolean_t 2236 vmm_is_pptdev(int bus, int slot, int func) 2237 { 2238 int found, i, n; 2239 int b, s, f; 2240 char *val, *cp, *cp2; 2241 2242 /* 2243 * XXX 2244 * The length of an environment variable is limited to 128 bytes which 2245 * puts an upper limit on the number of passthru devices that may be 2246 * specified using a single environment variable. 2247 * 2248 * Work around this by scanning multiple environment variable 2249 * names instead of a single one - yuck! 2250 */ 2251 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2252 2253 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2254 found = 0; 2255 for (i = 0; names[i] != NULL && !found; i++) { 2256 cp = val = kern_getenv(names[i]); 2257 while (cp != NULL && *cp != '\0') { 2258 if ((cp2 = strchr(cp, ' ')) != NULL) 2259 *cp2 = '\0'; 2260 2261 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2262 if (n == 3 && bus == b && slot == s && func == f) { 2263 found = 1; 2264 break; 2265 } 2266 2267 if (cp2 != NULL) 2268 *cp2++ = ' '; 2269 2270 cp = cp2; 2271 } 2272 freeenv(val); 2273 } 2274 return (found); 2275 } 2276 2277 void * 2278 vm_iommu_domain(struct vm *vm) 2279 { 2280 2281 return (vm->iommu); 2282 } 2283 2284 int 2285 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2286 bool from_idle) 2287 { 2288 int error; 2289 struct vcpu *vcpu; 2290 2291 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2292 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2293 2294 vcpu = &vm->vcpu[vcpuid]; 2295 2296 vcpu_lock(vcpu); 2297 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2298 vcpu_unlock(vcpu); 2299 2300 return (error); 2301 } 2302 2303 enum vcpu_state 2304 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2305 { 2306 struct vcpu *vcpu; 2307 enum vcpu_state state; 2308 2309 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2310 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2311 2312 vcpu = &vm->vcpu[vcpuid]; 2313 2314 vcpu_lock(vcpu); 2315 state = vcpu->state; 2316 if (hostcpu != NULL) 2317 *hostcpu = vcpu->hostcpu; 2318 vcpu_unlock(vcpu); 2319 2320 return (state); 2321 } 2322 2323 int 2324 vm_activate_cpu(struct vm *vm, int vcpuid) 2325 { 2326 2327 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2328 return (EINVAL); 2329 2330 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2331 return (EBUSY); 2332 2333 VCPU_CTR0(vm, vcpuid, "activated"); 2334 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2335 return (0); 2336 } 2337 2338 int 2339 vm_suspend_cpu(struct vm *vm, int vcpuid) 2340 { 2341 int i; 2342 2343 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2344 return (EINVAL); 2345 2346 if (vcpuid == -1) { 2347 vm->debug_cpus = vm->active_cpus; 2348 for (i = 0; i < vm->maxcpus; i++) { 2349 if (CPU_ISSET(i, &vm->active_cpus)) 2350 vcpu_notify_event(vm, i, false); 2351 } 2352 } else { 2353 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2354 return (EINVAL); 2355 2356 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2357 vcpu_notify_event(vm, vcpuid, false); 2358 } 2359 return (0); 2360 } 2361 2362 int 2363 vm_resume_cpu(struct vm *vm, int vcpuid) 2364 { 2365 2366 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2367 return (EINVAL); 2368 2369 if (vcpuid == -1) { 2370 CPU_ZERO(&vm->debug_cpus); 2371 } else { 2372 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2373 return (EINVAL); 2374 2375 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2376 } 2377 return (0); 2378 } 2379 2380 int 2381 vcpu_debugged(struct vm *vm, int vcpuid) 2382 { 2383 2384 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2385 } 2386 2387 cpuset_t 2388 vm_active_cpus(struct vm *vm) 2389 { 2390 2391 return (vm->active_cpus); 2392 } 2393 2394 cpuset_t 2395 vm_debug_cpus(struct vm *vm) 2396 { 2397 2398 return (vm->debug_cpus); 2399 } 2400 2401 cpuset_t 2402 vm_suspended_cpus(struct vm *vm) 2403 { 2404 2405 return (vm->suspended_cpus); 