1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vmm_msr.h" 78 #include "vmm_ipi.h" 79 #include "vmm_stat.h" 80 #include "vmm_lapic.h" 81 82 #include "io/ppt.h" 83 #include "io/iommu.h" 84 85 struct vlapic; 86 87 struct vcpu { 88 int flags; 89 enum vcpu_state state; 90 struct mtx mtx; 91 int hostcpu; /* host cpuid this vcpu last ran on */ 92 uint64_t guest_msrs[VMM_MSR_NUM]; 93 struct vlapic *vlapic; 94 int vcpuid; 95 struct savefpu *guestfpu; /* guest fpu state */ 96 uint64_t guest_xcr0; 97 void *stats; 98 struct vm_exit exitinfo; 99 enum x2apic_state x2apic_state; 100 int nmi_pending; 101 int extint_pending; 102 struct vm_exception exception; 103 int exception_pending; 104 }; 105 106 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 107 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 108 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 109 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 110 111 struct mem_seg { 112 vm_paddr_t gpa; 113 size_t len; 114 boolean_t wired; 115 vm_object_t object; 116 }; 117 #define VM_MAX_MEMORY_SEGMENTS 2 118 119 struct vm { 120 void *cookie; /* processor-specific data */ 121 void *iommu; /* iommu-specific data */ 122 struct vhpet *vhpet; /* virtual HPET */ 123 struct vioapic *vioapic; /* virtual ioapic */ 124 struct vatpic *vatpic; /* virtual atpic */ 125 struct vatpit *vatpit; /* virtual atpit */ 126 struct vmspace *vmspace; /* guest's address space */ 127 struct vcpu vcpu[VM_MAXCPU]; 128 int num_mem_segs; 129 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 130 char name[VM_MAX_NAMELEN]; 131 132 /* 133 * Set of active vcpus. 134 * An active vcpu is one that has been started implicitly (BSP) or 135 * explicitly (AP) by sending it a startup ipi. 136 */ 137 volatile cpuset_t active_cpus; 138 139 struct mtx rendezvous_mtx; 140 cpuset_t rendezvous_req_cpus; 141 cpuset_t rendezvous_done_cpus; 142 void *rendezvous_arg; 143 vm_rendezvous_func_t rendezvous_func; 144 145 int suspend; 146 volatile cpuset_t suspended_cpus; 147 148 volatile cpuset_t halted_cpus; 149 }; 150 151 static int vmm_initialized; 152 153 static struct vmm_ops *ops; 154 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 155 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 156 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 157 158 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 159 #define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \ 160 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO) 161 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 162 #define VMSPACE_ALLOC(min, max) \ 163 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 164 #define VMSPACE_FREE(vmspace) \ 165 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 166 #define VMGETREG(vmi, vcpu, num, retval) \ 167 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 168 #define VMSETREG(vmi, vcpu, num, val) \ 169 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 170 #define VMGETDESC(vmi, vcpu, num, desc) \ 171 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 172 #define VMSETDESC(vmi, vcpu, num, desc) \ 173 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 174 #define VMGETCAP(vmi, vcpu, num, retval) \ 175 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 176 #define VMSETCAP(vmi, vcpu, num, val) \ 177 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 178 #define VLAPIC_INIT(vmi, vcpu) \ 179 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 180 #define VLAPIC_CLEANUP(vmi, vlapic) \ 181 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 182 183 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 184 #define fpu_stop_emulating() clts() 185 186 static MALLOC_DEFINE(M_VM, "vm", "vm"); 187 CTASSERT(VMM_MSR_NUM <= 64); /* msr_mask can keep track of up to 64 msrs */ 188 189 /* statistics */ 190 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 191 192 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 193 194 /* 195 * Halt the guest if all vcpus are executing a HLT instruction with 196 * interrupts disabled. 197 */ 198 static int halt_detection_enabled = 1; 199 TUNABLE_INT("hw.vmm.halt_detection", &halt_detection_enabled); 200 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 201 &halt_detection_enabled, 0, 202 "Halt VM if all vcpus execute HLT with interrupts disabled"); 203 204 static int vmm_ipinum; 205 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 206 "IPI vector used for vcpu notifications"); 207 208 static void 209 vcpu_cleanup(struct vm *vm, int i) 210 { 211 struct vcpu *vcpu = &vm->vcpu[i]; 212 213 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 214 vmm_stat_free(vcpu->stats); 215 fpu_save_area_free(vcpu->guestfpu); 216 } 217 218 static void 219 vcpu_init(struct vm *vm, uint32_t vcpu_id) 220 { 221 struct vcpu *vcpu; 222 223 vcpu = &vm->vcpu[vcpu_id]; 224 225 vcpu_lock_init(vcpu); 226 vcpu->hostcpu = NOCPU; 227 vcpu->vcpuid = vcpu_id; 228 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 229 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 230 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 231 vcpu->guestfpu = fpu_save_area_alloc(); 232 fpu_save_area_reset(vcpu->guestfpu); 233 vcpu->stats = vmm_stat_alloc(); 234 } 235 236 struct vm_exit * 237 vm_exitinfo(struct vm *vm, int cpuid) 238 { 239 struct vcpu *vcpu; 240 241 if (cpuid < 0 || cpuid >= VM_MAXCPU) 242 panic("vm_exitinfo: invalid cpuid %d", cpuid); 243 244 vcpu = &vm->vcpu[cpuid]; 245 246 return (&vcpu->exitinfo); 247 } 248 249 static void 250 vmm_resume(void) 251 { 252 VMM_RESUME(); 253 } 254 255 static int 256 vmm_init(void) 257 { 258 int error; 259 260 vmm_host_state_init(); 261 262 vmm_ipinum = vmm_ipi_alloc(); 263 if (vmm_ipinum == 0) 264 vmm_ipinum = IPI_AST; 265 266 error = vmm_mem_init(); 267 if (error) 268 return (error); 269 270 if (vmm_is_intel()) 271 ops = &vmm_ops_intel; 272 else if (vmm_is_amd()) 273 ops = &vmm_ops_amd; 274 else 275 return (ENXIO); 276 277 vmm_msr_init(); 278 vmm_resume_p = vmm_resume; 279 280 return (VMM_INIT(vmm_ipinum)); 281 } 282 283 static int 284 vmm_handler(module_t mod, int what, void *arg) 285 { 286 int error; 287 288 switch (what) { 289 case MOD_LOAD: 290 vmmdev_init(); 291 if (ppt_avail_devices() > 0) 292 iommu_init(); 293 error = vmm_init(); 294 if (error == 0) 295 vmm_initialized = 1; 296 break; 297 case MOD_UNLOAD: 298 error = vmmdev_cleanup(); 299 if (error == 0) { 300 vmm_resume_p = NULL; 301 iommu_cleanup(); 302 if (vmm_ipinum != IPI_AST) 303 vmm_ipi_free(vmm_ipinum); 304 error = VMM_CLEANUP(); 305 /* 306 * Something bad happened - prevent new 307 * VMs from being created 308 */ 309 if (error) 310 vmm_initialized = 0; 311 } 312 break; 313 default: 314 error = 0; 315 break; 316 } 317 return (error); 318 } 319 320 static moduledata_t vmm_kmod = { 321 "vmm", 322 vmm_handler, 323 NULL 324 }; 325 326 /* 327 * vmm initialization has the following dependencies: 328 * 329 * - iommu initialization must happen after the pci passthru driver has had 330 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 331 * 332 * - VT-x initialization requires smp_rendezvous() and therefore must happen 333 * after SMP is fully functional (after SI_SUB_SMP). 334 */ 335 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 336 MODULE_VERSION(vmm, 1); 337 338 int 339 vm_create(const char *name, struct vm **retvm) 340 { 341 int i; 342 struct vm *vm; 343 struct vmspace *vmspace; 344 345 /* 346 * If vmm.ko could not be successfully initialized then don't attempt 347 * to create the virtual machine. 348 */ 349 if (!vmm_initialized) 350 return (ENXIO); 351 352 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 353 return (EINVAL); 354 355 vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); 356 if (vmspace == NULL) 357 return (ENOMEM); 358 359 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 360 strcpy(vm->name, name); 361 vm->vmspace = vmspace; 362 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 363 vm->cookie = VMINIT(vm, vmspace_pmap(vmspace)); 364 vm->vioapic = vioapic_init(vm); 365 vm->vhpet = vhpet_init(vm); 366 vm->vatpic = vatpic_init(vm); 367 vm->vatpit = vatpit_init(vm); 368 369 for (i = 0; i < VM_MAXCPU; i++) { 370 vcpu_init(vm, i); 371 guest_msrs_init(vm, i); 372 } 373 374 *retvm = vm; 375 return (0); 376 } 377 378 static void 379 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 380 { 381 382 if (seg->object != NULL) 383 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 384 385 bzero(seg, sizeof(*seg)); 386 } 387 388 void 389 vm_destroy(struct vm *vm) 390 { 391 int i; 392 393 ppt_unassign_all(vm); 394 395 if (vm->iommu != NULL) 396 iommu_destroy_domain(vm->iommu); 397 398 vatpit_cleanup(vm->vatpit); 399 vhpet_cleanup(vm->vhpet); 400 vatpic_cleanup(vm->vatpic); 401 vioapic_cleanup(vm->vioapic); 402 403 for (i = 0; i < vm->num_mem_segs; i++) 404 vm_free_mem_seg(vm, &vm->mem_segs[i]); 405 406 vm->num_mem_segs = 0; 407 408 for (i = 0; i < VM_MAXCPU; i++) 409 vcpu_cleanup(vm, i); 410 411 VMSPACE_FREE(vm->vmspace); 412 413 VMCLEANUP(vm->cookie); 414 415 free(vm, M_VM); 416 } 417 418 const char * 419 vm_name(struct vm *vm) 420 { 421 return (vm->name); 422 } 423 424 int 425 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 426 { 427 vm_object_t obj; 428 429 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 430 return (ENOMEM); 431 else 432 return (0); 433 } 434 435 int 436 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 437 { 438 439 vmm_mmio_free(vm->vmspace, gpa, len); 440 return (0); 441 } 442 443 boolean_t 444 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 445 { 446 int i; 447 vm_paddr_t gpabase, gpalimit; 448 449 for (i = 0; i < vm->num_mem_segs; i++) { 450 gpabase = vm->mem_segs[i].gpa; 451 gpalimit = gpabase + vm->mem_segs[i].len; 452 if (gpa >= gpabase && gpa < gpalimit) 453 return (TRUE); /* 'gpa' is regular memory */ 454 } 455 456 if (ppt_is_mmio(vm, gpa)) 457 return (TRUE); /* 'gpa' is pci passthru mmio */ 458 459 return (FALSE); 460 } 461 462 int 463 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 464 { 465 int available, allocated; 466 struct mem_seg *seg; 467 vm_object_t object; 468 vm_paddr_t g; 469 470 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 471 return (EINVAL); 472 473 available = allocated = 0; 474 g = gpa; 475 while (g < gpa + len) { 476 if (vm_mem_allocated(vm, g)) 477 allocated++; 478 else 479 available++; 480 481 g += PAGE_SIZE; 482 } 483 484 /* 485 * If there are some allocated and some available pages in the address 486 * range then it is an error. 487 */ 488 if (allocated && available) 489 return (EINVAL); 490 491 /* 492 * If the entire address range being requested has already been 493 * allocated then there isn't anything more to do. 494 */ 495 if (allocated && available == 0) 496 return (0); 497 498 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 499 return (E2BIG); 500 501 seg = &vm->mem_segs[vm->num_mem_segs]; 502 503 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 504 return (ENOMEM); 505 506 seg->gpa = gpa; 507 seg->len = len; 508 seg->object = object; 509 seg->wired = FALSE; 510 511 vm->num_mem_segs++; 512 513 return (0); 514 } 515 516 static void 517 vm_gpa_unwire(struct vm *vm) 518 { 519 int i, rv; 520 struct mem_seg *seg; 521 522 for (i = 0; i < vm->num_mem_segs; i++) { 523 seg = &vm->mem_segs[i]; 524 if (!seg->wired) 525 continue; 526 527 rv = vm_map_unwire(&vm->vmspace->vm_map, 528 seg->gpa, seg->gpa + seg->len, 529 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 530 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 531 "%#lx/%ld could not be unwired: %d", 532 vm_name(vm), seg->gpa, seg->len, rv)); 533 534 seg->wired = FALSE; 535 } 536 } 537 538 static int 539 vm_gpa_wire(struct vm *vm) 540 { 541 int i, rv; 542 struct mem_seg *seg; 543 544 for (i = 0; i < vm->num_mem_segs; i++) { 545 seg = &vm->mem_segs[i]; 546 if (seg->wired) 547 continue; 548 549 /* XXX rlimits? */ 550 rv = vm_map_wire(&vm->vmspace->vm_map, 551 seg->gpa, seg->gpa + seg->len, 552 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 553 if (rv != KERN_SUCCESS) 554 break; 555 556 seg->wired = TRUE; 557 } 558 559 if (i < vm->num_mem_segs) { 560 /* 561 * Undo the wiring before returning an error. 