2406 } 2407 2408 void * 2409 vcpu_stats(struct vm *vm, int vcpuid) 2410 { 2411 2412 return (vm->vcpu[vcpuid].stats); 2413 } 2414 2415 int 2416 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2417 { 2418 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2419 return (EINVAL); 2420 2421 *state = vm->vcpu[vcpuid].x2apic_state; 2422 2423 return (0); 2424 } 2425 2426 int 2427 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2428 { 2429 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2430 return (EINVAL); 2431 2432 if (state >= X2APIC_STATE_LAST) 2433 return (EINVAL); 2434 2435 vm->vcpu[vcpuid].x2apic_state = state; 2436 2437 vlapic_set_x2apic_state(vm, vcpuid, state); 2438 2439 return (0); 2440 } 2441 2442 /* 2443 * This function is called to ensure that a vcpu "sees" a pending event 2444 * as soon as possible: 2445 * - If the vcpu thread is sleeping then it is woken up. 2446 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2447 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2448 */ 2449 static void 2450 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2451 { 2452 int hostcpu; 2453 2454 hostcpu = vcpu->hostcpu; 2455 if (vcpu->state == VCPU_RUNNING) { 2456 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2457 if (hostcpu != curcpu) { 2458 if (lapic_intr) { 2459 vlapic_post_intr(vcpu->vlapic, hostcpu, 2460 vmm_ipinum); 2461 } else { 2462 ipi_cpu(hostcpu, vmm_ipinum); 2463 } 2464 } else { 2465 /* 2466 * If the 'vcpu' is running on 'curcpu' then it must 2467 * be sending a notification to itself (e.g. SELF_IPI). 2468 * The pending event will be picked up when the vcpu 2469 * transitions back to guest context. 2470 */ 2471 } 2472 } else { 2473 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2474 "with hostcpu %d", vcpu->state, hostcpu)); 2475 if (vcpu->state == VCPU_SLEEPING) 2476 wakeup_one(vcpu); 2477 } 2478 } 2479 2480 void 2481 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2482 { 2483 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2484 2485 vcpu_lock(vcpu); 2486 vcpu_notify_event_locked(vcpu, lapic_intr); 2487 vcpu_unlock(vcpu); 2488 } 2489 2490 struct vmspace * 2491 vm_get_vmspace(struct vm *vm) 2492 { 2493 2494 return (vm->vmspace); 2495 } 2496 2497 int 2498 vm_apicid2vcpuid(struct vm *vm, int apicid) 2499 { 2500 /* 2501 * XXX apic id is assumed to be numerically identical to vcpu id 2502 */ 2503 return (apicid); 2504 } 2505 2506 void 2507 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2508 vm_rendezvous_func_t func, void *arg) 2509 { 2510 int i; 2511 2512 /* 2513 * Enforce that this function is called without any locks 2514 */ 2515 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2516 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2517 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2518 2519 restart: 2520 mtx_lock(&vm->rendezvous_mtx); 2521 if (vm->rendezvous_func != NULL) { 2522 /* 2523 * If a rendezvous is already in progress then we need to 2524 * call the rendezvous handler in case this 'vcpuid' is one 2525 * of the targets of the rendezvous. 2526 */ 2527 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2528 mtx_unlock(&vm->rendezvous_mtx); 2529 vm_handle_rendezvous(vm, vcpuid); 2530 goto restart; 2531 } 2532 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2533 "rendezvous is still in progress")); 2534 2535 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2536 vm->rendezvous_req_cpus = dest; 2537 CPU_ZERO(&vm->rendezvous_done_cpus); 2538 vm->rendezvous_arg = arg; 2539 vm_set_rendezvous_func(vm, func); 2540 mtx_unlock(&vm->rendezvous_mtx); 2541 2542 /* 2543 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2544 * vcpus so they handle the rendezvous as soon as possible. 