562 */ 563 vm_gpa_unwire(vm); 564 return (EAGAIN); 565 } 566 567 return (0); 568 } 569 570 static void 571 vm_iommu_modify(struct vm *vm, boolean_t map) 572 { 573 int i, sz; 574 vm_paddr_t gpa, hpa; 575 struct mem_seg *seg; 576 void *vp, *cookie, *host_domain; 577 578 sz = PAGE_SIZE; 579 host_domain = iommu_host_domain(); 580 581 for (i = 0; i < vm->num_mem_segs; i++) { 582 seg = &vm->mem_segs[i]; 583 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 584 vm_name(vm), seg->gpa, seg->len)); 585 586 gpa = seg->gpa; 587 while (gpa < seg->gpa + seg->len) { 588 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 589 &cookie); 590 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 591 vm_name(vm), gpa)); 592 593 vm_gpa_release(cookie); 594 595 hpa = DMAP_TO_PHYS((uintptr_t)vp); 596 if (map) { 597 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 598 iommu_remove_mapping(host_domain, hpa, sz); 599 } else { 600 iommu_remove_mapping(vm->iommu, gpa, sz); 601 iommu_create_mapping(host_domain, hpa, hpa, sz); 602 } 603 604 gpa += PAGE_SIZE; 605 } 606 } 607 608 /* 609 * Invalidate the cached translations associated with the domain 610 * from which pages were removed. 611 */ 612 if (map) 613 iommu_invalidate_tlb(host_domain); 614 else 615 iommu_invalidate_tlb(vm->iommu); 616 } 617 618 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 619 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 620 621 int 622 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 623 { 624 int error; 625 626 error = ppt_unassign_device(vm, bus, slot, func); 627 if (error) 628 return (error); 629 630 if (ppt_assigned_devices(vm) == 0) { 631 vm_iommu_unmap(vm); 632 vm_gpa_unwire(vm); 633 } 634 return (0); 635 } 636 637 int 638 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 639 { 640 int error; 641 vm_paddr_t maxaddr; 642 643 /* 644 * Virtual machines with pci passthru devices get special treatment: 645 * - the guest physical memory is wired 646 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 647 * 648 * We need to do this before the first pci passthru device is attached. 649 */ 650 if (ppt_assigned_devices(vm) == 0) { 651 KASSERT(vm->iommu == NULL, 652 ("vm_assign_pptdev: iommu must be NULL")); 653 maxaddr = vmm_mem_maxaddr(); 654 vm->iommu = iommu_create_domain(maxaddr); 655 656 error = vm_gpa_wire(vm); 657 if (error) 658 return (error); 659 660 vm_iommu_map(vm); 661 } 662 663 error = ppt_assign_device(vm, bus, slot, func); 664 return (error); 665 } 666 667 void * 668 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 669 void **cookie) 670 { 671 int count, pageoff; 672 vm_page_t m; 673 674 pageoff = gpa & PAGE_MASK; 675 if (len > PAGE_SIZE - pageoff) 676 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 677 678 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 679 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 680 681 if (count == 1) { 682 *cookie = m; 683 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 684 } else { 685 *cookie = NULL; 686 return (NULL); 687 } 688 } 689 690 void 691 vm_gpa_release(void *cookie) 692 { 693 vm_page_t m = cookie; 694 695 vm_page_lock(m); 696 vm_page_unhold(m); 697 vm_page_unlock(m); 698 } 699 700 int 701 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 702 struct vm_memory_segment *seg) 703 { 704 int i; 705 706 for (i = 0; i < vm->num_mem_segs; i++) { 707 if (gpabase == vm->mem_segs[i].gpa) { 708 seg->gpa = vm->mem_segs[i].gpa; 709 seg->len = vm->mem_segs[i].len; 710 seg->wired = vm->mem_segs[i].wired; 711 return (0); 712 } 713 } 714 return (-1); 715 } 716 717 int 718 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 719 vm_offset_t *offset, struct vm_object **object) 720 { 721 int i; 722 size_t seg_len; 723 vm_paddr_t seg_gpa; 724 vm_object_t seg_obj; 725 726 for (i = 0; i < vm->num_mem_segs; i++) { 727 if ((seg_obj = vm->mem_segs[i].object) == NULL) 728 continue; 729 730 seg_gpa = vm->mem_segs[i].gpa; 731 seg_len = vm->mem_segs[i].len; 732 733 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 734 *offset = gpa - seg_gpa; 735 *object = seg_obj; 736 vm_object_reference(seg_obj); 737 return (0); 738 } 739 } 740 741 return (EINVAL); 742 } 743 744 int 745 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 746 { 747 748 if (vcpu < 0 || vcpu >= VM_MAXCPU) 749 return (EINVAL); 750 751 if (reg >= VM_REG_LAST) 752 return (EINVAL); 753 754 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 755 } 756 757 int 758 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val) 759 { 760 761 if (vcpu < 0 || vcpu >= VM_MAXCPU) 762 return (EINVAL); 763 764 if (reg >= VM_REG_LAST) 765 return (EINVAL); 766 767 return (VMSETREG(vm->cookie, vcpu, reg, val)); 768 } 769 770 static boolean_t 771 is_descriptor_table(int reg) 772 { 773 774 switch (reg) { 775 case VM_REG_GUEST_IDTR: 776 case VM_REG_GUEST_GDTR: 777 return (TRUE); 778 default: 779 return (FALSE); 780 } 781 } 782 783 static boolean_t 784 is_segment_register(int reg) 785 { 786 787 switch (reg) { 788 case VM_REG_GUEST_ES: 789 case VM_REG_GUEST_CS: 790 case VM_REG_GUEST_SS: 791 case VM_REG_GUEST_DS: 792 case VM_REG_GUEST_FS: 793 case VM_REG_GUEST_GS: 794 case VM_REG_GUEST_TR: 795 case VM_REG_GUEST_LDTR: 796 return (TRUE); 797 default: 798 return (FALSE); 799 } 800 } 801 802 int 803 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 804 struct seg_desc *desc) 805 { 806 807 if (vcpu < 0 || vcpu >= VM_MAXCPU) 808 return (EINVAL); 809 810 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 811 return (EINVAL); 812 813 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 814 } 815 816 int 817 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 818 struct seg_desc *desc) 819 { 820 if (vcpu < 0 || vcpu >= VM_MAXCPU) 821 return (EINVAL); 822 823 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 824 return (EINVAL); 825 826 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 827 } 828 829 static void 830 restore_guest_fpustate(struct vcpu *vcpu) 831 { 832 833 /* flush host state to the pcb */ 834 fpuexit(curthread); 835 836 /* restore guest FPU state */ 837 fpu_stop_emulating(); 838 fpurestore(vcpu->guestfpu); 839 840 /* restore guest XCR0 if XSAVE is enabled in the host */ 841 if (rcr4() & CR4_XSAVE) 842 load_xcr(0, vcpu->guest_xcr0); 843 844 /* 845 * The FPU is now "dirty" with the guest's state so turn on emulation 846 * to trap any access to the FPU by the host. 847 */ 848 fpu_start_emulating(); 849 } 850 851 static void 852 save_guest_fpustate(struct vcpu *vcpu) 853 { 854 855 if ((rcr0() & CR0_TS) == 0) 856 panic("fpu emulation not enabled in host!"); 857 858 /* save guest XCR0 and restore host XCR0 */ 859 if (rcr4() & CR4_XSAVE) { 860 vcpu->guest_xcr0 = rxcr(0); 861 load_xcr(0, vmm_get_host_xcr0()); 862 } 863 864 /* save guest FPU state */ 865 fpu_stop_emulating(); 866 fpusave(vcpu->guestfpu); 867 fpu_start_emulating(); 868 } 869 870 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 871 872 static int 873 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 874 bool from_idle) 875 { 876 int error; 877 878 vcpu_assert_locked(vcpu); 879 880 /* 881 * State transitions from the vmmdev_ioctl() must always begin from 882 * the VCPU_IDLE state. This guarantees that there is only a single 883 * ioctl() operating on a vcpu at any point. 884 */ 885 if (from_idle) { 886 while (vcpu->state != VCPU_IDLE) 887 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 888 } else { 889 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 890 "vcpu idle state")); 891 } 892 893 if (vcpu->state == VCPU_RUNNING) { 894 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 895 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 896 } else { 897 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 898 "vcpu that is not running", vcpu->hostcpu)); 899 } 900 901 /* 902 * The following state transitions are allowed: 903 * IDLE -> FROZEN -> IDLE 904 * FROZEN -> RUNNING -> FROZEN 905 * FROZEN -> SLEEPING -> FROZEN 906 */ 907 switch (vcpu->state) { 908 case VCPU_IDLE: 909 case VCPU_RUNNING: 910 case VCPU_SLEEPING: 911 error = (newstate != VCPU_FROZEN); 912 break; 913 case VCPU_FROZEN: 914 error = (newstate == VCPU_FROZEN); 915 break; 916 default: 917 error = 1; 918 break; 919 } 920 921 if (error) 922 return (EBUSY); 923 924 vcpu->state = newstate; 925 if (newstate == VCPU_RUNNING) 926 vcpu->hostcpu = curcpu; 927 else 928 vcpu->hostcpu = NOCPU; 929 930 if (newstate == VCPU_IDLE) 931 wakeup(&vcpu->state); 932 933 return (0); 934 } 935 936 static void 937 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 938 { 939 int error; 940 941 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 942 panic("Error %d setting state to %d\n", error, newstate); 943 } 944 945 static void 946 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 947 { 948 int error; 949 950 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 951 panic("Error %d setting state to %d", error, newstate); 952 } 953 954 static void 955 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 956 { 957 958 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 959 960 /* 961 * Update 'rendezvous_func' and execute a write memory barrier to 962 * ensure that it is visible across all host cpus. This is not needed 963 * for correctness but it does ensure that all the vcpus will notice 964 * that the rendezvous is requested immediately. 965 */ 966 vm->rendezvous_func = func; 967 wmb(); 968 } 969 970 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 971 do { \ 972 if (vcpuid >= 0) \ 973 VCPU_CTR0(vm, vcpuid, fmt); \ 974 else \ 975 VM_CTR0(vm, fmt); \ 976 } while (0) 977 978 static void 979 vm_handle_rendezvous(struct vm *vm, int vcpuid) 980 { 981 982 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 983 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 984 985 mtx_lock(&vm->rendezvous_mtx); 986 while (vm->rendezvous_func != NULL) { 987 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 988 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 989 990 if (vcpuid != -1 && 991 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 992 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 993 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 994 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 995 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 996 } 997 if (CPU_CMP(&vm->rendezvous_req_cpus, 998 &vm->rendezvous_done_cpus) == 0) { 999 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1000 vm_set_rendezvous_func(vm, NULL); 1001 wakeup(&vm->rendezvous_func); 1002 break; 1003 } 1004 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1005 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1006 "vmrndv", 0); 1007 } 1008 mtx_unlock(&vm->rendezvous_mtx); 1009 } 1010 1011 /* 1012 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1013 */ 1014 static int 1015 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1016 { 1017 struct vcpu *vcpu; 1018 const char *wmesg; 1019 int t, vcpu_halted, vm_halted; 1020 1021 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1022 1023 vcpu = &vm->vcpu[vcpuid]; 1024 vcpu_halted = 0; 1025 vm_halted = 0; 1026 1027 vcpu_lock(vcpu); 1028 while (1) { 1029 /* 1030 * Do a final check for pending NMI or interrupts before 1031 * really putting this thread to sleep. Also check for 1032 * software events that would cause this vcpu to wakeup. 