2545 */ 2546 for (i = 0; i < vm->maxcpus; i++) { 2547 if (CPU_ISSET(i, &dest)) 2548 vcpu_notify_event(vm, i, false); 2549 } 2550 2551 vm_handle_rendezvous(vm, vcpuid); 2552 } 2553 2554 struct vatpic * 2555 vm_atpic(struct vm *vm) 2556 { 2557 return (vm->vatpic); 2558 } 2559 2560 struct vatpit * 2561 vm_atpit(struct vm *vm) 2562 { 2563 return (vm->vatpit); 2564 } 2565 2566 struct vpmtmr * 2567 vm_pmtmr(struct vm *vm) 2568 { 2569 2570 return (vm->vpmtmr); 2571 } 2572 2573 struct vrtc * 2574 vm_rtc(struct vm *vm) 2575 { 2576 2577 return (vm->vrtc); 2578 } 2579 2580 enum vm_reg_name 2581 vm_segment_name(int seg) 2582 { 2583 static enum vm_reg_name seg_names[] = { 2584 VM_REG_GUEST_ES, 2585 VM_REG_GUEST_CS, 2586 VM_REG_GUEST_SS, 2587 VM_REG_GUEST_DS, 2588 VM_REG_GUEST_FS, 2589 VM_REG_GUEST_GS 2590 }; 2591 2592 KASSERT(seg >= 0 && seg < nitems(seg_names), 2593 ("%s: invalid segment encoding %d", __func__, seg)); 2594 return (seg_names[seg]); 2595 } 2596 2597 void 2598 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2599 int num_copyinfo) 2600 { 2601 int idx; 2602 2603 for (idx = 0; idx < num_copyinfo; idx++) { 2604 if (copyinfo[idx].cookie != NULL) 2605 vm_gpa_release(copyinfo[idx].cookie); 2606 } 2607 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2608 } 2609 2610 int 2611 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2612 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2613 int num_copyinfo, int *fault) 2614 { 2615 int error, idx, nused; 2616 size_t n, off, remaining; 2617 void *hva, *cookie; 2618 uint64_t gpa; 2619 2620 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2621 2622 nused = 0; 2623 remaining = len; 2624 while (remaining > 0) { 2625 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2626 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2627 if (error || *fault) 2628 return (error); 2629 off = gpa & PAGE_MASK; 2630 n = min(remaining, PAGE_SIZE - off); 2631 copyinfo[nused].gpa = gpa; 2632 copyinfo[nused].len = n; 2633 remaining -= n; 2634 gla += n; 2635 nused++; 2636 } 2637 2638 for (idx = 0; idx < nused; idx++) { 2639 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2640 copyinfo[idx].len, prot, &cookie); 2641 if (hva == NULL) 2642 break; 2643 copyinfo[idx].hva = hva; 2644 copyinfo[idx].cookie = cookie; 2645 } 2646 2647 if (idx != nused) { 2648 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2649 return (EFAULT); 2650 } else { 2651 *fault = 0; 2652 return (0); 2653 } 2654 } 2655 2656 void 2657 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2658 size_t len) 2659 { 2660 char *dst; 2661 int idx; 2662 2663 dst = kaddr; 2664 idx = 0; 2665 while (len > 0) { 2666 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2667 len -= copyinfo[idx].len; 2668 dst += copyinfo[idx].len; 2669 idx++; 2670 } 2671 } 2672 2673 void 2674 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2675 struct vm_copyinfo *copyinfo, size_t len) 2676 { 2677 const char *src; 2678 int idx; 2679 2680 src = kaddr; 2681 idx = 0; 2682 while (len > 0) { 2683 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2684 len -= copyinfo[idx].len; 2685 src += copyinfo[idx].len; 2686 idx++; 2687 } 2688 } 2689 2690 /* 2691 * Return the amount of in-use and wired memory for the VM. Since 2692 * these are global stats, only return the values with for vCPU 0 2693 */ 2694 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2695 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2696 2697 static void 2698 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2699 { 2700 2701 if (vcpu == 0) { 2702 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2703 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2704 } 2705 } 2706 2707 static void 2708 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2709 { 2710 2711 if (vcpu == 0) { 2712 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2713 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2714 } 2715 } 2716 2717 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2718 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2719