1033 * 1034 * These interrupts/events could have happened after the 1035 * vcpu returned from VMRUN() and before it acquired the 1036 * vcpu lock above. 1037 */ 1038 if (vm->rendezvous_func != NULL || vm->suspend) 1039 break; 1040 if (vm_nmi_pending(vm, vcpuid)) 1041 break; 1042 if (!intr_disabled) { 1043 if (vm_extint_pending(vm, vcpuid) || 1044 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1045 break; 1046 } 1047 } 1048 1049 /* 1050 * Some Linux guests implement "halt" by having all vcpus 1051 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1052 * track of the vcpus that have entered this state. When all 1053 * vcpus enter the halted state the virtual machine is halted. 1054 */ 1055 if (intr_disabled) { 1056 wmesg = "vmhalt"; 1057 VCPU_CTR0(vm, vcpuid, "Halted"); 1058 if (!vcpu_halted && halt_detection_enabled) { 1059 vcpu_halted = 1; 1060 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1061 } 1062 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1063 vm_halted = 1; 1064 break; 1065 } 1066 } else { 1067 wmesg = "vmidle"; 1068 } 1069 1070 t = ticks; 1071 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1072 msleep_spin(vcpu, &vcpu->mtx, wmesg, 0); 1073 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1074 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1075 } 1076 1077 if (vcpu_halted) 1078 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1079 1080 vcpu_unlock(vcpu); 1081 1082 if (vm_halted) 1083 vm_suspend(vm, VM_SUSPEND_HALT); 1084 1085 return (0); 1086 } 1087 1088 static int 1089 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1090 { 1091 int rv, ftype; 1092 struct vm_map *map; 1093 struct vcpu *vcpu; 1094 struct vm_exit *vme; 1095 1096 vcpu = &vm->vcpu[vcpuid]; 1097 vme = &vcpu->exitinfo; 1098 1099 ftype = vme->u.paging.fault_type; 1100 KASSERT(ftype == VM_PROT_READ || 1101 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1102 ("vm_handle_paging: invalid fault_type %d", ftype)); 1103 1104 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1105 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1106 vme->u.paging.gpa, ftype); 1107 if (rv == 0) 1108 goto done; 1109 } 1110 1111 map = &vm->vmspace->vm_map; 1112 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1113 1114 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1115 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1116 1117 if (rv != KERN_SUCCESS) 1118 return (EFAULT); 1119 done: 1120 /* restart execution at the faulting instruction */ 1121 vme->inst_length = 0; 1122 1123 return (0); 1124 } 1125 1126 static int 1127 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1128 { 1129 struct vie *vie; 1130 struct vcpu *vcpu; 1131 struct vm_exit *vme; 1132 uint64_t gla, gpa; 1133 struct vm_guest_paging *paging; 1134 mem_region_read_t mread; 1135 mem_region_write_t mwrite; 1136 int error; 1137 1138 vcpu = &vm->vcpu[vcpuid]; 1139 vme = &vcpu->exitinfo; 1140 1141 gla = vme->u.inst_emul.gla; 1142 gpa = vme->u.inst_emul.gpa; 1143 vie = &vme->u.inst_emul.vie; 1144 paging = &vme->u.inst_emul.paging; 1145 1146 vie_init(vie); 1147 1148 /* Fetch, decode and emulate the faulting instruction */ 1149 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip, 1150 vme->inst_length, vie); 1151 if (error == 1) 1152 return (0); /* Resume guest to handle page fault */ 1153 else if (error == -1) 1154 return (EFAULT); 1155 else if (error != 0) 1156 panic("%s: vmm_fetch_instruction error %d", __func__, error); 1157 1158 if (vmm_decode_instruction(vm, vcpuid, gla, paging->cpu_mode, vie) != 0) 1159 return (EFAULT); 1160 1161 /* return to userland unless this is an in-kernel emulated device */ 1162 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1163 mread = lapic_mmio_read; 1164 mwrite = lapic_mmio_write; 1165 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1166 mread = vioapic_mmio_read; 1167 mwrite = vioapic_mmio_write; 1168 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1169 mread = vhpet_mmio_read; 1170 mwrite = vhpet_mmio_write; 1171 } else { 1172 *retu = true; 1173 return (0); 1174 } 1175 1176 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, mread, mwrite, 1177 retu); 1178 1179 return (error); 1180 } 1181 1182 static int 1183 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1184 { 1185 int i, done; 1186 struct vcpu *vcpu; 1187 1188 done = 0; 1189 vcpu = &vm->vcpu[vcpuid]; 1190 1191 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1192 1193 /* 1194 * Wait until all 'active_cpus' have suspended themselves. 1195 * 1196 * Since a VM may be suspended at any time including when one or 1197 * more vcpus are doing a rendezvous we need to call the rendezvous 1198 * handler while we are waiting to prevent a deadlock. 1199 */ 1200 vcpu_lock(vcpu); 1201 while (1) { 1202 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1203 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1204 break; 1205 } 1206 1207 if (vm->rendezvous_func == NULL) { 1208 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1209 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1210 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1211 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1212 } else { 1213 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1214 vcpu_unlock(vcpu); 1215 vm_handle_rendezvous(vm, vcpuid); 1216 vcpu_lock(vcpu); 1217 } 1218 } 1219 vcpu_unlock(vcpu); 1220 1221 /* 1222 * Wakeup the other sleeping vcpus and return to userspace. 1223 */ 1224 for (i = 0; i < VM_MAXCPU; i++) { 1225 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1226 vcpu_notify_event(vm, i, false); 1227 } 1228 } 1229 1230 *retu = true; 1231 return (0); 1232 } 1233 1234 int 1235 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1236 { 1237 int i; 1238 1239 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1240 return (EINVAL); 1241 1242 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1243 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1244 vm->suspend, how); 1245 return (EALREADY); 1246 } 1247 1248 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1249 1250 /* 1251 * Notify all active vcpus that they are now suspended. 1252 */ 1253 for (i = 0; i < VM_MAXCPU; i++) { 1254 if (CPU_ISSET(i, &vm->active_cpus)) 1255 vcpu_notify_event(vm, i, false); 1256 } 1257 1258 return (0); 1259 } 1260 1261 void 1262 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1263 { 1264 struct vm_exit *vmexit; 1265 1266 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1267 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1268 1269 vmexit = vm_exitinfo(vm, vcpuid); 1270 vmexit->rip = rip; 1271 vmexit->inst_length = 0; 1272 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1273 vmexit->u.suspended.how = vm->suspend; 1274 } 1275 1276 int 1277 vm_run(struct vm *vm, struct vm_run *vmrun) 1278 { 1279 int error, vcpuid; 1280 struct vcpu *vcpu; 1281 struct pcb *pcb; 1282 uint64_t tscval, rip; 1283 struct vm_exit *vme; 1284 bool retu, intr_disabled; 1285 pmap_t pmap; 1286 void *rptr, *sptr; 1287 1288 vcpuid = vmrun->cpuid; 1289 1290 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1291 return (EINVAL); 1292 1293 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1294 return (EINVAL); 1295 1296 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1297 return (EINVAL); 1298 1299 rptr = &vm->rendezvous_func; 1300 sptr = &vm->suspend; 1301 pmap = vmspace_pmap(vm->vmspace); 1302 vcpu = &vm->vcpu[vcpuid]; 1303 vme = &vcpu->exitinfo; 1304 rip = vmrun->rip; 1305 restart: 1306 critical_enter(); 1307 1308 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1309 ("vm_run: absurd pm_active")); 1310 1311 tscval = rdtsc(); 1312 1313 pcb = PCPU_GET(curpcb); 1314 set_pcb_flags(pcb, PCB_FULL_IRET); 1315 1316 restore_guest_msrs(vm, vcpuid); 1317 restore_guest_fpustate(vcpu); 1318 1319 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1320 error = VMRUN(vm->cookie, vcpuid, rip, pmap, rptr, sptr); 1321 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1322 1323 save_guest_fpustate(vcpu); 1324 restore_host_msrs(vm, vcpuid); 1325 1326 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1327 1328 critical_exit(); 1329 1330 if (error == 0) { 1331 retu = false; 1332 switch (vme->exitcode) { 1333 case VM_EXITCODE_SUSPENDED: 1334 error = vm_handle_suspend(vm, vcpuid, &retu); 1335 break; 1336 case VM_EXITCODE_IOAPIC_EOI: 1337 vioapic_process_eoi(vm, vcpuid, 1338 vme->u.ioapic_eoi.vector); 1339 break; 1340 case VM_EXITCODE_RENDEZVOUS: 1341 vm_handle_rendezvous(vm, vcpuid); 1342 error = 0; 1343 break; 1344 case VM_EXITCODE_HLT: 1345 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1346 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1347 break; 1348 case VM_EXITCODE_PAGING: 1349 error = vm_handle_paging(vm, vcpuid, &retu); 1350 break; 1351 case VM_EXITCODE_INST_EMUL: 1352 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1353 break; 1354 case VM_EXITCODE_INOUT: 1355 case VM_EXITCODE_INOUT_STR: 1356 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1357 break; 1358 default: 1359 retu = true; /* handled in userland */ 1360 break; 1361 } 1362 } 1363 1364 if (error == 0 && retu == false) { 1365 rip = vme->rip + vme->inst_length; 1366 goto restart; 1367 } 1368 1369 /* copy the exit information */ 1370 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1371 return (error); 1372 } 1373 1374 int 1375 vm_inject_exception(struct vm *vm, int vcpuid, struct vm_exception *exception) 1376 { 1377 struct vcpu *vcpu; 1378 1379 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1380 return (EINVAL); 1381 1382 if (exception->vector < 0 || exception->vector >= 32) 1383 return (EINVAL); 1384 1385 vcpu = &vm->vcpu[vcpuid]; 1386 1387 if (vcpu->exception_pending) { 1388 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1389 "pending exception %d", exception->vector, 1390 vcpu->exception.vector); 1391 return (EBUSY); 1392 } 1393 1394 vcpu->exception_pending = 1; 1395 vcpu->exception = *exception; 1396 VCPU_CTR1(vm, vcpuid, "Exception %d pending", exception->vector); 1397 return (0); 1398 } 1399 1400 int 1401 vm_exception_pending(struct vm *vm, int vcpuid, struct vm_exception *exception) 1402 { 1403 struct vcpu *vcpu; 1404 int pending; 1405 1406 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1407 1408 vcpu = &vm->vcpu[vcpuid]; 1409 pending = vcpu->exception_pending; 1410 if (pending) { 1411 vcpu->exception_pending = 0; 1412 *exception = vcpu->exception; 1413 VCPU_CTR1(vm, vcpuid, "Exception %d delivered", 1414 exception->vector); 1415 } 1416 return (pending); 1417 } 1418 1419 static void 1420 vm_inject_fault(struct vm *vm, int vcpuid, struct vm_exception *exception) 1421 { 1422 struct vm_exit *vmexit; 1423 int error; 1424 1425 error = vm_inject_exception(vm, vcpuid, exception); 1426 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1427 1428 /* 1429 * A fault-like exception allows the instruction to be restarted 1430 * after the exception handler returns. 1431 * 1432 * By setting the inst_length to 0 we ensure that the instruction 1433 * pointer remains at the faulting instruction. 1434 */ 1435 vmexit = vm_exitinfo(vm, vcpuid); 1436 vmexit->inst_length = 0; 1437 } 1438 1439 void 1440 vm_inject_pf(struct vm *vm, int vcpuid, int error_code, uint64_t cr2) 1441 { 1442 struct vm_exception pf = { 1443 .vector = IDT_PF, 1444 .error_code_valid = 1, 1445 .error_code = error_code 1446 }; 1447 int error; 1448 1449 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 1450 error_code, cr2); 1451 1452 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 1453 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 1454 1455 vm_inject_fault(vm, vcpuid, &pf); 1456 } 1457 1458 void 1459 vm_inject_gp(struct vm *vm, int vcpuid) 1460 { 1461 struct vm_exception gpf = { 1462 .vector = IDT_GP, 1463 .error_code_valid = 1, 1464 .error_code = 0 1465 }; 1466 1467 vm_inject_fault(vm, vcpuid, &gpf); 1468 } 1469 1470 void 1471 vm_inject_ud(struct vm *vm, int vcpuid) 1472 { 1473 struct vm_exception udf = { 1474 .vector = IDT_UD, 1475 .error_code_valid = 0 1476 }; 1477 1478 vm_inject_fault(vm, vcpuid, &udf); 1479 } 1480 1481 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1482 1483 int 1484 vm_inject_nmi(struct vm *vm, int vcpuid) 1485 { 1486 struct vcpu *vcpu; 1487 1488 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1489 return (EINVAL); 1490 1491 vcpu = &vm->vcpu[vcpuid]; 1492 1493 vcpu->nmi_pending = 1; 1494 vcpu_notify_event(vm, vcpuid, false); 1495 return (0); 1496 } 1497 1498 int 1499 vm_nmi_pending(struct vm *vm, int vcpuid) 1500 { 1501 struct vcpu *vcpu; 1502 1503 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1504 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1505 1506 vcpu = &vm->vcpu[vcpuid]; 1507 1508 return (vcpu->nmi_pending); 1509 } 1510 1511 void 1512 vm_nmi_clear(struct vm *vm, int vcpuid) 1513 { 1514 struct vcpu *vcpu; 1515 1516 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1517 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1518 1519 vcpu = &vm->vcpu[vcpuid]; 1520 1521 if (vcpu->nmi_pending == 0) 1522 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1523 1524 vcpu->nmi_pending = 0; 1525 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1526 } 1527 1528 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1529 1530 int 1531 vm_inject_extint(struct vm *vm, int vcpuid) 1532 { 1533 struct vcpu *vcpu; 1534 1535 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1536 return (EINVAL); 1537 1538 vcpu = &vm->vcpu[vcpuid]; 1539 1540 vcpu->extint_pending = 1; 1541 vcpu_notify_event(vm, vcpuid, false); 1542 return (0); 1543 } 1544 1545 int 1546 vm_extint_pending(struct vm *vm, int vcpuid) 1547 { 1548 struct vcpu *vcpu; 1549 1550 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1551 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1552 1553 vcpu = &vm->vcpu[vcpuid]; 1554 1555 return (vcpu->extint_pending); 1556 } 1557 1558 void 1559 vm_extint_clear(struct vm *vm, int vcpuid) 1560 { 1561 struct vcpu *vcpu; 1562 1563 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1564 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1565 1566 vcpu = &vm->vcpu[vcpuid]; 1567 1568 if (vcpu->extint_pending == 0) 1569 panic("vm_extint_clear: inconsistent extint_pending state"); 1570 1571 vcpu->extint_pending = 0; 1572 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1573 } 1574 1575 int 1576 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1577 { 1578 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1579 return (EINVAL); 1580 1581 if (type < 0 || type >= VM_CAP_MAX) 1582 return (EINVAL); 1583 1584 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1585 } 1586 1587 int 1588 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1589 { 1590 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1591 return (EINVAL); 1592 1593 if (type < 0 || type >= VM_CAP_MAX) 1594 return (EINVAL); 1595 1596 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1597 } 1598 1599 uint64_t * 1600 vm_guest_msrs(struct vm *vm, int cpu) 1601 { 1602 return (vm->vcpu[cpu].guest_msrs); 1603 } 1604 1605 struct vlapic * 1606 vm_lapic(struct vm *vm, int cpu) 1607 { 1608 return (vm->vcpu[cpu].vlapic); 1609 } 1610 1611 struct vioapic * 1612 vm_ioapic(struct vm *vm) 1613 { 1614 1615 return (vm->vioapic); 1616 } 1617 1618 struct vhpet * 1619 vm_hpet(struct vm *vm) 1620 { 1621 1622 return (vm->vhpet); 1623 } 1624 1625 boolean_t 1626 vmm_is_pptdev(int bus, int slot, int func) 1627 { 1628 int found, i, n; 1629 int b, s, f; 1630 char *val, *cp, *cp2; 1631 1632 /* 1633 * XXX 1634 * The length of an environment variable is limited to 128 bytes which 1635 * puts an upper limit on the number of passthru devices that may be 1636 * specified using a single environment variable. 1637 * 1638 * Work around this by scanning multiple environment variable 1639 * names instead of a single one - yuck! 1640 */ 1641 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 1642 1643 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 1644 found = 0; 1645 for (i = 0; names[i] != NULL && !found; i++) { 1646 cp = val = getenv(names[i]); 1647 while (cp != NULL && *cp != '\0') { 1648 if ((cp2 = strchr(cp, ' ')) != NULL) 1649 *cp2 = '\0'; 1650 1651 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 1652 if (n == 3 && bus == b && slot == s && func == f) { 1653 found = 1; 1654 break; 1655 } 1656 1657 if (cp2 != NULL) 1658 *cp2++ = ' '; 1659 1660 cp = cp2; 1661 } 1662 freeenv(val); 1663 } 1664 return (found); 1665 } 1666 1667 void * 1668 vm_iommu_domain(struct vm *vm) 1669 { 1670 1671 return (vm->iommu); 1672 } 1673 1674 int 1675 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1676 bool from_idle) 1677 { 1678 int error; 1679 struct vcpu *vcpu; 1680 1681 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1682 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 1683 1684 vcpu = &vm->vcpu[vcpuid]; 1685 1686 vcpu_lock(vcpu); 1687 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1688 vcpu_unlock(vcpu); 1689 1690 return (error); 1691 } 1692 1693 enum vcpu_state 1694 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 1695 { 1696 struct vcpu *vcpu; 1697 enum vcpu_state state; 1698 1699 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1700 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 1701 1702 vcpu = &vm->vcpu[vcpuid]; 1703 1704 vcpu_lock(vcpu); 1705 state = vcpu->state; 1706 if (hostcpu != NULL) 1707 *hostcpu = vcpu->hostcpu; 1708 vcpu_unlock(vcpu); 1709 1710 return (state); 1711 } 1712 1713 int 1714 vm_activate_cpu(struct vm *vm, int vcpuid) 1715 { 1716 1717 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1718 return (EINVAL); 1719 1720 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 1721 return (EBUSY); 1722 1723 VCPU_CTR0(vm, vcpuid, "activated"); 1724 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 1725 return (0); 1726 } 1727 1728 cpuset_t 1729 vm_active_cpus(struct vm *vm) 1730 { 1731 1732 return (vm->active_cpus); 1733 } 1734 1735 cpuset_t 1736 vm_suspended_cpus(struct vm *vm) 1737 { 1738 1739 return (vm->suspended_cpus); 1740 } 1741 1742 void * 1743 vcpu_stats(struct vm *vm, int vcpuid) 1744 { 1745 1746 return (vm->vcpu[vcpuid].stats); 1747 } 1748 1749 int 1750 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 1751 { 1752 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1753 return (EINVAL); 1754 1755 *state = vm->vcpu[vcpuid].x2apic_state; 1756 1757 return (0); 1758 } 1759 1760 int 1761 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 1762 { 1763 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1764 return (EINVAL); 1765 1766 if (state >= X2APIC_STATE_LAST) 1767 return (EINVAL); 1768 1769 vm->vcpu[vcpuid].x2apic_state = state; 1770 1771 vlapic_set_x2apic_state(vm, vcpuid, state); 1772 1773 return (0); 1774 } 1775 1776 /* 1777 * This function is called to ensure that a vcpu "sees" a pending event 1778 * as soon as possible: 1779 * - If the vcpu thread is sleeping then it is woken up. 1780 * - If the vcpu is running on a different host_cpu then an IPI will be directed 1781 * to the host_cpu to cause the vcpu to trap into the hypervisor. 1782 */ 1783 void 1784 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 1785 { 1786 int hostcpu; 1787 struct vcpu *vcpu; 1788 1789 vcpu = &vm->vcpu[vcpuid]; 1790 1791 vcpu_lock(vcpu); 1792 hostcpu = vcpu->hostcpu; 1793 if (vcpu->state == VCPU_RUNNING) { 1794 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 1795 if (hostcpu != curcpu) { 1796 if (lapic_intr) { 1797 vlapic_post_intr(vcpu->vlapic, hostcpu, 1798 vmm_ipinum); 1799 } else { 1800 ipi_cpu(hostcpu, vmm_ipinum); 1801 } 1802 } else { 1803 /* 1804 * If the 'vcpu' is running on 'curcpu' then it must 1805 * be sending a notification to itself (e.g. SELF_IPI). 1806 * The pending event will be picked up when the vcpu 1807 * transitions back to guest context. 1808 */ 1809 } 1810 } else { 1811 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 1812 "with hostcpu %d", vcpu->state, hostcpu)); 1813 if (vcpu->state == VCPU_SLEEPING) 1814 wakeup_one(vcpu); 1815 } 1816 vcpu_unlock(vcpu); 1817 } 1818 1819 struct vmspace * 1820 vm_get_vmspace(struct vm *vm) 1821 { 1822 1823 return (vm->vmspace); 1824 } 1825 1826 int 1827 vm_apicid2vcpuid(struct vm *vm, int apicid) 1828 { 1829 /* 1830 * XXX apic id is assumed to be numerically identical to vcpu id 1831 */ 1832 return (apicid); 1833 } 1834 1835 void 1836 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 1837 vm_rendezvous_func_t func, void *arg) 1838 { 1839 int i; 1840 1841 /* 1842 * Enforce that this function is called without any locks 1843 */ 1844 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 1845 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1846 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 1847 1848 restart: 1849 mtx_lock(&vm->rendezvous_mtx); 1850 if (vm->rendezvous_func != NULL) { 1851 /* 1852 * If a rendezvous is already in progress then we need to 1853 * call the rendezvous handler in case this 'vcpuid' is one 1854 * of the targets of the rendezvous. 1855 */ 1856 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 1857 mtx_unlock(&vm->rendezvous_mtx); 1858 vm_handle_rendezvous(vm, vcpuid); 1859 goto restart; 1860 } 1861 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 1862 "rendezvous is still in progress")); 1863 1864 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 1865 vm->rendezvous_req_cpus = dest; 1866 CPU_ZERO(&vm->rendezvous_done_cpus); 1867 vm->rendezvous_arg = arg; 1868 vm_set_rendezvous_func(vm, func); 1869 mtx_unlock(&vm->rendezvous_mtx); 1870 1871 /* 1872 * Wake up any sleeping vcpus and trigger a VM-exit in any running 1873 * vcpus so they handle the rendezvous as soon as possible. 1874 */ 1875 for (i = 0; i < VM_MAXCPU; i++) { 1876 if (CPU_ISSET(i, &dest)) 1877 vcpu_notify_event(vm, i, false); 1878 } 1879 1880 vm_handle_rendezvous(vm, vcpuid); 1881 } 1882 1883 struct vatpic * 1884 vm_atpic(struct vm *vm) 1885 { 1886 return (vm->vatpic); 1887 } 1888 1889 struct vatpit * 1890 vm_atpit(struct vm *vm) 1891 { 1892 return (vm->vatpit); 1893 } 1894 1895 enum vm_reg_name 1896 vm_segment_name(int seg) 1897 { 1898 static enum vm_reg_name seg_names[] = { 1899 VM_REG_GUEST_ES, 1900 VM_REG_GUEST_CS, 1901 VM_REG_GUEST_SS, 1902 VM_REG_GUEST_DS, 1903 VM_REG_GUEST_FS, 1904 VM_REG_GUEST_GS 1905 }; 1906 1907 KASSERT(seg >= 0 && seg < nitems(seg_names), 1908 ("%s: invalid segment encoding %d", __func__, seg)); 1909 return (seg_names[seg]); 1910 } 1911